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Last lecture

SVMs:

estrong learning-theoretic motivation (maximize the margin)

2
] " I 1 1
generalization error < | \/z—logg

*well-understood optimization problem

min i||w||> subjectto y;(wTx;+b)=>1Vi

Can we hope to get the same for deep learning?



Outline

Limitations of traditional learning theory
fitting random labels, double descent

*Limitations of optimization theory
*edge of stability

*Towards a predictive science of deep learning
*the central flow, scaling laws



Outline

Limitations of traditional learning theory
fitting random labels, double descent



What does traditional learning theory say?

capacity-dependent bounds:
generalization error = 0 ( \/ capacity(H) log %)

m

*often shown simultaneously V h € H (uniform convergence)
scapacity(H) is higher the more easily H overfits to the data

A

bias-variance tradeoff:

*too much capacity leads
to overfitting the data

*need to regularize

FFFFF

= capacity
optimal capacity



Meanwhile, in the real world

The early deep learning revolution (2012-2017) witnessed big

models working well on small datasets

model parameter count CIFAR-10 test accuracy
ResNet-110 1.7 million 93.57%
WideResNet-28-10 36.5 million 96.2%

*both networks can get zero training error
*CIFAR-10 only has 50K training examples!




The learning theory cope

*“Don’t plug in numbers into generalization bounds, just
trust the guidance of the capacity measures.”

*“SGD implicitly searches over a much smaller subset of H;
if we can identify that we’ll get something meaningful.”

*implicit regularization
* algorithmic stability



Understanding deep learning requires
rethinking generalization

In 2017, Zhang et al. report that CNNs easily overfit
1. correctly labeled CIFAR images

2.5

2. randomly labeled CIFAR images = true [abole
3. randomly labeled Gaussian noise 2.01 o—e random labels |
n »-« shuffled pixels

. . _ =15k == random pixels |

Quiz: what are the generalization S +—e gaussian
i = 1.0F%

errors in each case (roughly)? :
1. small (a few %) 0.5
2. 90%
3. 90% O'00 5 10 15 20 25

thousand steps



What does this mean for generalization?

“Don’t plug in numbers into generalization bounds, just
trust the guidance of the capacity measures.”

Classical capacity measures are defined by the ability of
hypotheses in H to fit

earbitrary labels (VC-dimension)
*random labels (Rademacher complexity)

But CNNs can do so but still generalize well in practice!



What does this mean for generalization?

“SGD implicitly searches over a much smaller subset of H;
if we can identify that we’ll get something meaningful.”
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fit random labels 2.0} e—e random labels 1
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Doesn’t this go against the bias-variance tradeoff?

under-fitting , over-fitting

. Test risk

under-parameterized

Test risk

\ over-parameterized

'Mw 'EMD “classical” “modern”
E C’E regime interpolating regime
~
~ o Training risk ~ JTraining risk:
sweet Spot{ - _ T~ . _interpolation threshold
Capacity of H Capacity of H

In 2019, Belkin et al. identify double descent:

egeneralization improves again after an interpolation threshold
*identified in kernel methods, random forests, and simple MLPs
*“benign overfitting”



Deep double descent

Phenomenon observed in deep CNNs by OpenAl
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So what now?

Traditional learning theory
*does not explain generalization in modern deep nets

*is not sufficiently predictive to guide the development of
neural network architectures or learning algorithms

Perhaps we can at least use optimization theory to develop
better training algorithms?



Outline

*Limitations of optimization theory
*edge of stability



Recall: What do optimization guarantees look like?

If f is convex and has L-Lipschitz gradients, and if we run
gradient descent with step-size n < 1/L starting at x, then
the Tth iterate has suboptimality

. ||x0 — X*H%
_ * <

In non-convex settings (deep nets) we show convergence to a
stationary point. Many algorithms have such guarantees.



Can we use optimization theory to
designh better optimization algorithms?
People certainly try: one example (Google’s LAMB algorithm)

*assume objective has L;-Lipschitz gradients w.r.t. layer i
 LAMB adapts to the per-layer smoothness

h
=i Li)
T

ecompare to the gradient descent guarantee:
max Ll-)

sub — optimality = 0O (

l

T

sub — optimality = 0O (

On the other hand: by far the most popular optimizer (Adam)
originally had an incorrect convergence proo



So does classical optimization theory explain the
convergence of gradient descent for deep nets?

Recall that for L-smooth f we had to use step sizen < 1/L
For quadratics, we can get away withn < 2/L

Why can’t we go higher?



So does classical optimization theory explain the
convergence of gradient descent for deep nets?

Why can’t we go higher?

egradient descent oscillates if the curvature (L) is too high!

econsider f(x) = %szz

n<2/L n>2/L



What about in deep learning?

Can measure local curvature or sharpness by taking the top
eigenvalue of the Hessian V2 f(w) at parameter w:

Lw) = A, (V2f(w))

According to classical optimization theory:

*if GD is at a point x in the parameter space, it will start
behaving poorly if using a step-sizen > 2/L(w)

*since GD works on deep nets, this suggests it never reaches a
high-curvature point where L(w) > 2 /7



Expected behavior of gradient descent

According to classical optimization theory:

*if GD is at a point x in the parameter space, it will start
behaving poorly if using a step-sizen > 2/L(w)

*since GD works on deep nets, this suggests it never reaches a
high-curvature point where L(w) > 2 /7
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{w:L(w) < 2/n}



What actually happens?

training a neural network using GD withn = 0.02
(Vision Transformer on CIFAR-10)

train loss top Hessian eigenvalue (sharpness)
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What happens next?

top Hessian eigenvalue

train loss (sharpness)

0.252
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What happens next?

top Hessian eigenvalue

train loss (sharpness)

0.252

110 7] /
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train loss
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Full gradient descent trajectory
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*loss goes down non-monotonically
*sharpness equilibrates around 2 /7



What if we train at a different learning rate?

train loss
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same network, smaller learning raten = 0.01



Expectation vs. reality

expectation reality

gradient descent trains at the edge of stability
(Cohen et al., 2021)



This behavior is generic across neural networks

train loss

sharpness
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This behavior is generic across neural networks
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What is the takeaway?

we always reach a point where the smoothness is too high for
the theory to be valid, i.e. wheren > 2/L

eclassical theory fails to explain performance of GD applied to
deep nets

*we can’t use it to pick learning rates!



Outline

*Towards a predictive science of deep learning
*the central flow, sparse parity, scaling laws



So what is there to do in learning theory?

Two paths:

1. build out traditional theory because
*it’s mathematically elegant
* may be informative in some contexts

2. develop a scientific theory



What is a scientific theory?

How do physicists develop mathematical laws about complex systems?

1. hypothesize

* “light moves through a luminiferous aether” [Boyle]

2. run experiments OBSERVER — 3\ s
* “we can’t find the aether” [Michelson-Morley]

3. develop a law of nature
* “the speed of light is the same for all observers” [Einstein]

AAST LIGHT CON-

4. derive predictions and test them
* “light perpendicular from the source velocity is redshifted” [Ives-Stillwell]



What is a scientific theory?

How can machine learning researchers develop mathematical laws
about complex systems (neural networks)?

1. hypothesize

* “gradient descent stays in a stable region of the parameter space”

2. run experiments
* “the gradient descent trajectory leaves the stable region”

3. develop a law of nature
* “the gradient descent trajectory on a CNN hovers around sharpness = 2 /1"

4. derive predictions and test them
* “the gradient descent trajectory on Mamba does the same”



The modern science of deep learning

many observed phenomena:
* double descent
* edge of stability
* grokking (OpenAl)
* mode connectivity (Garipov et al.)
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* the central flow (Cohen et al.): a differential equation that predicts the time-
averaged trajectory of gradient descent

* scaling laws (Kaplan et al.): power laws predicting the accuracy of an LLM as a
function of model size, dataset size, and compute



What is a scaling law?

Suppose we want to train a massive Transformer on Internet-scale data.

Q: how does the loss depend on compute (C), dataset size (D), and
number of model parameters (N)?

A: as power laws in the individual quantities
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Implications of scaling laws

Test Loss

need to simultaneously increase the model and the dataset size
predictive scaling law let us derive compute-optimal allocations
before we train the model
many remaining questions around the right batch size to use,
multi-scale hyperparameter tuning, etc.
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Summary

1. mathematical analysis of learning is still relevant
*even in industrial settings
*if it has empirical backing

2. however, doing such science for deep learning can require
* running thousands of experiments
*rigorous results tracking
*industrial scale resources (e.g. scaling laws)

*an awareness that results may be made irrelevant by the
rapid advances in the field



Thanks Everyone!

Some of the slides in this lecture were adapted from materials developed by Jeremy Cohen.
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