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Announcements

•Logistics: 
•HW 4 due date moved to Nov 24

•Updated roadmap:
•1 lecture on the modern science of learning

•3 lectures on reinforcement learning

•2 lectures on data-efficient learning



Outline

•Support Vector Machines (SVMs)
•margins, training objectives

•Dual Formulation

•Lagrangian, primal and dual problems

•Kernels
•Feature maps, kernel trick, conditions
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Linear classification revisited

𝑤⊤𝑥 + 𝑏 = 0

Class +1

Class -1

𝑤

𝑤⊤𝑥 + 𝑏 > 0

𝑤⊤𝑥 + 𝑏 < 0



Linear classification revisited

•Which classifier is better for generalization?

Class +1

Class -1



Linear classification revisited

• Intuitively, expect a large margin to generalize better

• In fact, this intuition can be made formal!

large margin

Class +1

Class -1



Large-margin generalization

Informal theorem: if all input points 𝑥 ∈ 𝑋 have norm ≤ 1 then 
w.p. ≥ 1 − 𝛿 all linear models ℎ 𝑥 = 𝑤⊤𝑥 with 𝑤 ≤ 1 have

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 ≤
2

𝜌 𝑚
+ 1

2𝑚
log 1

𝛿

Compare to the VC bound for 𝑑-dimensional linear classifiers:

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 ≤ 2 𝑑+1
𝑚

log 𝑒𝑚
𝑑+1

+ 1
𝑚
log 1

𝛿

If the margin 𝜌 = Ω(1/ 𝑑) the first is a much better guarantee!

Perhaps we should train classifiers to have a large margin?



Recall: Distance to a hyperplane

𝑥 has distance 
|𝑓𝑤,𝑏(𝑥)|

∥𝑤∥
 to the hyperplane  𝑓𝑤,𝑏(𝑧) = 𝑤⊤𝑧 + 𝑏 = 0 

𝑤

∥ 𝑤 ∥

𝑥𝑤

∥ 𝑤 ∥
𝑟

𝑥𝑝

𝑓𝑤,𝑏(𝑧) = 𝑤⊤𝑧 + 𝑏 = 0



Support Vector Machines

The SVM idea: maximize the “minimum margin” over all 
training points:

Equivalently:

If 𝑓𝑤,𝑏 incorrect on some 𝑥𝑖, the margin is negative

𝛾(𝑤, 𝑏) = min
𝑖

|𝑓𝑤,𝑏(𝑥𝑖)|

𝑤

𝛾 𝑤, 𝑏 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
𝑤

, 𝑦i ∈ {±1}



Support Vector Machines: Candidate Goal

Assume data is linearly separable (for now)

Objective idea 1: maximize margin over all training data points:

max
𝑤,𝑏

𝛾(𝑤, 𝑏) = max
𝑤,𝑏

min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
𝑤

= max
𝑤,𝑏

min
𝑖

𝑦𝑖(𝑤
⊤𝑥𝑖 + 𝑏)

𝑤

Minimax Optimization may be difficult to solve!
(recall optimization difficulties with GANs)



SVM: Simplified Goal

Observation: when (𝑤, 𝑏) scaled by a factor 𝑐 > 0, the 
margin is unchanged

𝑦𝑖(𝑐𝑤
𝑇𝑥𝑖 + 𝑐𝑏)

𝑐𝑤
=
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)

𝑤

Let us consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane



SVM: Simplified Goal

Let us consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane

Then for all points 𝑖 we have 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 , and the inequality is 

tight for at least one 𝑖

Then the margin over all training points is  
|𝑤⊤𝑥𝑖∗+𝑏|

∥𝑤∥
=

1

∥𝑤∥



Writing the SVM as an optimization problem

Objective idea 2:

max
𝑤,𝑏

1

𝑤
subject to 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Rewrite as

min
𝑤,𝑏

1
2 𝑤 2 subject to 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Why?

• It’s a convex quadratic program, for which there are many efficient solvers.

•Can apply the kernel trick for nonlinear classification (coming up)



So why are they called support vector machines?

Instances where inequality is tight are the support vectors 

• Lie on the margin boundary

• Solution does not change if we delete other instances!

support 

vectors

Ben-Hur & Weston,  Methods in Molecular Biology 2010



SVM: Soft Margin

What if our data isn’t linearly separable?

•Adjust approach by adding slack variables (denoted by 𝜁𝑖) to 
tolerate errors

min
𝑤,𝑏,𝜁𝑖

1
2
𝑤 2 + 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀ 𝑖

•adds a hyperparameter 𝐶 ≥ 0
• trades-off maximizing margin vs. minimizing slack

• roughly an inverse regularization parameter



SVM: Soft Margin

min
𝑤,𝑏,𝜁𝑖

1
2
𝑤 2 + 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀ 𝑖

Ben-Hur & Weston,  Methods in Molecular Biology 2010



Outline

•Support Vector Machines (SVMs)
•margins, training objectives

•Dual Formulation

•Lagrangian, primal and dual problems

•Kernels
•Feature maps, kernel trick, conditions



What if we have nonlinearly separated data?

Issue: sometimes the data 
is well-separated but not in 
a linear way

Solution: classify in a 
higher-dimensional space 
using a feature map

Issue: what if the dimension 
of the space is too high to 
represent efficiently?

Solution: reformulate the 
optimization problem to 
only depend on the 
similarity between points

Ben-Hur & Weston,  Methods in Molecular Biology 2010

𝐾 𝑥, 𝑥′ = 𝜙 𝑥 ⊤𝜙(𝑥′)

𝜙 𝑥 =

𝑥1
2

2𝑥1𝑥2
𝑥2
2



Brief introduction: Constrained optimization

•Consider the following problem:

min
𝑤

𝑓(𝑤)

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙

•It is associated with the generalized Lagrangian:

ℒ 𝑤, 𝜶, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)

where 𝛼𝑖 ≥ 0, 𝛽𝑗’s are called Lagrange multipliers

Objective

Constraints



Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

min
𝑔𝑖 𝑤 ≤0

ℎ𝑗 𝑤 =0

𝑓 𝑤 = min
𝑤

max
𝛼𝑖≥0,𝛽𝑗

ℒ 𝑤, 𝜶, 𝜷

Why?

max
𝛼𝑖≥0,𝛽𝑗

ℒ 𝑤,𝜶, 𝜷 = ቊ
𝑓 𝑤 if 𝑤 satisfies all constraints
+∞ otherwise

Recall the constraints 𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0 and the Lagrangian

ℒ 𝑤, 𝜶, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)



Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

min
𝑔𝑖 𝑤 ≤0

ℎ𝑗 𝑤 =0

𝑓 𝑤 = min
𝑤

max
𝛼𝑖≥0,𝛽𝑗

ℒ 𝑤, 𝜶, 𝜷

This primal problem is associated with a dual problem:

max
𝛼𝑖≥0,𝛽𝑗

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

Under certain assumptions (which hold for SVMs):
• the primal and dual problems have the same optimal value
•we can solve one by solving the other



Why do we care about the Lagrangian?

Under Slater’s condition we have

primal min
𝑤

max
𝛼𝑖≥0,𝛽𝑗

ℒ 𝑤, 𝜶, 𝜷 = max
𝛼𝑖≥0,𝛽𝑗

min
𝑤

ℒ 𝑤, 𝜶, 𝜷 (dual)

Why is this duality powerful?

•dual objective 𝑓dual 𝜶,𝜷 = min
𝑤

ℒ 𝑤, 𝜶, 𝜷 often has a closed form

•maximizing 𝑓dual over the dual variables 𝜶,𝜷 is often easier than 
solving the primal problem

•can recover the optimal primal values 𝑤 from the optimal duals

•reformulation can have other side benefits (as we’ll see in SVMs)



How do we use duality to reformulate SVMs?

Recall our SVM optimization problem:

min
𝑤,𝑏

1
2
𝑤 2 subject to 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

To find its dual problem, we need to

•write out the Lagrangian: ℒ 𝑤, 𝑏, 𝜶 = 1

2
𝑤 2 − σ𝑖 𝛼𝑖[𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1]

•minimize w.r.t. 𝑤, 𝑏:  𝑓dual 𝜶 = min
𝑤,𝑏

ℒ 𝑤, 𝑏, 𝜶

• the dual problem is then a maximization over the dual variables 𝜶 ≥ 0



SVM: Reformulation

To minimize  ℒ 𝑤, 𝑏, 𝜶 = 1

2
𝑤 2 − σ𝑖 𝛼𝑖[𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1] w.r.t 𝑤, 𝑏, take FOCs:

∇𝑤ℒ 𝑤, 𝑏, 𝜶 = 0 → 𝑤 =෍

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

𝜕𝑏ℒ 𝑤, 𝑏, 𝜶 = 0 → 0 =෍

𝑖

𝛼𝑖𝑦𝑖

Plug back into ℒ: 

𝑓dual 𝜶 = 1
2෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 −෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 − 𝑏෍

𝑖

𝛼𝑖𝑦𝑖 +෍

𝑖

𝛼𝑖

Yielding the dual SVM problem

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖≥ 0



SVM: Training with dual version

Simply take the training data (𝑥𝑖 , 𝑦𝑖) and find the dual variables optimizing

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖≥ 0

• this is another convex quadratic program

• training only involves the input data via inner products 𝑥𝑖
⊤𝑥𝑗, not the 

vectors 𝑥𝑖 themselves



SVM: Testing with dual version

Suppose we’ve found the dual variables 𝜶∗ optimizing

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖≥ 0

How do we make predictions on a new input point 𝑥 ∈ 𝑋?

1. compute the optimal primal variables:
• 𝑤∗ = σ𝑖 𝛼𝑖

∗𝑦𝑖𝑥𝑖 (from the first-order conditions)
• 𝑏∗ is more involved but can be computed

2. predict 1 if 𝑤∗⊤𝑥 + 𝑏∗ = σ𝑖 𝛼𝑖
∗𝑦𝑖𝑥𝑖

⊤𝑥 + 𝑏∗ ≥ 0 and -1 otherwise

Prediction also depends on 𝑥, 𝑥𝑖 only through inner products!



data points 𝑥𝑖 with 𝛼𝑖
∗ > 0 lie on the margin boundary and are 

called support vectors

• the solution 𝑤∗ is a linear combination of support vectors!

• the solution does not change if we delete points with 𝛼𝑖 = 0

support 

vectors

SVM: Support vectors in the dual case



Break & Quiz



Quiz

Which of the following statements are true?

A. the solution of an SVM will always change if we remove 
some instances from the training set.

B. if we know that our data is linearly separable, then it does 
not make sense to use slack variables.

C. if you only had access to the labels {𝑦𝑖}𝑖  and the inner 

products {𝑥𝑖
⊤𝑥𝑗}𝑖,𝑗, we can still find the SVM solution.

A: False,  B: False, C: True



Outline

•Support Vector Machines (SVMs)
•margins, training objectives

•Dual Formulation

•Lagrangian, primal and dual problems

•Kernels
•Feature maps, kernel trick



Feature Maps

We can convert a linear 
classifier to a nonlinear 
classifier using a 
feature maps 𝜙

•transforms points to 
higher dimensions 
and use a linear 
classifier there

•useful if the classes 
are separated 
nonlinearly Ben-Hur & Weston,  Methods in Molecular Biology 2010

𝜙 𝑥 =

𝑥1
2

2𝑥1𝑥2
𝑥2
2



Feature Maps and SVMs

Goal: use feature space 𝜙 𝑥𝑖 in a linear classifier
• issue: dimension might be high (possibly infinite)
• specifically, we do not want to write down 𝜙 𝑥𝑖 = [0.2,0.3, … ]

Recall our SVM dual form:

max
𝜶

෍

𝑖

𝛼𝑖 −෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖≥ 0

Training / testing only rely on inner products 𝑥𝑖
⊤𝑥𝑗

Thus to run SVM on the feature space {𝜙 𝑥𝑖 } we only need 𝜙 𝑥𝑖
⊤𝜙(𝑥𝑗)



Kernel Trick

If we only need 𝜙 𝑥𝑖
⊤𝜙(𝑥𝑗) ,we don’t need to initialize 𝜙(⋅)

at all! All we need is a function 𝑘 that quantifies the similarity:

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)

Can learn over any space you can construct a (valid) kernel over

•“valid” means the 𝑛 × 𝑛 kernel matrix has to be positive definite

• lots of scope for custom similarity measures in specific domains

Kernel Feature Maps



Kernel Types: Polynomial

Fix degree 𝑑 and constant 𝑐: 

𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ + 𝑐 𝑑

What is 𝜙(𝑥)? Expand the above expression:

𝑘 𝑥, 𝑥′ = 𝑥1𝑥1
′ + 𝑥2𝑥2

′ + 𝑐 2 =

Ben-Hur & Weston,  Methods in Molecular Biology 2010

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2
𝑐

⋅

𝑥′1
2

𝑥′2
2

2𝑥1
′𝑥2

′

2𝑐𝑥1
′

2𝑐𝑥2
′

𝑐



Kernel Types: Gaussian/RBF 

•Fix 𝛾:
𝑘(𝑥, 𝑥′) = exp(−𝛾 ∥ 𝑥 − 𝑥′ ∥2)

•With RBF kernels, we are projecting to an infinite dimensional space

𝛾 = 10 𝛾 = 100 𝛾 = 1000



Break & Quiz



Quiz

Which of the following statements are true?

A. SVMs with nonlinear kernels implicitly transform the low 
dimensional features to a high dimensional space and then 
performing linear classification in that space.

B. The “Kernel trick” refers to computing this transformation 
and then applying the dot product between the 
transformed points.

A: True, B: False



Quiz

Consider the kernel 𝑘(𝑥, 𝑥′) = (𝑥𝑥′ + 1)3 for 𝑥 ∈ ℝ. Give 

an explicit expression for a feature map 𝜙 such that 

𝜙(𝑥)⊤𝜙(𝑥′) = 𝑘(𝑥, 𝑥′).

1. 𝜙(𝑥)⊤ = [𝑥3, 𝑥2, 𝑥, 1]

2. 𝜙(𝑥)⊤ = [𝑥3, 3𝑥2, 3𝑥, 1]

3. 𝜙(𝑥)⊤ = [𝑥3, 3𝑥2, 𝑥, 3]

4. 𝜙(𝑥)⊤ = [𝑥3, 3𝑥2, 3𝑥]

Ans: 2



Quiz

Why might we prefer an SVM over a neural network?

A. With an SVM we can map inputs to an infinite 
dimensional space. With neural networks, we cannot.

B. SVMs are easier to train: An SVM would not get stuck 
in a local optima, whereas a neural network might.

C. Tuning hyper-parameters in an SVM may be easier 
than in neural networks. 

Ans:    all of the above



Extensions of kernel SVM

• soft-margin kernel SVM also works with slack variables

• multi-class classification usually done via 𝐾 one-vs-rest 
binary classification problems

• regression

• support vector regression

• kernel ridge regression (e.g. Gaussian process regression)



Kernel Methods vs. Neural Networks

Can think of kernel SVM approach as fixing a layer of a neural 
network, but using kernel feature representations instead:

𝑥1

𝑥2

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)



Kernel Methods vs. Neural Networks

Kernel methods were popular in 90’s and 2000’s

• SVM is one of the biggest successes of learning theory

• still powerful in small / moderate data regimes

Challenges with kernel methods (when we have a lot of data):

• Computational:

• Computing all pairs of kernel values requires 𝑂(𝑛2) memory

• Overall compute cost is typically 𝑂(𝑛3)

• solving an LP with 𝑛 constraints or inverting an 𝑛 × 𝑛 matrix

• can be accelerated using random Fourier features

• Representation: using a fixed representations is limiting



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas, Josiah Hanna
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