CS 760: Machine Learning
SVMs and Kernels

Misha Khodak

University of Wisconsin-Madison

12 November 2025



Announcements

*Logistics:
* HW 4 due date moved to Nov 24

*Updated roadmap:
*1 lecture on the modern science of learning
3 lectures on reinforcement learning
*2 lectures on data-efficient learning




Outline

*Support Vector Machines (SVMs)

*margins, training objectives
*Dual Formulation
*Lagrangian, primal and dual problems

*Kernels
*Feature maps, kernel trick, conditions



Outline

*Support Vector Machines (SVMs)

*margins, training objectives



Linear classification revisited

wlx+b=0

wlx+b>0

.WTx+b<O
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Linear classification revisited

* Which classifier is better for generalization?
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Linear classification revisited

*|ntuitively, expect a large margin to generalize better

large margin

Class -1

*|n fact, this intuition can be made formal!



Large-margin generalization

Informal theorem: if all input points x € X have norm < 1 then
w.p. = 1 — § all linear models h(x) = w'x with |[|w]| < 1 have

. 1 1
generalization error < | \/—log—
0 /_m 2m )

Compare to the VC bound for d-dimensional linear classifiers:

: : 2(d+1) em 1 1
generalization errorS\/ - logm+\/mlog3

If the margin p = Q(1/v/d) the first is a much better guarantee!

Perhaps we should train classifiers to have a large margin?



Recall: Distance to a hyperplane

|fw,b(X)

Iwll

x has distance to the hyperplane f,,,(z) =w'z+b =0




Support Vector Machines

The SVM idea: maximize the “minimum margin” over all
training points:
| fw,b (X))

[wl

y(w,b) = min
l

Equivalently:

If fw p incorrect on some Xx;, the margin is negative



Support Vector Machines: Candidate Goal
Assume data is linearly separable (for now)

Objective idea 1: maximize margin over all training data points:

Vi fwp(xi) . yiw'x; + b)

maxy(w, b) = max min = max min
w.b y(w,b) wb i lw| wb i lw||

Minimax Optimization may be difficult to solve!
(recall optimization difficulties with GANSs)



SVM: Simplified Goal

Observation: when (w, b) scaled by a factor ¢ > 0, the
margin is unchanged

yi(ew"x; +cb)  y;(w'x; + b)
lew]] Wl

Let us consider a fixed scale such that
yir(w'xp +b) =1

where X;+ is the point closest to the hyperplane



SVM: Simplified Goal

Let us consider a fixed scale such that
yir(W'xp» + b) =1

where x;+ is the point closest to the hyperplane

Then for all points i we have y;(wlx; + b) = 1, and the inequality is
tight for at least one i

Then the margin over all training points is = —



Writing the SVM as an optimization problem

Objective idea 2:

max ”71” subjectto y;(w'x; +b) =1V i
Rewrite as

%151 Zlwll?  subjectto y;(wTx; +b) =1V i
Why?

*[t’s a convex quadratic program, for which there are many efficient solvers.
e Can apply the kernel trick for nonlinear classification (coming up)



So why are they called support vector machines?

Instances where inequality is tight are the support vectors
* Lie on the margin boundary
* Solution does not change if we delete other instances!

| support
vectors

o 0.5 0.0 0.5 1.0
Ben-Hur & Weston, Methods in Molecular Biology 2010



SVM: Soft Margin

What if our data isn’t linearly separable?

* Adjust approach by adding slack variables (denoted by (;) to
tolerate errors

1 2 |
min 3wl? +¢ ) ¢

l
yiwlx; +b) =>1—-(,{; =0,V i

*adds a hyperparameter C = 0
* trades-off maximizing margin vs. minimizing slack
*roughly an inverse regularization parameter



SVM: Soft Margin
min Z|lw||?* + Cz {;

w,b,{; _
l

yiwlx; +b)=21-0;,(;=0,Vi

C=100

1.0

-1'-01.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Ben-Hur & Weston, Methods in Molecular Biology 2010



Outline

*Dual Formulation
*Lagrangian, primal and dual problems



What if we have nonlinearly separated data?

Issue: sometimes the data
is well-separated but not in
a linear way

Solution: classify in a
higher-dimensional space
using a feature map

Issue: what if the dimension
of the space is too high to
represent efficiently?

Solution: reformulate the
optimization problem to
only depend on the
similarity between points

linear kernel

—1'-%..0 0.5 0.0 0.5 1.0-1.0 -0.5 0.0 05 10-1.0 -05 0.0 05 1.0

polynomial degree 2 polynomial degree 5

Ben-Hur & Weston, Methods in Molecular Biology 2010
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Brief introduction: Constrained optimization

*Consider the following problem:

min f(W) « Objective
w

gw) <0,v1i<i<k } |
Constraints
hi(w) =0,vV1<j<I

*|It is associated with the generalized Lagrangian:

Low,a,B) = fW)+ ) aigiw)+ ) Bihy(w)
L J

where a; = 0, ,Bj’s are called Lagrange multipliers



Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

min f(w) = min max L(w,a, )

gi(w)=0 w o @;20,8;
hj(W)=O
Why?
max L(w,a, B) = { f(w) if w satisfies all constraints
iz0F; T otherwise

Recall the constraints g;(w) < 0, hj(w) = 0 and the Lagrangian

Low,a,B) = FW)+ ) aigiw) + ) fihy(w)
i J



Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

; lr(nu})ns ; fw) = min arirzlg,)éj Lw,a,B)

hj(W)=O

This primal problem is associated with a dual problem:

max min L(w, a
[max. min L(w, @, B)

Under certain assumptions (which hold for SVMs):
*the primal and dual problems have the same optimal value
*we can solve one by solving the other



Why do we care about the Lagrangian?

Under Slater’s condition we have

(primal) min max L(w,a, ) = max minL(w,a, ) (dual)
w aiZO,Bj aiZO,,Bj w

Why is this duality powerful?

*dual objective fyy41(@, B) = min L(w, a, B) often has a closed form
w

*maximizing fiua1 over the dual variables a, f is often easier than
solving the primal problem

*can recover the optimal primal values w from the optimal duals

*reformulation can have other side benefits (as we’ll see in SVMs)



How do we use duality to reformulate SVMs?

Recall our SVM optimization problem:

migl %”W”Z subjectto y;(w'x; +b) =1V
w,

To find its dual problem, we need to
* write out the Lagrangian: L(w, b, a) = %IIWII2 —Yia;[y;(wlx; + b) — 1]

*minimize w.r.t. w, b: fyya(@) = migl L(w,b,a)
w,

*the dual problem is then a maximization over the dual variables « = 0



SVM: Reformulation

To minimize L(w,b, @) = %”W”Z — Y a;[yiiwlx; + b) — 1] w.r.t w, b, take FOCs:
VWL(W, b, a) =0 2> w= z a;y;Xi
i

OpLw,b,a) =0 > 0= 2 a;Yi
i

Plug back into L:
faual(a@) = %z Qi yyix; X — z a;a;y;yix; xj — b Z a;y; + Z a;
i,j i,j i i
Yielding the dual SVM problem
1
maxz a; — = aiajyiijiij subject to Z a;y; =0, ;=0
a 2

i l,j i



SVM: Training with dual version

Simply take the training data (x;, y;) and find the dual variables optimizing

1
maxz a; — —z ala]yly]xlTx] SUbjECt fo z a;y; = O, aiZ 0
a 2

l L,j l

* this is another convex quadratic program

T

* training only involves the input data via inner products X;

Xj, not the
vectors x; themselves



SVM: Testing with dual version

Suppose we’ve found the dual variables a™ optimizing

1
maxz a; — = ala]yly]xlTx] SllbjeCt fo z a;y; = 0, C(iZ 0
a 2

i i,j i
How do we make predictions on a new input point x € X?

1. compute the optimal primal variables:
o W' =),;a;y;x; (from the first-order conditions)
 b"is more involved but can be computed

2. predict 1if w* x + b* = Y. aiyix! x + b* = 0 and -1 otherwise

Prediction also depends on x, x; only through inner products!



SVM: Support vectors in the dual case

data points x; with a; > 0 lie on the margin boundary and are
called support vectors

*the solution w™ is a linear combination of support vectors!
*the solution does not change if we delete points with a; = 0

1.0

| support
vectors







Quiz

Which of the following statements are true?

A. the solution of an SVM will always change if we remove
some instances from the training set.

B. if we know that our data is linearly separable, then it does
not make sense to use slack variables.

C. if you only had access to the labels {y;}; and the inner
products {xiij}i,j: we can still find the SVM solution.

A: False, B: False, C: True



Outline

*Support Vector Machines (SVMs)

*margins, training objectives
Dual Formulation
*Lagrangian, primal and dual problems

*Kernels
*Feature maps, kernel trick



Feature Maps

We can convert a linear
classifier to a nonlinear
classifier using a
feature maps ¢

*transforms points to
higher dimensions
and use a linear
classifier there

euseful if the classes
are separated
nonlinearly

polynomial degree 2

xf
(l)(.X') — \/Exle
x X xzz
X x X
D X X
SNas
s 21

polynomial degree 5
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Ben-Hur & Weston, Methods in Molecular Biology 2010



Feature Maps and SVMs

Goal: use feature space {¢(x;)} in a linear classifier
e issue: dimension might be high (possibly infinite)
* specifically, we do not want to write down ¢(x;) = [0.2,0.3, ...]

Recall our SVM dual form:

maxz: a; — z ala]yly]xl-rx] SllbjeCt to z a;y; = 0, Ofl'Z 0
a
[ L,j

i
Training / testing only rely on inner products xl-ij

Thus to run SVM on the feature space {¢(x;)} we only need qb(xi)Tqb(xj)



Kernel Trick

If we only need ¢ (x;) "¢ (x;) ,we don’t need to initialize ¢ (-)
at all! All we need is a function k that quantifies the similarity:

k(xi,x;) = o))" p(x))

VN

Kernel Feature Maps

Can learn over any space you can construct a (valid) kernel over
e “valid” means the n X n kernel matrix has to be positive definite
*|ots of scope for custom similarity measures in specific domains



Kernel Types: Polynomial

Fix degree d and constant c:
k(x,x) = (xTx' + ¢)®
What is ¢ (x)? Expand the above expression:

k(x,x") = (x1x) +x,x5 +¢)? =

polynomial degree 5

linear kernel
il

polynomial degree 2

1'-01.0 -05 00 05 10-10 -05 00 05 10-1.0 -05 0.0 05 1.0

Ben-Hur & Weston, Methods in Molecular Biology 2010




Kernel Types: Gaussian/RBF

*FiX y:
k(x,x") =exp(—=y Il x — x' [I%)

* With RBF kernels, we are projecting to an infinite dimensional space

n4r

nz2f

0.65

0.6
0.53
-04r
0.5

045







Quiz

Which of the following statements are true?

A. SVMs with nonlinear kernels implicitly transform the low
dimensional features to a high dimensional space and then
performing linear classification in that space.

B. The “Kernel trick” refers to computing this transformation
and then applying the dot product between the
transformed points.

A: True, B: False



Quiz

Consider the kernel k(x,x") = (xx' + 1)3 for x € R. Give

an explicit expression for a feature map ¢ such that

() p(x') = k(x,x").

1L.ox)" =
x3,v3x2,4/3x, 1]
x3,v3x2,x,V3]
x3,v3x2,4/3x]

2.¢9(x)" =
39" =
2.¢(x)" =

x3,x%,x,1]

Ans: 2




Quiz

Why might we prefer an SVM over a neural network?

A. With an SVM we can map inputs to an infinite
dimensional space. With neural networks, we cannot.

B. SVMs are easier to train: An SVM would not get stuck
in a local optima, whereas a neural network might.

C. Tuning hyper-parameters in an SVM may be easier
than in neural networks.

Ans: all of the above



Extensions of kernel SVM

* soft-margin kernel SVM also works with slack variables

* multi-class classification usually done via K one-vs-rest
binary classification problems

* regression
* support vector regression
e kernel ridge regression (e.g. Gaussian process regression)



Kernel Methods vs. Neural Networks

Can think of kernel SVM approach as fixing a layer of a neural
network, but using kernel feature representations instead:

y = sign(w"¢(x) + b)




Kernel Methods vs. Neural Networks

Kernel methods were popular in 90’s and 2000’s
 SVM is one of the biggest successes of learning theory
o still powerful in small / moderate data regimes

Challenges with kernel methods (when we have a lot of data):
 Computational:
 Computing all pairs of kernel values requires 0(7’12) memory
» Overall compute cost is typically O (n>)
* solving an LP with n constraints or inverting an n X n matrix
e can be accelerated using random Fourier features
* Representation: using a fixed representations is limiting



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas, Josiah Hanna



	Slide 1: CS 760: Machine Learning SVMs and Kernels
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Linear classification revisited
	Slide 6: Linear classification revisited
	Slide 7: Linear classification revisited
	Slide 8: Large-margin generalization
	Slide 9: Recall: Distance to a hyperplane
	Slide 10: Support Vector Machines
	Slide 11: Support Vector Machines: Candidate Goal
	Slide 12: SVM: Simplified Goal
	Slide 13: SVM: Simplified Goal
	Slide 14: Writing the SVM as an optimization problem
	Slide 15: So why are they called support vector machines?
	Slide 16: SVM: Soft Margin
	Slide 17: SVM: Soft Margin
	Slide 18: Outline
	Slide 19: What if we have nonlinearly separated data?
	Slide 20: Brief introduction: Constrained optimization
	Slide 21: Why do we care about the Lagrangian?
	Slide 22: Why do we care about the Lagrangian?
	Slide 23: Why do we care about the Lagrangian?
	Slide 24: How do we use duality to reformulate SVMs?
	Slide 25: SVM: Reformulation
	Slide 26: SVM: Training with dual version
	Slide 27: SVM: Testing with dual version
	Slide 28: SVM: Support vectors in the dual case
	Slide 29: Break & Quiz
	Slide 30: Quiz
	Slide 31: Outline
	Slide 32: Feature Maps
	Slide 33: Feature Maps and SVMs
	Slide 34: Kernel Trick
	Slide 35: Kernel Types: Polynomial
	Slide 36: Kernel Types: Gaussian/RBF 
	Slide 37: Break & Quiz
	Slide 38: Quiz
	Slide 39: Quiz
	Slide 40: Quiz
	Slide 41: Extensions of kernel SVM
	Slide 42: Kernel Methods vs. Neural Networks
	Slide 43: Kernel Methods vs. Neural Networks
	Slide 44: Thanks Everyone!

