

CS 760: Machine Learning **SVMs and Kernels**

Misha Khodak

University of Wisconsin-Madison

12 November 2025

Announcements

- **Logistics:**
 - HW 4 due date moved to Nov 24
- **Updated roadmap:**
 - 1 lecture on the modern science of learning
 - 3 lectures on reinforcement learning
 - 2 lectures on data-efficient learning

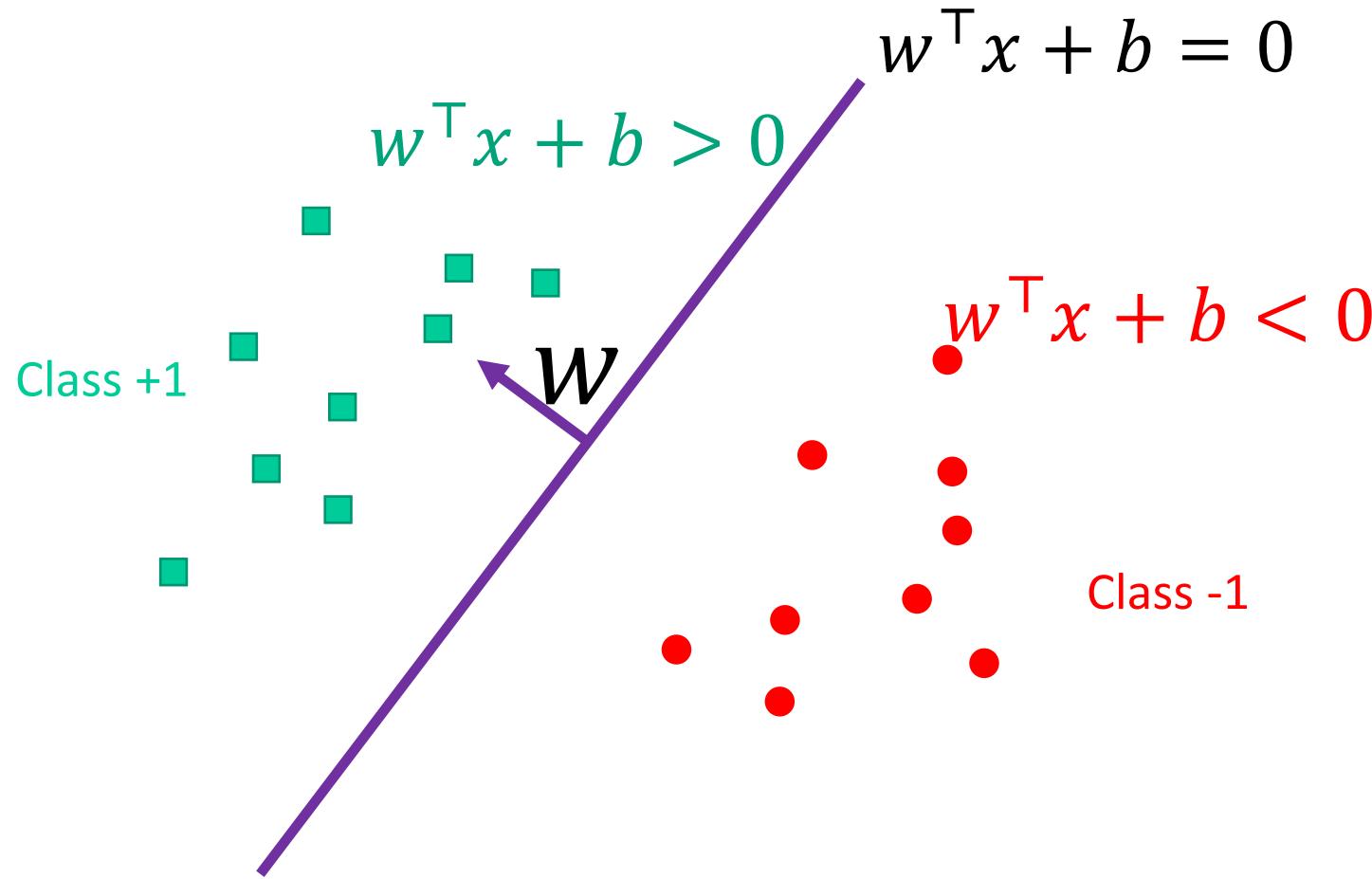
Outline

- **Support Vector Machines (SVMs)**
 - margins, training objectives
- **Dual Formulation**
 - Lagrangian, primal and dual problems
- **Kernels**
 - Feature maps, kernel trick, conditions

Outline

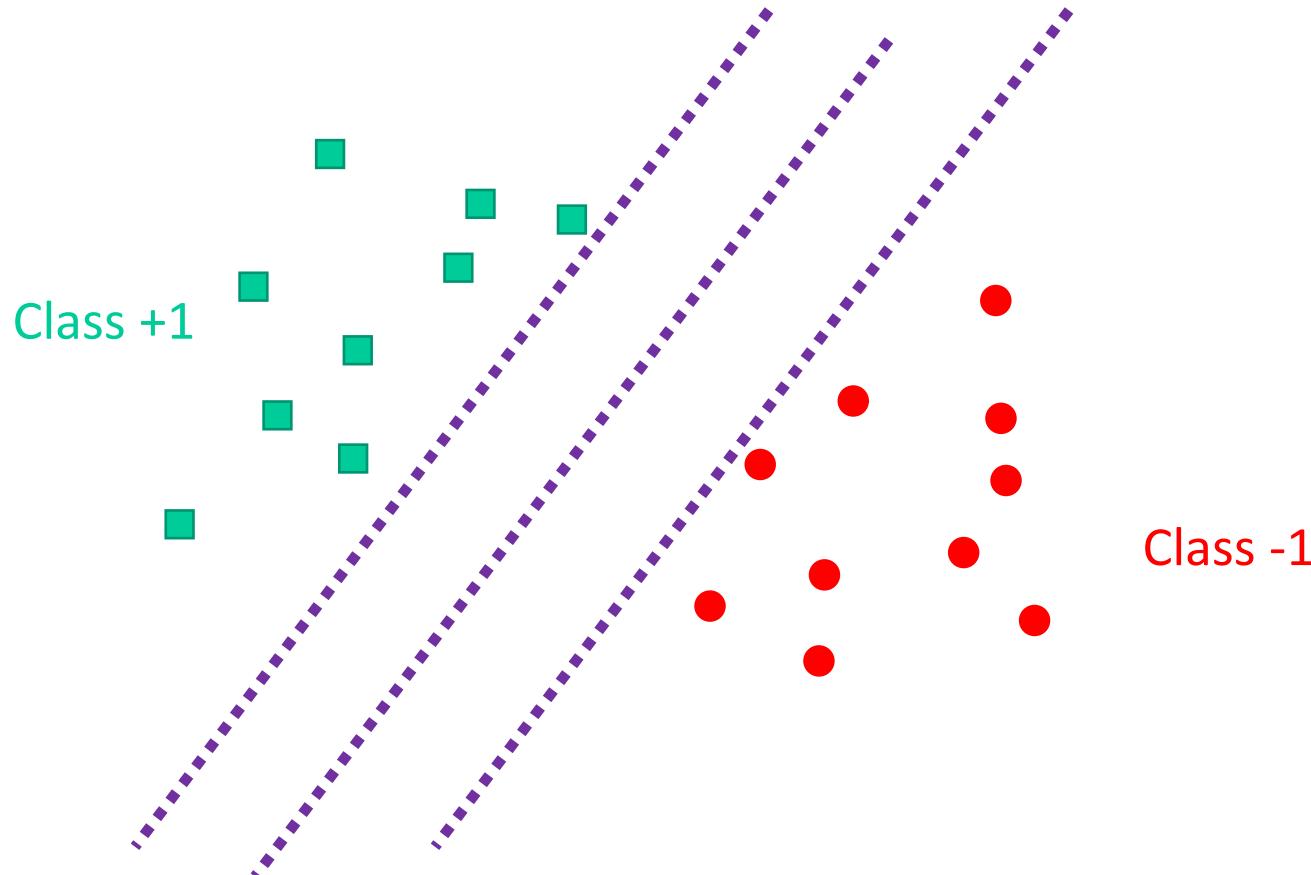
- **Support Vector Machines (SVMs)**
 - margins, training objectives
- **Dual Formulation**
 - Lagrangian, primal and dual problems
- **Kernels**
 - Feature maps, kernel trick, conditions

Linear classification revisited



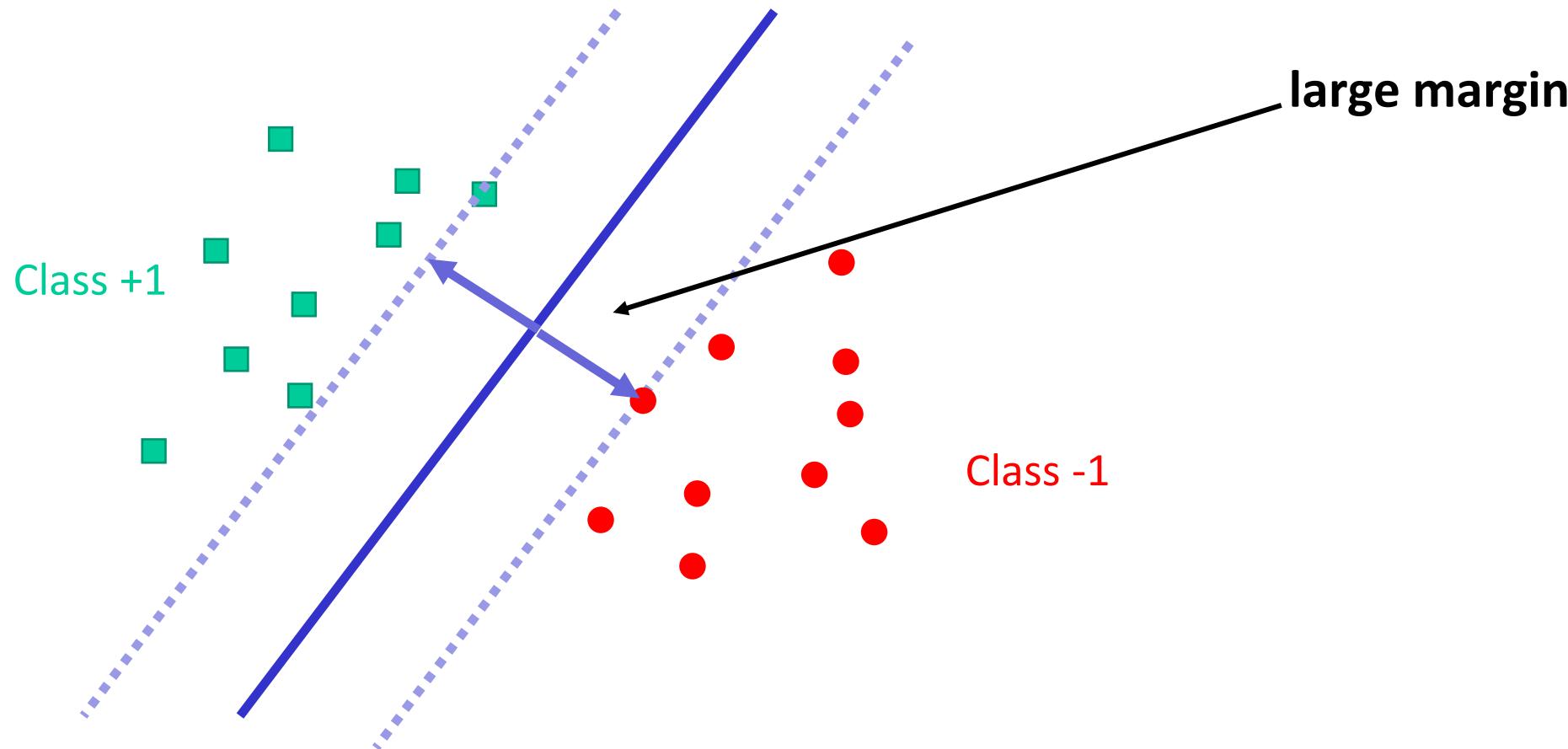
Linear classification revisited

- Which classifier is better for generalization?



Linear classification revisited

- Intuitively, expect a **large margin** to generalize better



- In fact, this intuition can be made formal!

Large-margin generalization

Informal theorem: if all input points $x \in X$ have norm ≤ 1 then w.p. $\geq 1 - \delta$ all linear models $h(x) = w^\top x$ with $\|w\| \leq 1$ have

$$\text{generalization error} \leq \frac{2}{\rho\sqrt{m}} + \sqrt{\frac{1}{2m} \log \frac{1}{\delta}}$$

Compare to the VC bound for d -dimensional linear classifiers:

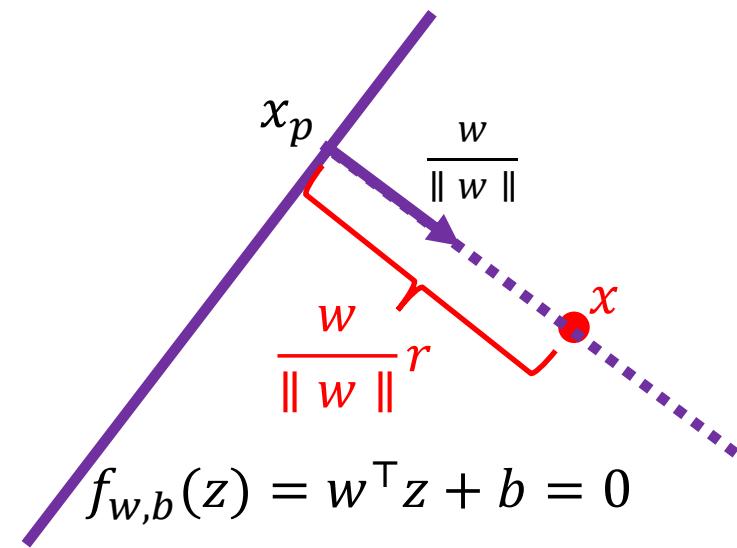
$$\text{generalization error} \leq \sqrt{\frac{2(d+1)}{m} \log \frac{em}{d+1}} + \sqrt{\frac{1}{m} \log \frac{1}{\delta}}$$

If the margin $\rho = \Omega(1/\sqrt{d})$ the first is a much better guarantee!

Perhaps we should train classifiers to have a large margin?

Recall: Distance to a hyperplane

x has distance $\frac{|f_{w,b}(x)|}{\|w\|}$ to the hyperplane $f_{w,b}(z) = w^\top z + b = 0$



Support Vector Machines

The SVM idea: maximize the “minimum margin” over all training points:

$$\gamma(w, b) = \min_i \frac{|f_{w,b}(x_i)|}{\|w\|}$$

Equivalently:

$$\gamma(w, b) = \min_i \frac{y_i f_{w,b}(x_i)}{\|w\|}, \quad y_i \in \{\pm 1\}$$

If $f_{w,b}$ incorrect on some x_i , the margin is **negative**

Support Vector Machines: Candidate Goal

Assume data is linearly separable (for now)

Objective idea 1: maximize margin over all training data points:

$$\max_{w,b} \gamma(w, b) = \max_{w,b} \min_i \frac{y_i f_{w,b}(x_i)}{\|w\|} = \max_{w,b} \min_i \frac{y_i (w^\top x_i + b)}{\|w\|}$$

Minimax Optimization may be difficult to solve!
(recall optimization difficulties with GANs)

SVM: Simplified Goal

Observation: when (w, b) scaled by a factor $c > 0$, the margin is unchanged

$$\frac{y_i(cw^T x_i + cb)}{\|cw\|} = \frac{y_i(w^T x_i + b)}{\|w\|}$$

Let us consider a fixed scale such that

$$y_{i^*}(w^T x_{i^*} + b) = 1$$

where x_{i^*} is the point closest to the hyperplane

SVM: Simplified Goal

Let us consider a fixed scale such that

$$y_{i^*}(w^T x_{i^*} + b) = 1$$

where x_{i^*} is the point closest to the hyperplane

Then for all points i we have $y_i(w^T x_i + b) \geq 1$, and the inequality is tight for at least one i

Then the margin over all training points is $\frac{|w^T x_{i^*} + b|}{\|w\|} = \frac{1}{\|w\|}$

Writing the SVM as an optimization problem

Objective idea 2:

$$\max_{w,b} \frac{1}{\|w\|} \quad \text{subject to} \quad y_i(w^\top x_i + b) \geq 1 \quad \forall i$$

Rewrite as

$$\min_{w,b} \frac{1}{2} \|w\|^2 \quad \text{subject to} \quad y_i(w^\top x_i + b) \geq 1 \quad \forall i$$

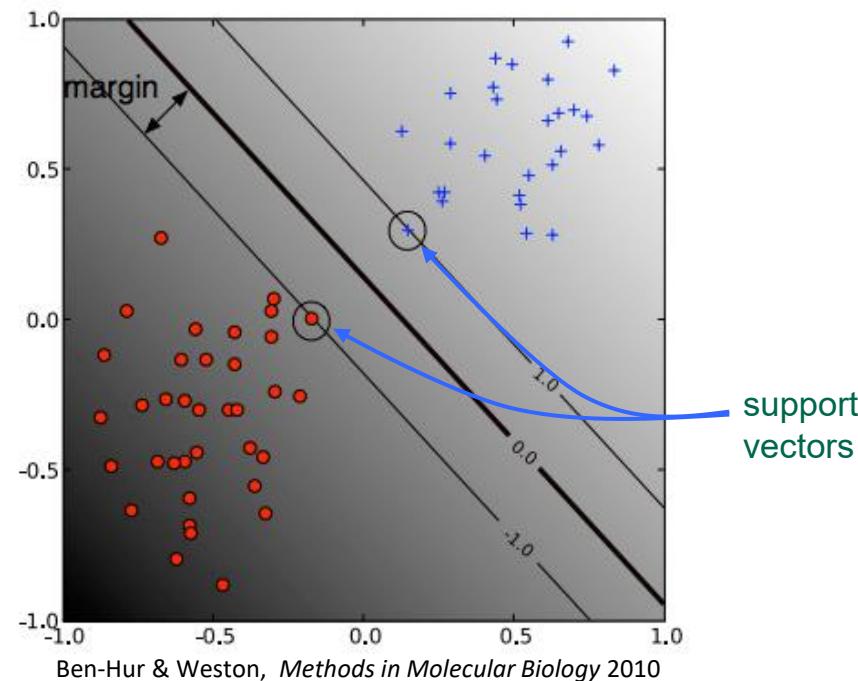
Why?

- It's a convex quadratic program, for which there are many efficient solvers.
- Can apply the kernel trick for **nonlinear** classification (coming up)

So why are they called support vector machines?

Instances where inequality is tight are the *support vectors*

- Lie on the margin boundary
- Solution does not change if we delete other instances!



SVM: Soft Margin

What if our data isn't linearly separable?

- Adjust approach by adding *slack variables* (denoted by ζ_i) to tolerate errors

$$\min_{w,b,\zeta_i} \frac{1}{2} \|w\|^2 + C \sum_i \zeta_i$$

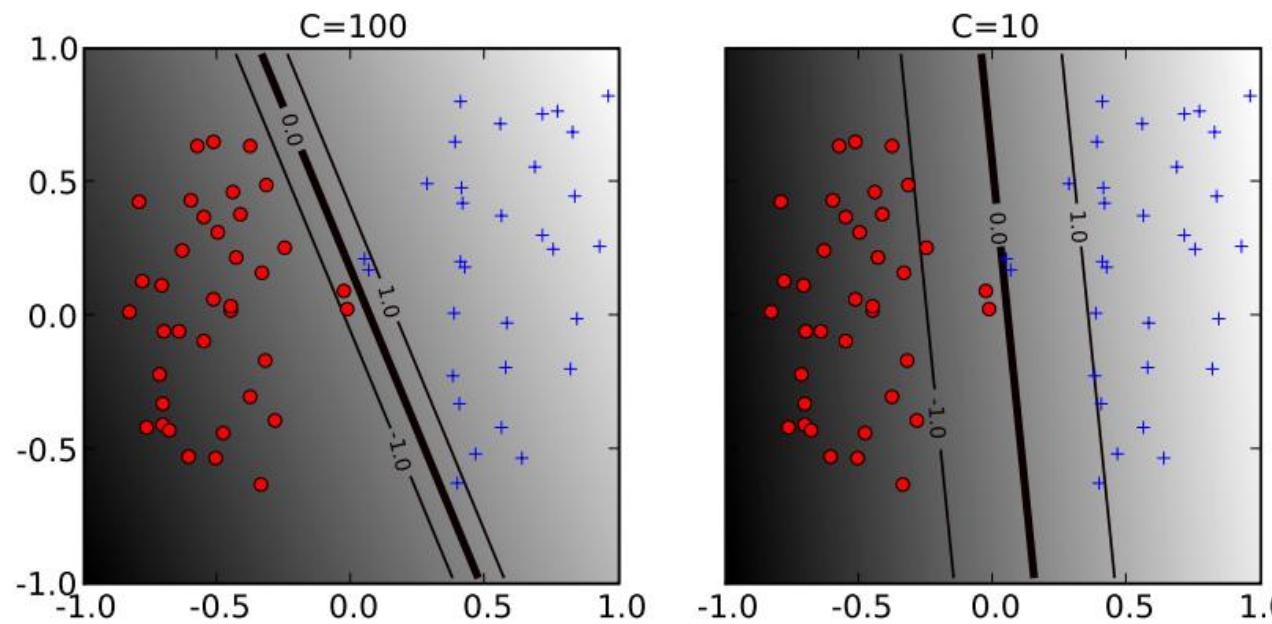
$$y_i(w^T x_i + b) \geq 1 - \zeta_i, \zeta_i \geq 0, \forall i$$

- adds a hyperparameter $C \geq 0$
 - trades-off maximizing margin vs. minimizing slack
 - roughly an inverse regularization parameter

SVM: Soft Margin

$$\min_{w,b,\zeta_i} \frac{1}{2} \|w\|^2 + C \sum_i \zeta_i$$

$$y_i(w^T x_i + b) \geq 1 - \zeta_i, \zeta_i \geq 0, \forall i$$



Outline

- **Support Vector Machines (SVMs)**
 - margins, training objectives
- **Dual Formulation**
 - Lagrangian, primal and dual problems
- **Kernels**
 - Feature maps, kernel trick, conditions

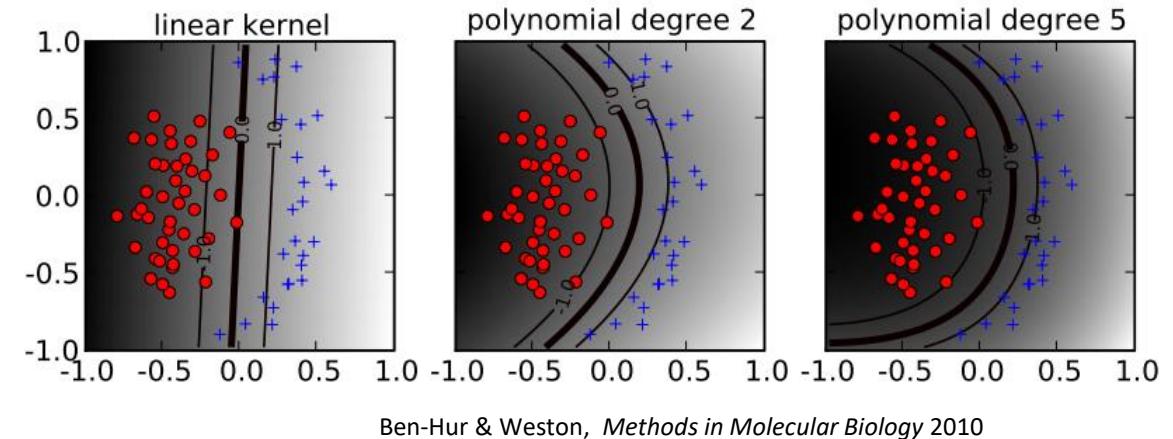
What if we have **nonlinearly** separated data?

Issue: sometimes the data is well-separated but not in a linear way

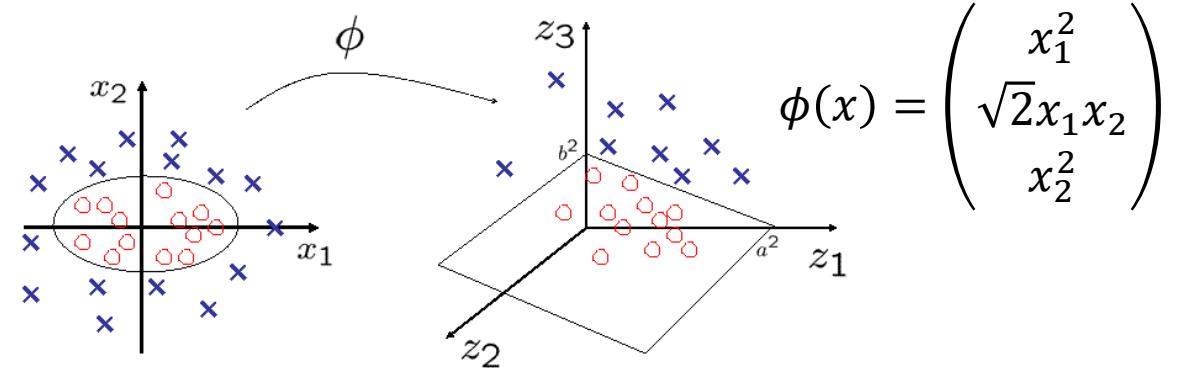
Solution: classify in a higher-dimensional space using a **feature map**

Issue: what if the dimension of the space is too high to represent efficiently?

Solution: reformulate the optimization problem to only depend on the **similarity between points**



Ben-Hur & Weston, *Methods in Molecular Biology* 2010



$$K(x, x') = \phi(x)^\top \phi(x')$$

Brief introduction: Constrained optimization

- Consider the following problem:

$$\begin{array}{ll} \min_w f(w) & \xleftarrow{\hspace{1cm}} \text{Objective} \\ g_i(w) \leq 0, \forall 1 \leq i \leq k \\ h_j(w) = 0, \forall 1 \leq j \leq l \end{array} \quad \left. \right\} \text{Constraints}$$

- It is associated with the **generalized Lagrangian**:

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_i \alpha_i g_i(w) + \sum_j \beta_j h_j(w)$$

where $\alpha_i \geq 0$, β_j 's are called **Lagrange multipliers**

Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

$$\min_{\substack{g_i(w) \leq 0 \\ h_j(w) = 0}} f(w) = \min_w \max_{\alpha_i \geq 0, \beta_j} \mathcal{L}(w, \alpha, \beta)$$

Why?

$$\max_{\alpha_i \geq 0, \beta_j} \mathcal{L}(w, \alpha, \beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies all constraints} \\ +\infty & \text{otherwise} \end{cases}$$

Recall the constraints $g_i(w) \leq 0, h_j(w) = 0$ and the Lagrangian

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_i \alpha_i g_i(w) + \sum_j \beta_j h_j(w)$$

Why do we care about the Lagrangian?

We can rewrite the original optimization problem as:

$$\min_{\substack{g_i(w) \leq 0 \\ h_j(w) = 0}} f(w) = \min_w \max_{\alpha_i \geq 0, \beta_j} \mathcal{L}(w, \alpha, \beta)$$

This **primal problem** is associated with a **dual problem**:

$$\max_{\alpha_i \geq 0, \beta_j} \min_w \mathcal{L}(w, \alpha, \beta)$$

Under certain assumptions (which hold for SVMs):

- the primal and dual problems have the same optimal value
- **we can solve one by solving the other**

Why do we care about the Lagrangian?

Under Slater's condition we have

$$\text{(primal)} \quad \min_w \max_{\alpha_i \geq 0, \beta_j} \mathcal{L}(w, \alpha, \beta) = \max_{\alpha_i \geq 0, \beta_j} \min_w \mathcal{L}(w, \alpha, \beta) \quad \text{(dual)}$$

Why is this **duality** powerful?

- dual objective $f_{\text{dual}}(\alpha, \beta) = \min_w \mathcal{L}(w, \alpha, \beta)$ often has a closed form
- maximizing f_{dual} over the dual variables α, β is often easier than solving the primal problem
- can recover the optimal primal values w from the optimal duals
- reformulation can have other side benefits (as we'll see in SVMs)

How do we use duality to reformulate SVMs?

Recall our SVM optimization problem:

$$\min_{w,b} \frac{1}{2} \|w\|^2 \quad \text{subject to} \quad y_i(w^\top x_i + b) \geq 1 \quad \forall i$$

To find its dual problem, we need to

- write out the Lagrangian: $\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i [y_i(w^\top x_i + b) - 1]$
- minimize w.r.t. w, b : $f_{\text{dual}}(\alpha) = \min_{w,b} \mathcal{L}(w, b, \alpha)$
- the dual problem is then a maximization over the **dual variables** $\alpha \geq 0$

SVM: Reformulation

To minimize $\mathcal{L}(w, b, \alpha) = \frac{1}{2}\|w\|^2 - \sum_i \alpha_i[y_i(w^T x_i + b) - 1]$ w.r.t w, b , take FOCs:

$$\nabla_w \mathcal{L}(w, b, \alpha) = 0 \rightarrow w = \sum_i \alpha_i y_i x_i$$

$$\partial_b \mathcal{L}(w, b, \alpha) = 0 \rightarrow 0 = \sum_i \alpha_i y_i$$

Plug back into \mathcal{L} :

$$f_{\text{dual}}(\alpha) = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j - b \sum_i \alpha_i y_i + \sum_i \alpha_i$$

Yielding the **dual SVM problem**

$$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j \quad \text{subject to} \quad \sum_i \alpha_i y_i = 0, \quad \alpha_i \geq 0$$

SVM: Training with dual version

Simply take the training data (x_i, y_i) and find the dual variables optimizing

$$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j \quad \text{subject to} \quad \sum_i \alpha_i y_i = 0, \quad \alpha_i \geq 0$$

- this is another convex quadratic program
- training only involves the input data via inner products $x_i^\top x_j$, **not** the vectors x_i themselves

SVM: Testing with dual version

Suppose we've found the dual variables α^* optimizing

$$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \quad \text{subject to} \quad \sum_i \alpha_i y_i = 0, \quad \alpha_i \geq 0$$

How do we make predictions on a new input point $x \in X$?

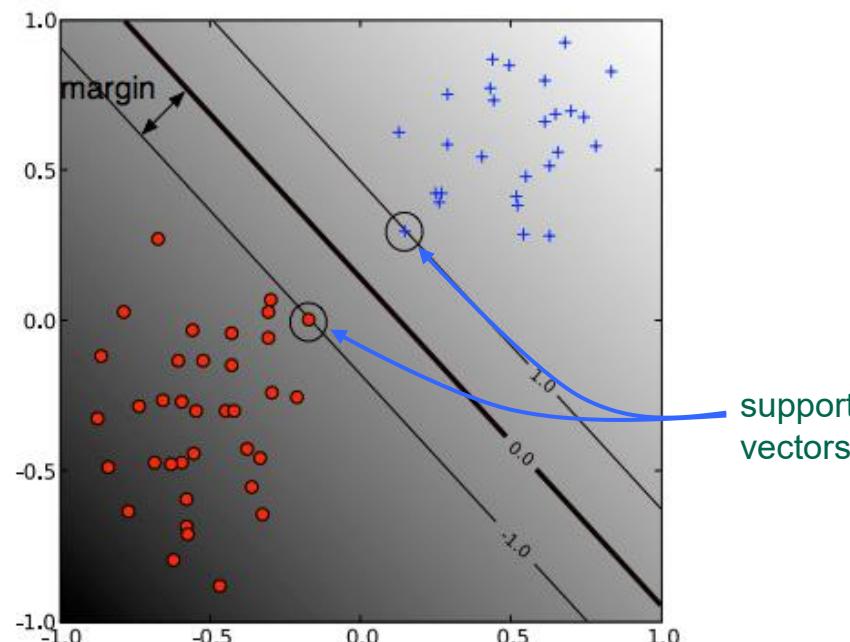
1. compute the optimal primal variables:
 - $w^* = \sum_i \alpha_i^* y_i x_i$ (from the first-order conditions)
 - b^* is more involved but can be computed
2. predict 1 if $w^{*T} x + b^* = \sum_i \alpha_i^* y_i x_i^T x + b^* \geq 0$ and -1 otherwise

Prediction also depends on x, x_i **only through inner products!**

SVM: Support vectors in the dual case

data points x_i with $\alpha_i^* > 0$ lie on the margin boundary and are called ***support vectors***

- the solution w^* is a linear combination of support vectors!
- the solution does not change if we delete points with $\alpha_i = 0$



Break & Quiz

Quiz

Which of the following statements are true?

- A. the solution of an SVM will always change if we remove some instances from the training set.
- B. if we know that our data is linearly separable, then it does not make sense to use slack variables.
- C. if you only had access to the labels $\{y_i\}_i$ and the inner products $\{x_i^T x_j\}_{i,j}$, we can still find the SVM solution.

A: False, B: False, C: True

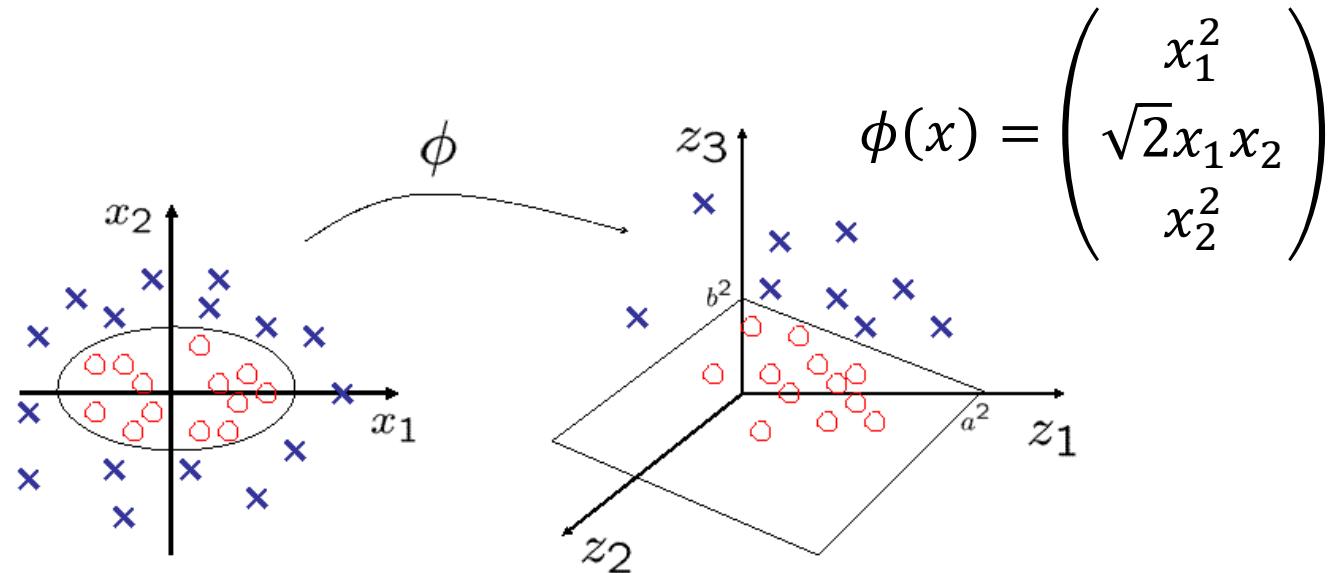
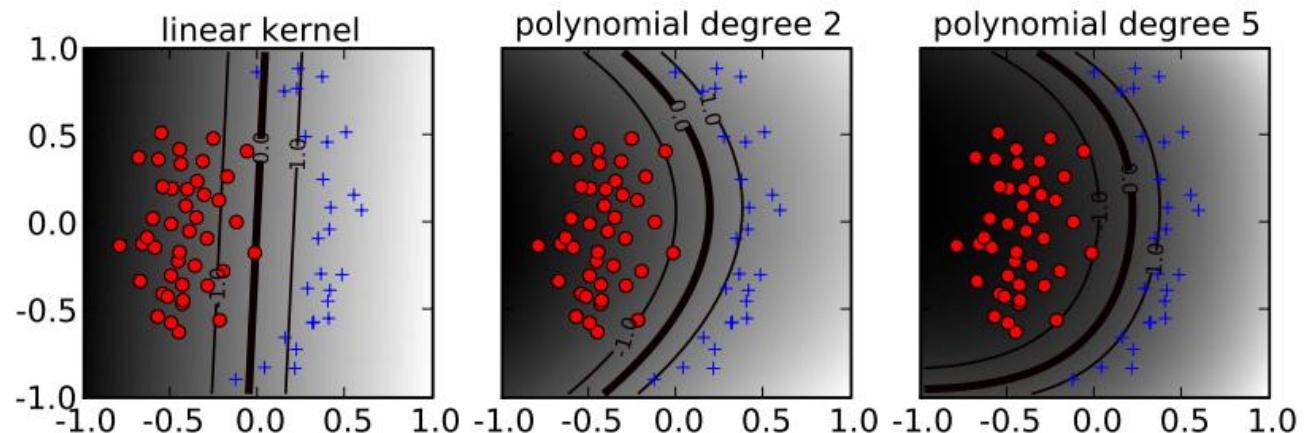
Outline

- **Support Vector Machines (SVMs)**
 - margins, training objectives
- **Dual Formulation**
 - Lagrangian, primal and dual problems
- **Kernels**
 - Feature maps, kernel trick

Feature Maps

We can convert a linear classifier to a nonlinear classifier using a **feature maps ϕ**

- transforms points to higher dimensions and use a linear classifier there
- useful if the classes are separated nonlinearly



Ben-Hur & Weston, *Methods in Molecular Biology* 2010

Feature Maps and SVMs

Goal: use feature space $\{\phi(x_i)\}$ in a linear classifier

- issue: dimension might be high (possibly infinite)
- specifically, we do not want to write down $\phi(x_i) = [0.2, 0.3, \dots]$

Recall our SVM dual form:

$$\max_{\alpha} \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j \quad \text{subject to} \quad \sum_i \alpha_i y_i = 0, \quad \alpha_i \geq 0$$

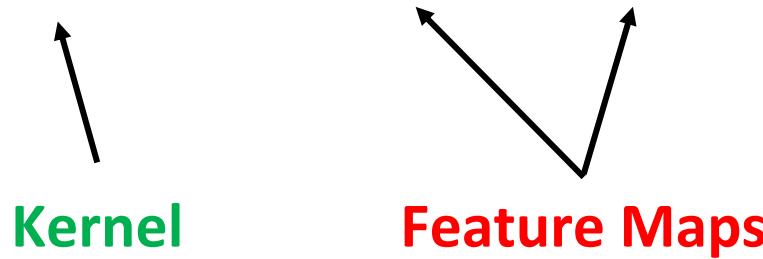
Training / testing only rely on inner products $x_i^\top x_j$

Thus to run SVM on the feature space $\{\phi(x_i)\}$ we only need $\phi(x_i)^\top \phi(x_j)$

Kernel Trick

If we only need $\phi(x_i)^\top \phi(x_j)$, we don't need to initialize $\phi(\cdot)$ at all! All we need is a function k that quantifies the similarity:

$$k(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$$



Can learn over **any** space you can construct a (valid) kernel over

- “valid” means the $n \times n$ kernel matrix has to be positive definite
- lots of scope for custom similarity measures in specific domains

Kernel Types: Polynomial

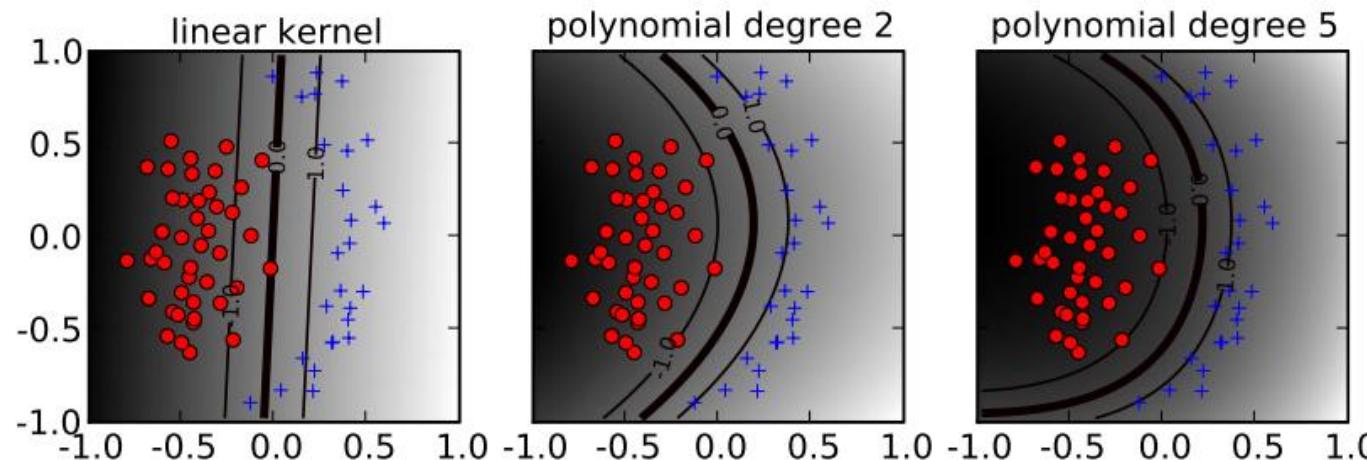
Fix degree d and constant c :

$$k(x, x') = (x^T x' + c)^d$$

What is $\phi(x)$? Expand the above expression:

$$k(x, x') = (x_1 x'_1 + x_2 x'_2 + c)^2 =$$

$$\begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1 x_2 \\ \sqrt{2c}x_1 \\ \sqrt{2c}x_2 \\ c \end{pmatrix} \cdot \begin{pmatrix} x'^2_1 \\ x'^2_2 \\ \sqrt{2}x'_1 x'_2 \\ \sqrt{2c}x'_1 \\ \sqrt{2c}x'_2 \\ c \end{pmatrix}$$



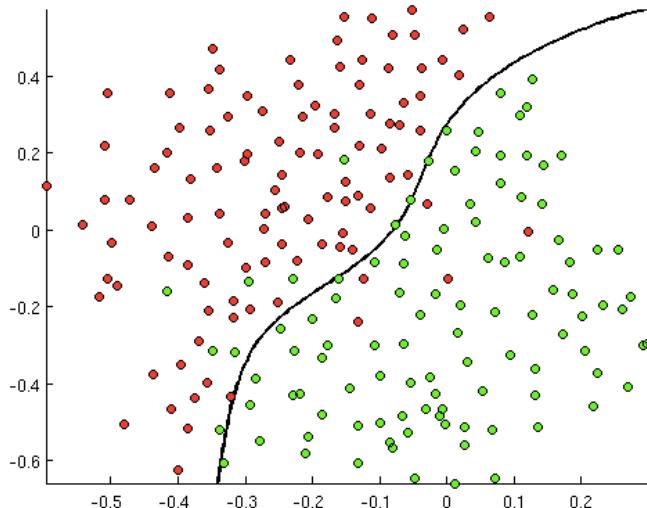
Kernel Types: Gaussian/RBF

- Fix γ :

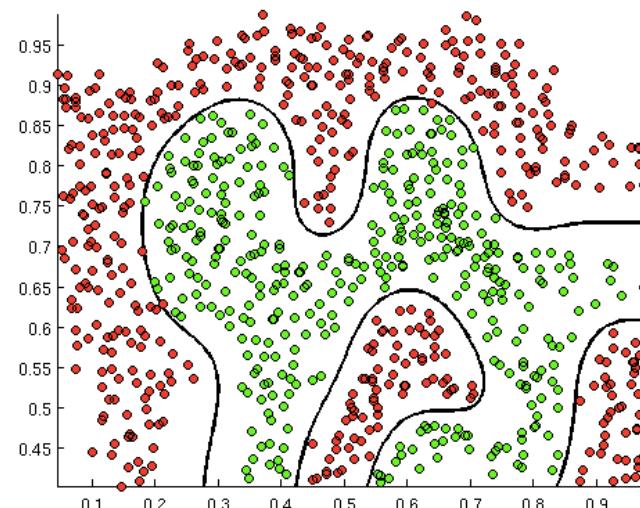
$$k(x, x') = \exp(-\gamma \|x - x'\|^2)$$

- With RBF kernels, we are projecting to an infinite dimensional space

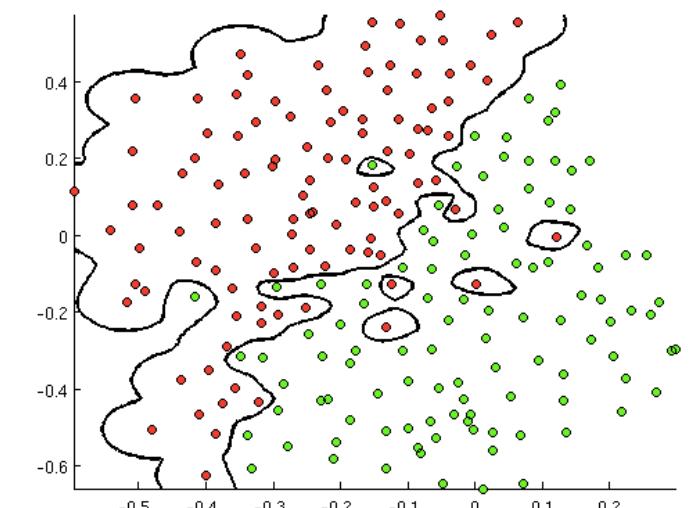
$\gamma = 10$



$\gamma = 100$



$\gamma = 1000$



Break & Quiz

Quiz

Which of the following statements are true?

- A. SVMs with nonlinear kernels implicitly transform the low dimensional features to a high dimensional space and then performing linear classification in that space.
- B. The “Kernel trick” refers to computing this transformation and then applying the dot product between the transformed points.

A: True, B: False

Quiz

Consider the kernel $k(x, x') = (xx' + 1)^3$ for $x \in \mathbb{R}$. Give an explicit expression for a feature map ϕ such that

$$\phi(x)^\top \phi(x') = k(x, x').$$

1. $\phi(x)^\top = [x^3, x^2, x, 1]$

Ans: 2

2. $\phi(x)^\top = [x^3, \sqrt{3}x^2, \sqrt{3}x, 1]$

$$\begin{aligned} k(x, x') &= (xx' + 1)^3 \\ &= (xx')^3 + 3(xx')^2 + 3xx' + 1 \end{aligned}$$

3. $\phi(x)^\top = [x^3, \sqrt{3}x^2, x, \sqrt{3}]$

$$= [x^3 \quad \sqrt{3}x^2 \quad \sqrt{3}x \quad 1] \begin{bmatrix} (x')^3 \\ \sqrt{3}(x')^2 \\ \sqrt{3}x' \\ 1 \end{bmatrix}$$

4. $\phi(x)^\top = [x^3, \sqrt{3}x^2, \sqrt{3}x]$

Quiz

Why might we prefer an SVM over a neural network?

- A. With an SVM we can map inputs to an infinite dimensional space. With neural networks, we cannot.
- B. SVMs are easier to train: An SVM would not get stuck in a local optima, whereas a neural network might.
- C. Tuning hyper-parameters in an SVM may be easier than in neural networks.

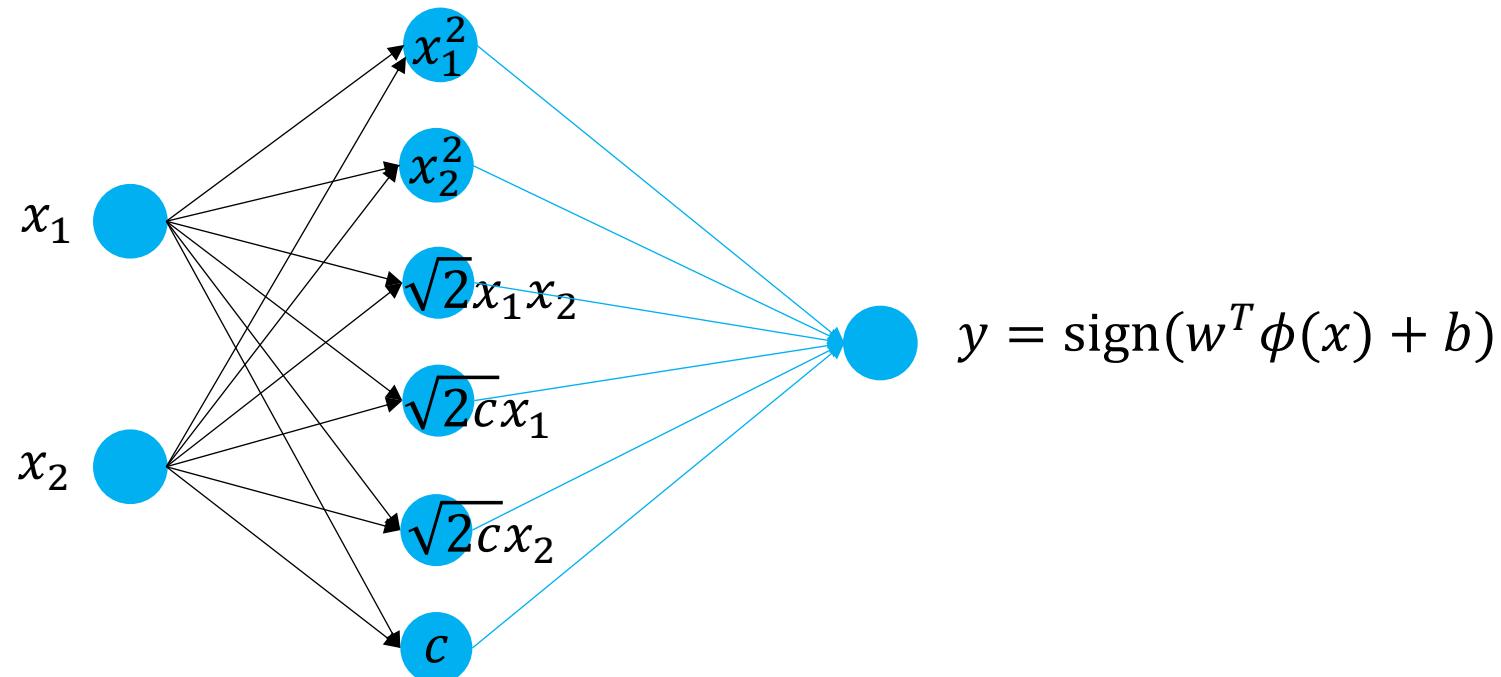
Ans: all of the above

Extensions of kernel SVM

- soft-margin kernel SVM also works with slack variables
- multi-class classification usually done via K one-vs-rest binary classification problems
- regression
 - support vector regression
 - kernel ridge regression (e.g. Gaussian process regression)

Kernel Methods vs. Neural Networks

Can think of kernel SVM approach as fixing a layer of a neural network, but using kernel feature representations instead:



Kernel Methods vs. Neural Networks

Kernel methods were popular in 90's and 2000's

- SVM is one of the biggest successes of learning theory
- still powerful in small / moderate data regimes

Challenges with kernel methods (when we have a lot of data):

- Computational:
 - Computing all pairs of kernel values requires $O(n^2)$ memory
 - Overall compute cost is typically $O(n^3)$
 - solving an LP with n constraints or inverting an $n \times n$ matrix
 - can be accelerated using random Fourier features
- Representation: using a fixed representations is limiting

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Josiah Hanna