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Last lecture

SVMs: 
•strong learning-theoretic motivation (maximize the margin)

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 ≤
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•well-understood optimization problem

min
𝑤,𝑏

1
2
𝑤 2 subject to 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Can we hope to get the same for deep learning?



Outline

•Limitations of traditional learning theory

•fitting random labels, double descent 

•Limitations of optimization theory
•edge of stability

•Towards a predictive science of deep learning
•the central flow, scaling laws
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What does traditional learning theory say?

capacity-dependent bounds:

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐻)
𝑚

log 1
𝛿

•often shown simultaneously ∀ ℎ ∈ 𝐻 (uniform convergence)

•𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐻) is higher the more easily 𝐻 overfits to the data

bias-variance tradeoff:

•too much capacity leads 
to overfitting the data

•need to regularize



Meanwhile, in the real world

The early deep learning revolution (2012-2017) witnessed big 
models working well on small datasets

•both networks can get zero training error

•CIFAR-10 only has 50K training examples!

model parameter count CIFAR-10 test accuracy

ResNet-110 1.7 million 93.57%

WideResNet-28-10 36.5 million 96.2%



The learning theory cope

•“Don’t plug in numbers into generalization bounds, just 
trust the guidance of the capacity measures.”

•“SGD implicitly searches over a much smaller subset of H; 
if we can identify that we’ll get something meaningful.”

• implicit regularization

•algorithmic stability



Understanding deep learning requires 
rethinking generalization

In 2017, Zhang et al. report that CNNs easily overfit

1. correctly labeled CIFAR images

2. randomly labeled CIFAR images

3. randomly labeled Gaussian noise

Quiz: what are the generalization 
errors in each case (roughly)?

1. small (a few %)

2. 90%

3. 90%



What does this mean for generalization?

“Don’t plug in numbers into generalization bounds, just 
trust the guidance of the capacity measures.”

Classical capacity measures are defined by the ability of 
hypotheses in H to fit

•arbitrary labels (VC-dimension)

•random labels (Rademacher complexity)

But CNNs can do so but still generalize well in practice!



What does this mean for generalization?

“SGD implicitly searches over a much smaller subset of H; 
if we can identify that we’ll get something meaningful.”

•SGD (fairly) easily find CNNs that 
fit random labels

•regularization like weight-decay 
does not act as a capacity 
constraint but as a way to 
improve optimization



Doesn’t this go against the bias-variance tradeoff?

In 2019, Belkin et al. identify double descent:

•generalization improves again after an interpolation threshold

• identified in kernel methods, random forests, and simple MLPs

•“benign overfitting”



Deep double descent

Phenomenon observed in deep CNNs by OpenAI



So what now?

Traditional learning theory

•does not explain generalization in modern deep nets

• is not sufficiently predictive to guide the development of 
neural network architectures or learning algorithms

Perhaps we can at least use optimization theory to develop 
better training algorithms?
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Recall: What do optimization guarantees look like?

If 𝑓 is convex and has 𝐿-Lipschitz gradients, and if we run 
gradient descent with step-size 𝜂 ≤ 1/𝐿 starting at 𝑥0, then 
the 𝑇th iterate has suboptimality

𝑓 𝑥𝑇 −min
𝑥

𝑓 𝑥∗ ≤
| 𝑥0 − 𝑥∗ |2

2

2𝑇𝜂

In non-convex settings (deep nets) we show convergence to a 
stationary point. Many algorithms have such guarantees.



Can we use optimization theory to 
design better optimization algorithms?

People certainly try: one example (Google’s LAMB algorithm)
•assume objective has 𝐿𝑖-Lipschitz gradients w.r.t. layer 𝑖
•LAMB adapts to the per-layer smoothness

𝑠𝑢𝑏 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 𝑂
1
ℎ
σ𝑖=1
ℎ 𝐿𝑖

𝑇

•compare to the gradient descent guarantee:

𝑠𝑢𝑏 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 𝑂
max
𝑖

𝐿𝑖

𝑇

On the other hand: by far the most popular optimizer (Adam) 
originally had an incorrect convergence proof



So does classical optimization theory explain the 
convergence of gradient descent for deep nets?

Recall that for 𝐿-smooth 𝑓 we had to use step size 𝜂 ≤ 1/𝐿

For quadratics, we can get away with 𝜂 ≤ 𝟐/𝐿

Why can’t we go higher? 



So does classical optimization theory explain the 
convergence of gradient descent for deep nets?

Why can’t we go higher? 

•gradient descent oscillates if the curvature (𝐿) is too high!

•consider 𝑓 𝑥 =
1

2
𝐿𝑥2:

𝜂 < 2/𝐿 𝜂 > 2/𝐿



What about in deep learning?

Can measure local curvature or sharpness by taking the top 
eigenvalue of the Hessian ∇2𝑓(𝑤) at parameter 𝑤:

𝐿 𝑤 = 𝜆1 ∇2𝑓 𝑤

According to classical optimization theory:

• if GD is at a point 𝑥 in the parameter space, it will start 
behaving poorly if using a step-size 𝜂 > 2/𝐿(𝑤)

•since GD works on deep nets, this suggests it never reaches a 
high-curvature point where 𝐿 𝑤 > 2/𝜂



Expected behavior of gradient descent

According to classical optimization theory:

• if GD is at a point 𝑥 in the parameter space, it will start 
behaving poorly if using a step-size 𝜂 > 2/𝐿(𝑤)

•since GD works on deep nets, this suggests it never reaches a 
high-curvature point where 𝐿 𝑤 > 2/𝜂

stable region 
{𝑤: 𝐿 𝑤 ≤ 2/𝜂}



What actually happens?

training a neural network using GD with 𝜂 = 0.02
(Vision Transformer on CIFAR-10)

GD has left the 
stable region



What happens next?

train loss 
goes up



What happens next?

train loss 
comes back 

down magically, sharpness 

drops below Τ2 𝜂!



Full gradient descent trajectory

• loss goes down non-monotonically

•sharpness equilibrates around 2/𝜂



What if we train at a different learning rate?

same network, smaller learning rate 𝜂 = 0.01



gradient descent trains at the edge of stability 
(Cohen et al., 2021)

Expectation vs. reality

realityexpectation



This behavior is generic across neural networks



This behavior is generic across neural networks



What is the takeaway?

we always reach a point where the smoothness is too high for 
the theory to be valid, i.e. where 𝜂 > 2/𝐿

•classical theory fails to explain performance of GD applied to 
deep nets

•we can’t use it to pick learning rates!



Outline

•Limitations of traditional learning theory

•fitting random labels, double descent 

•Limitations of optimization theory
•edge of stability

•Towards a predictive science of deep learning
•the central flow, sparse parity, scaling laws



So what is there to do in learning theory?

Two paths:

1. build out traditional theory because

• it’s mathematically elegant

•may be informative in some contexts

2. develop a scientific theory



What is a scientific theory?

How do physicists develop mathematical laws about complex systems?

1. hypothesize
• “light moves through a luminiferous aether” [Boyle]

2. run experiments
• “we can’t find the aether” [Michelson-Morley]

3. develop a law of nature
• “the speed of light is the same for all observers” [Einstein]

4. derive predictions and test them
• “light perpendicular from the source velocity is redshifted” [Ives-Stillwell]



What is a scientific theory?

How can machine learning researchers develop mathematical laws 
about complex systems (neural networks)?

1. hypothesize
• “gradient descent stays in a stable region of the parameter space”

2. run experiments
• “the gradient descent trajectory leaves the stable region”

3. develop a law of nature
• “the gradient descent trajectory on a CNN hovers around sharpness = 2/𝜂”

4. derive predictions and test them
• “the gradient descent trajectory on Mamba does the same”



The modern science of deep learning

many observed phenomena:
• double descent

• edge of stability

• grokking (OpenAI)

• mode connectivity (Garipov et al.)

• …

fewer mathematical theories:
• the central flow (Cohen et al.): a differential equation that predicts the time-

averaged trajectory of gradient descent

• scaling laws (Kaplan et al.): power laws predicting the accuracy of an LLM as a 
function of model size, dataset size, and compute



What is a scaling law?

Suppose we want to train a massive Transformer on Internet-scale data.

Q: how does the loss depend on compute (C), dataset size (D), and 
number of model parameters (N)?

A: as power laws in the individual quantities

OpenAI



Implications of scaling laws

1. need to simultaneously increase the model and the dataset size

2. predictive scaling law let us derive compute-optimal allocations 
before we train the model

3. many remaining questions around the right batch size to use, 
multi-scale hyperparameter tuning, etc.

OpenAI



Summary

1. mathematical analysis of learning is still relevant
•even in industrial settings
• if it has empirical backing

2. however, doing such science for deep learning can require
• running thousands of experiments
• rigorous results tracking
• industrial scale resources (e.g. scaling laws)
•an awareness that results may be made irrelevant by the 

rapid advances in the field



Thanks Everyone!

Some of the slides in this lecture were adapted from materials developed by Jeremy Cohen.
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