

CS 760: Machine Learning **Reinforcement Learning**

Misha Khodak

University of Wisconsin-Madison

19 November 2025

Announcements

- **Logistics:**
 - No class on Wednesday, November 26th
 - HW4 due Monday
 - HW5 out Monday

Outline

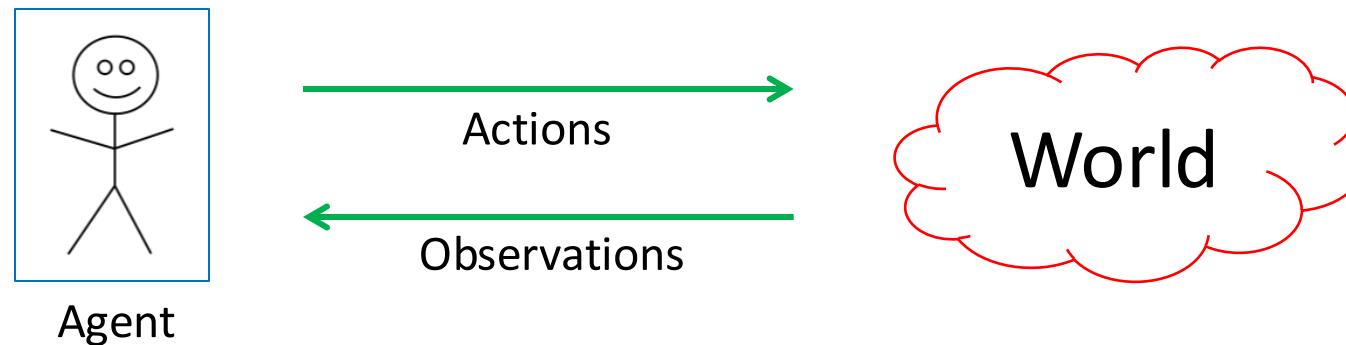
- **Intro to Reinforcement Learning**
 - Basic concepts, mathematical formulation, MDPs, policies
- **Valuing and Obtaining Policies**
 - Value functions, Bellman equation, value iteration, policy iteration

Outline

- **Intro to Reinforcement Learning**
 - Basic concepts, mathematical formulation, MDPs, policies
- **Valuing and Obtaining Policies**
 - Value functions, Bellman equation, value iteration, policy iteration

A General Model

We have an **agent** interacting with the **world**

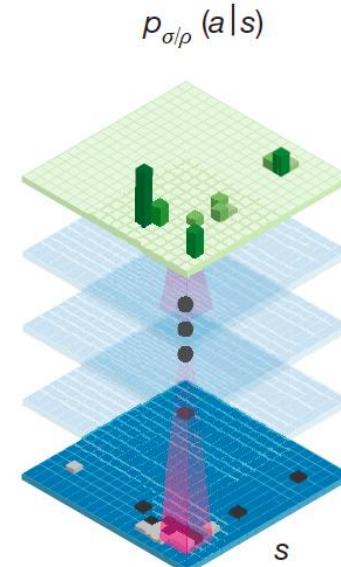


- Agent receives a reward based on state of the world
 - **Goal:** maximize reward / utility **(\$\$\$)**
 - Note: **data** consists of actions & observations
 - Compare to unsupervised learning and supervised learning

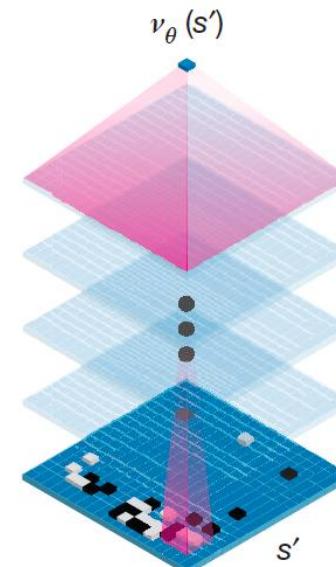
Examples: Gameplay Agents

AlphaZero:

Policy network



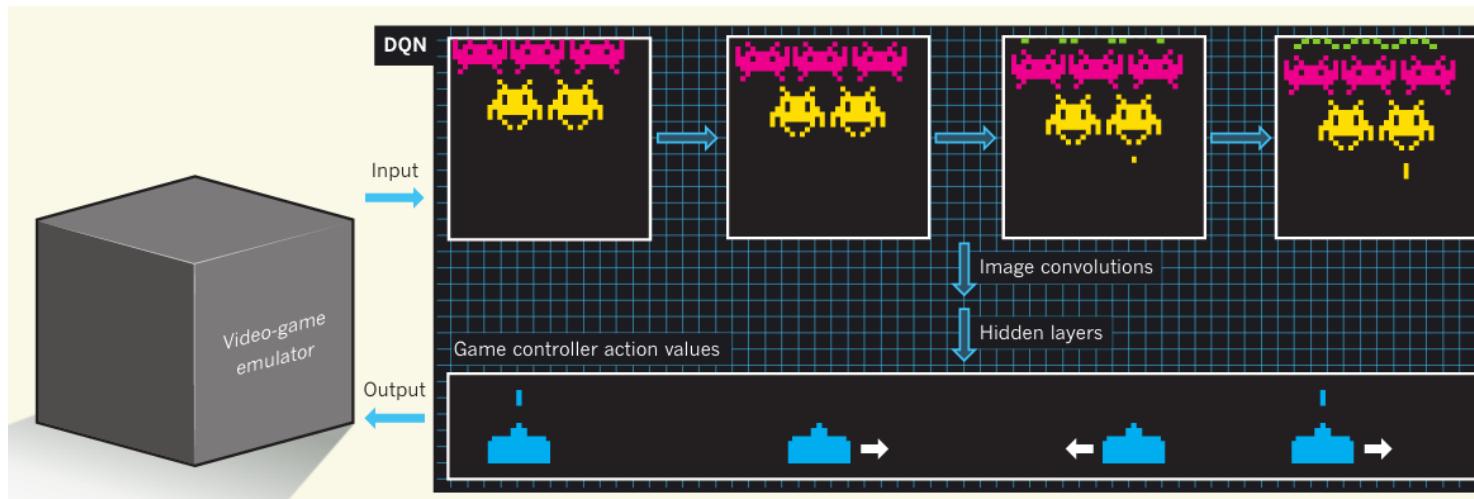
Value network



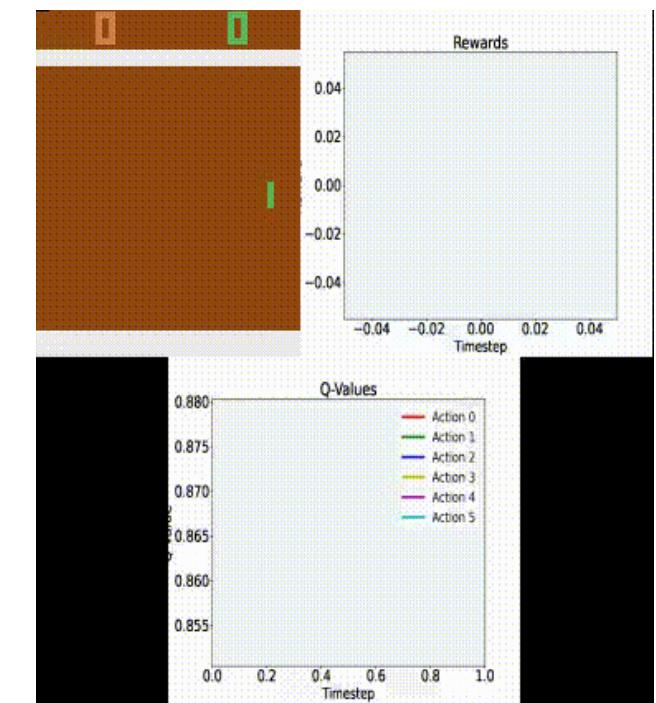
<https://deepmind.com/research/alphago/>

Examples: Video Game Agents

Pong, Atari



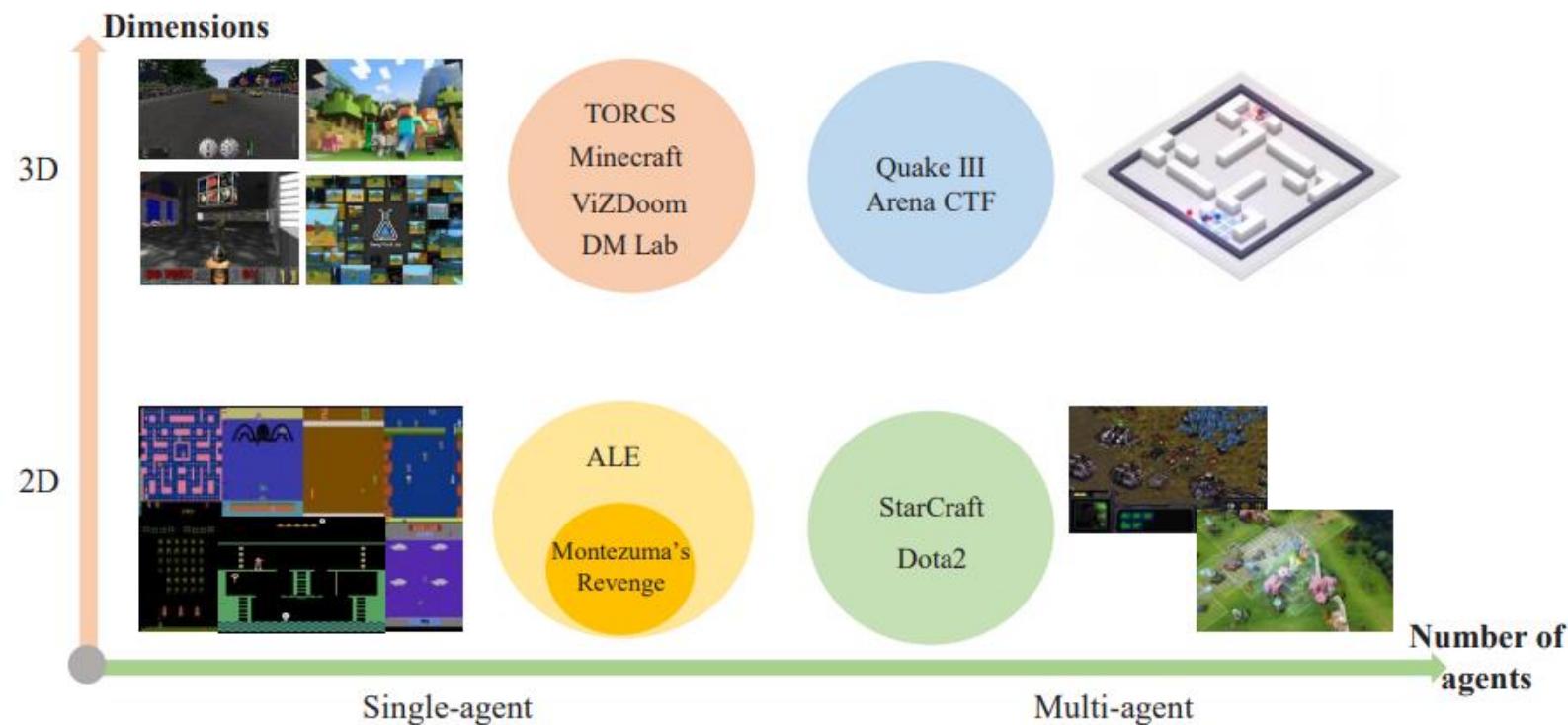
Mnih et al, "Human-level control through deep reinforcement learning"



[A. Nielsen](#)

Examples: Video Game Agents

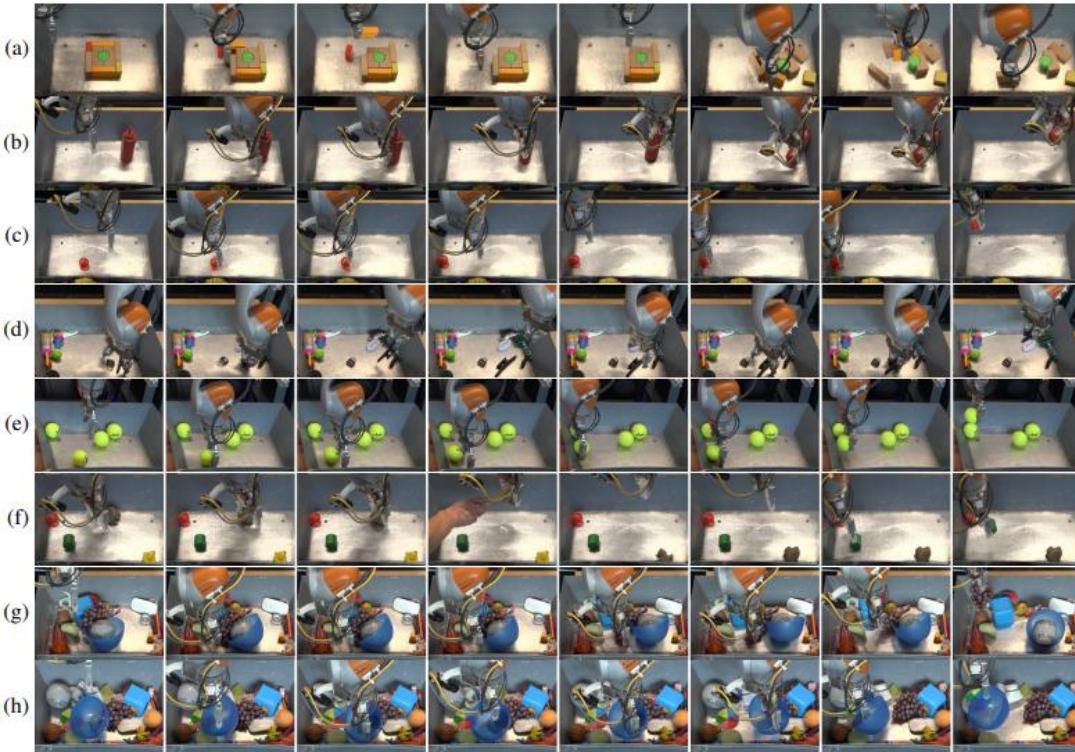
Minecraft, Quake, StarCraft, and more!



Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g. grasp!)

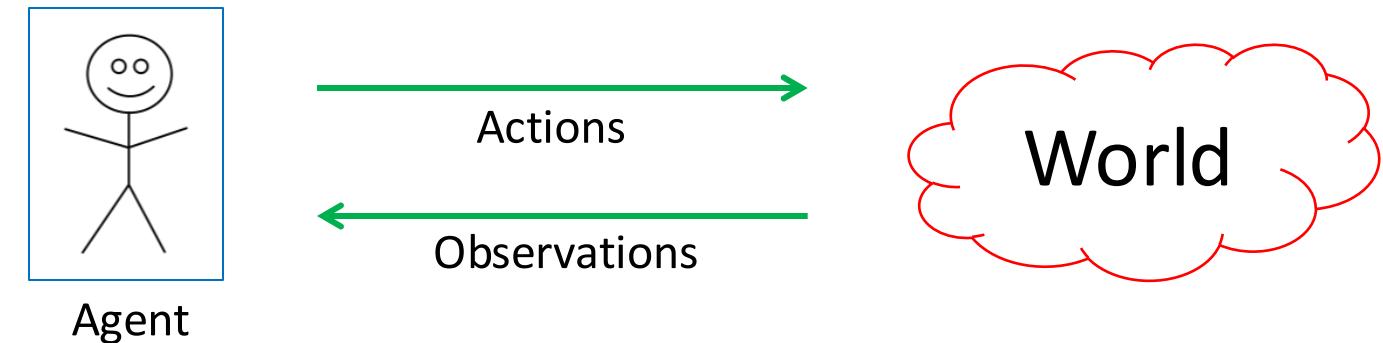


Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building The Theoretical Model

Basic setup:

- Set of states S
- Set of actions A
- Information: at time t , observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue



Goal: find a map from **states to actions** maximize rewards.

↑
a “policy”

Markov Decision Process (MDP)

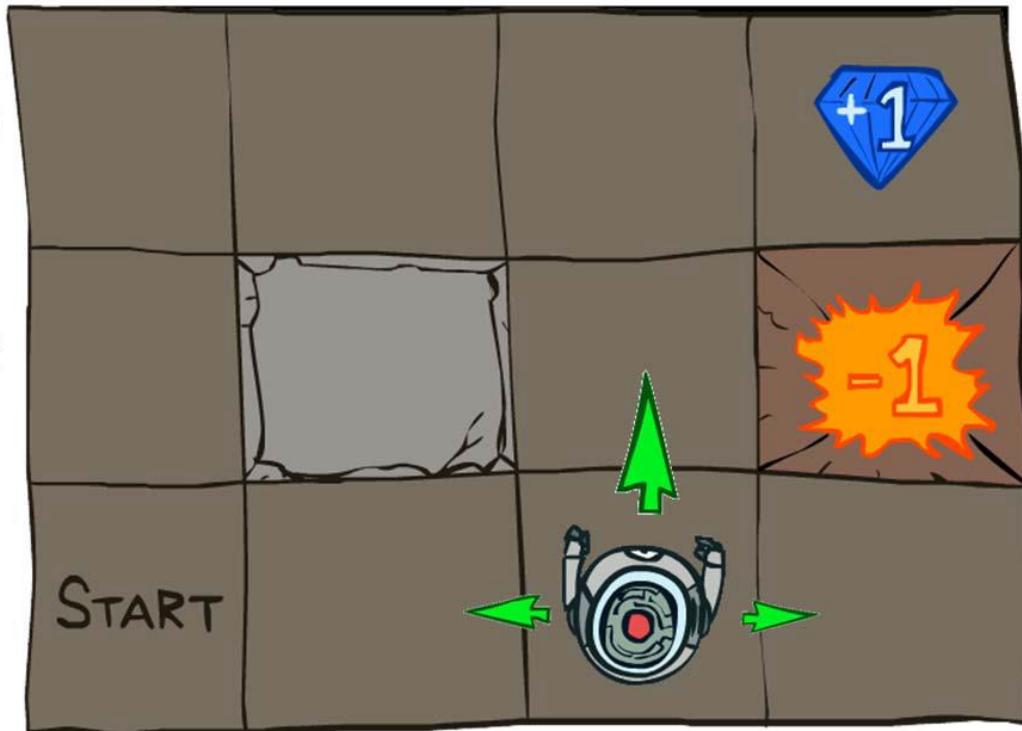
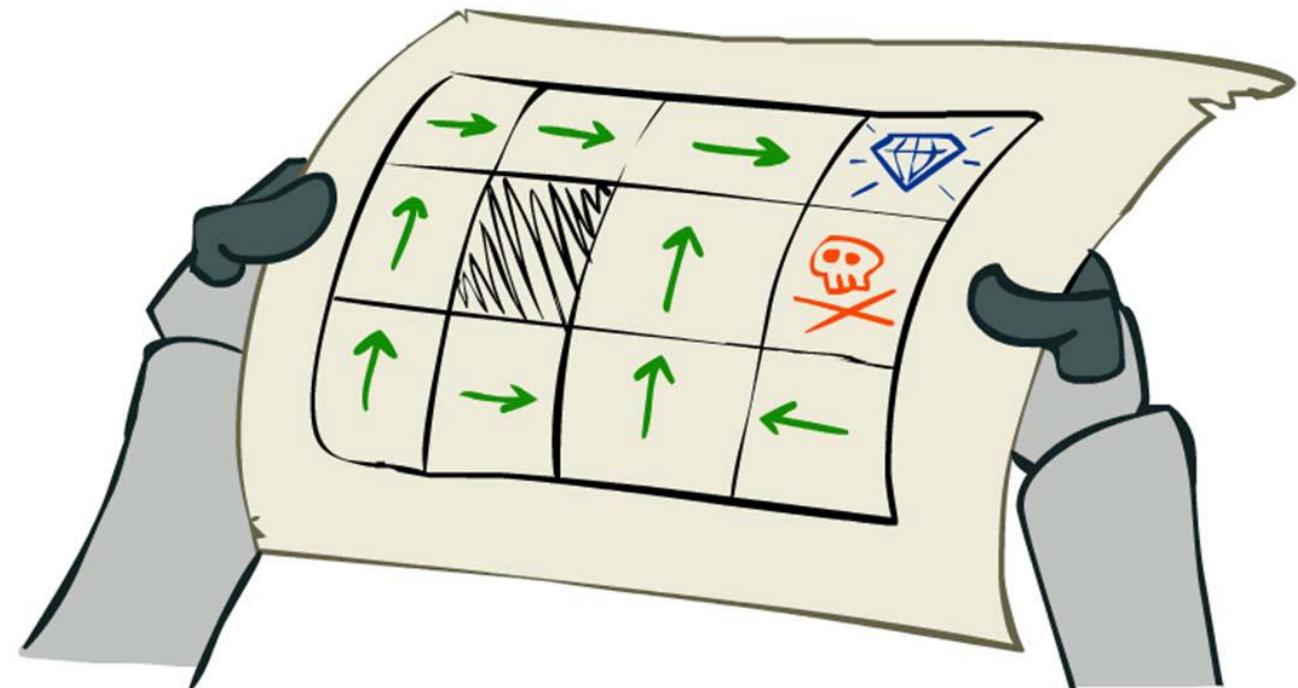
The formal mathematical model:

- **State set S .** Initial state s_0 . **Action set A**
- **State transition model:** $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- **Reward function:** $r(s_t)$
- **Policy:** $\pi(s) : S \rightarrow A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

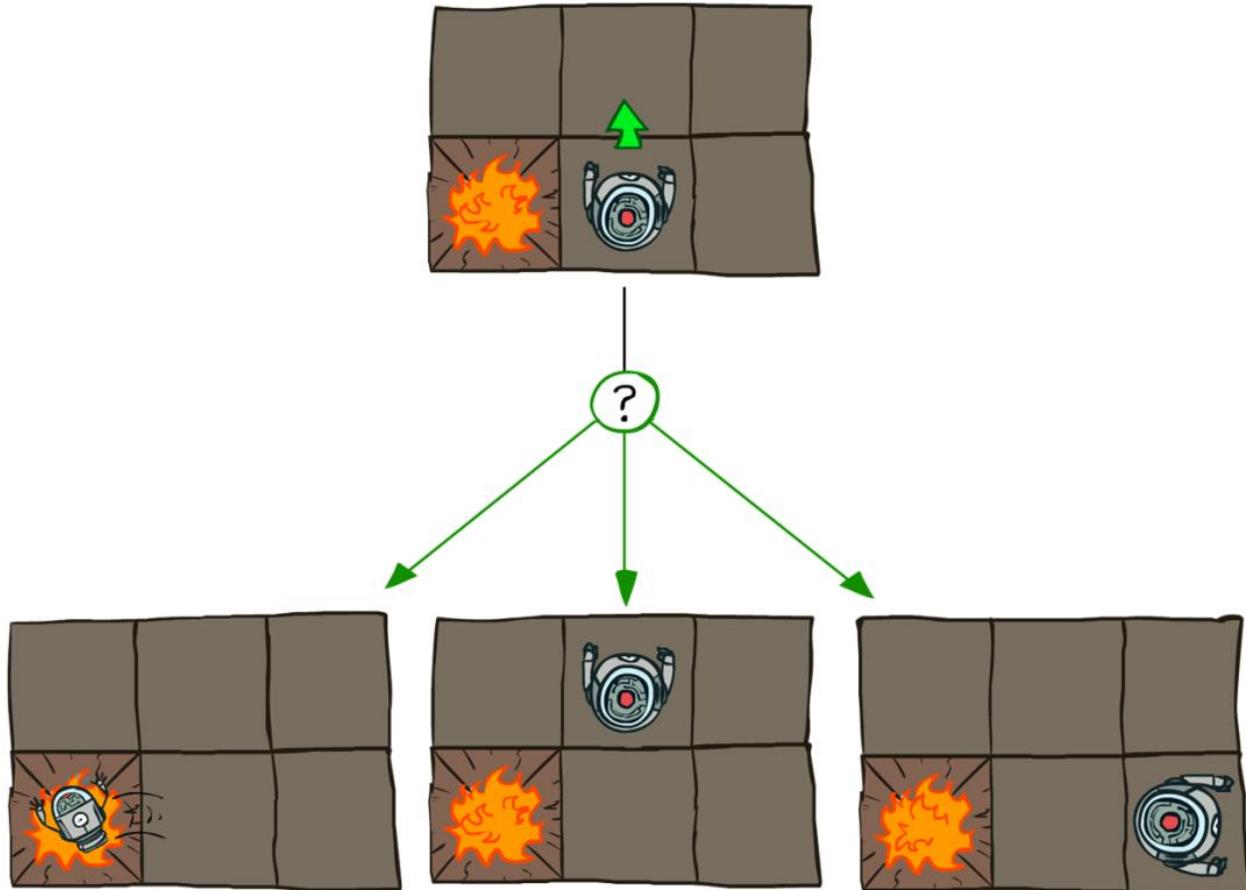
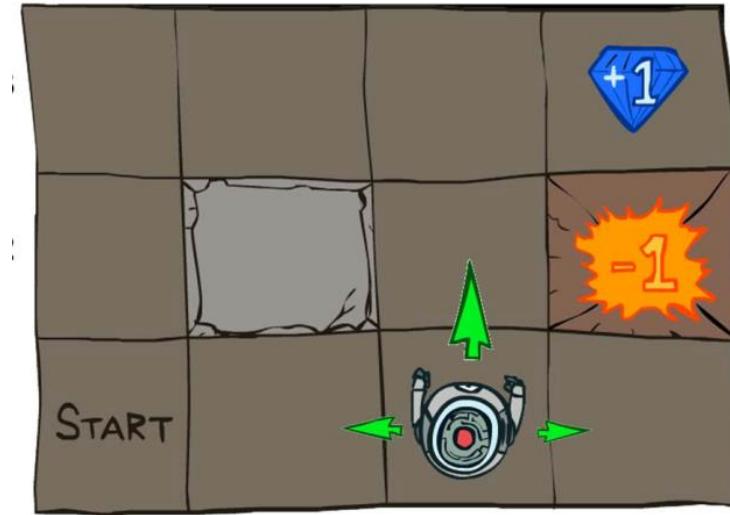
Example of MDP: Grid World

Robot on a grid; goal: find the best policy



Example of MDP: Grid World

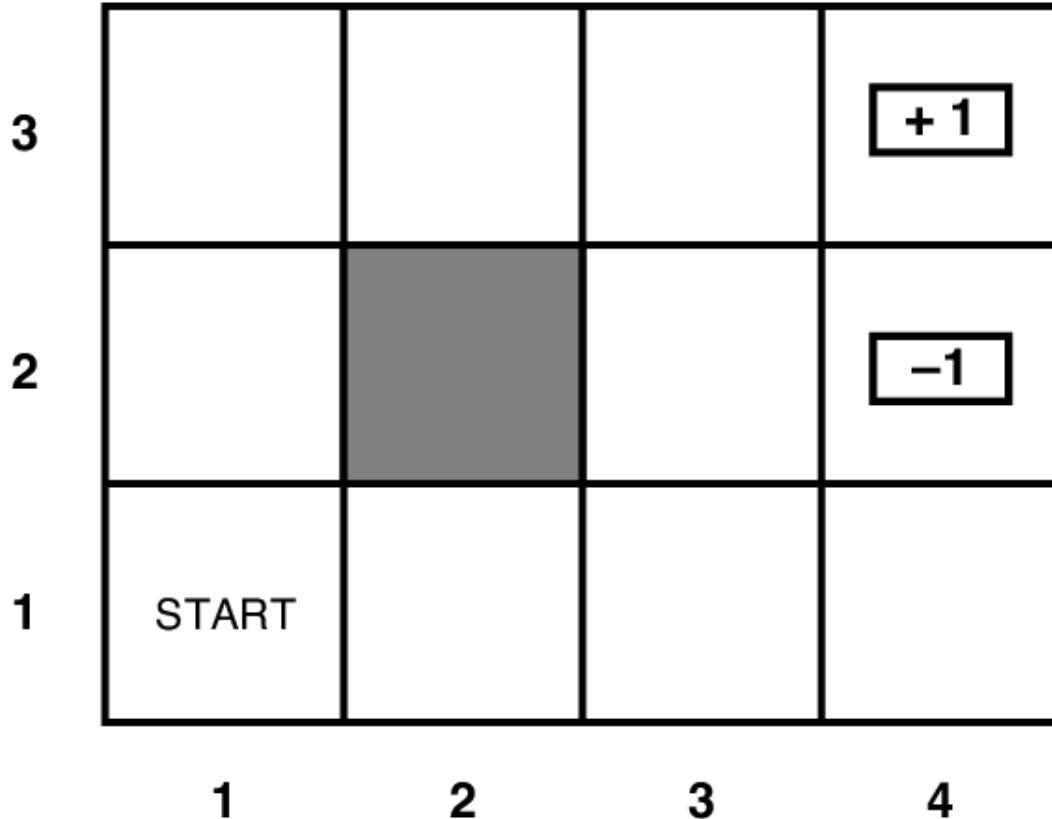
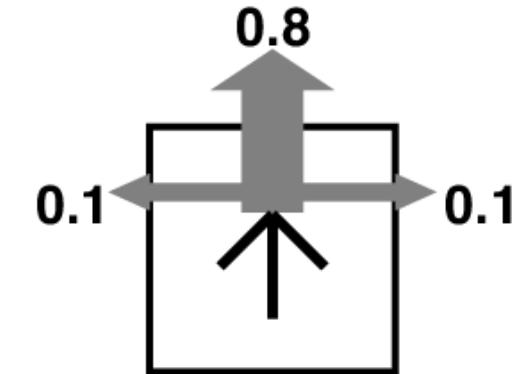
Note: (i) Robot is unreliable (ii) Reach target fast



$r(s) = -0.04$ for every non-terminal state

Grid World Abstraction

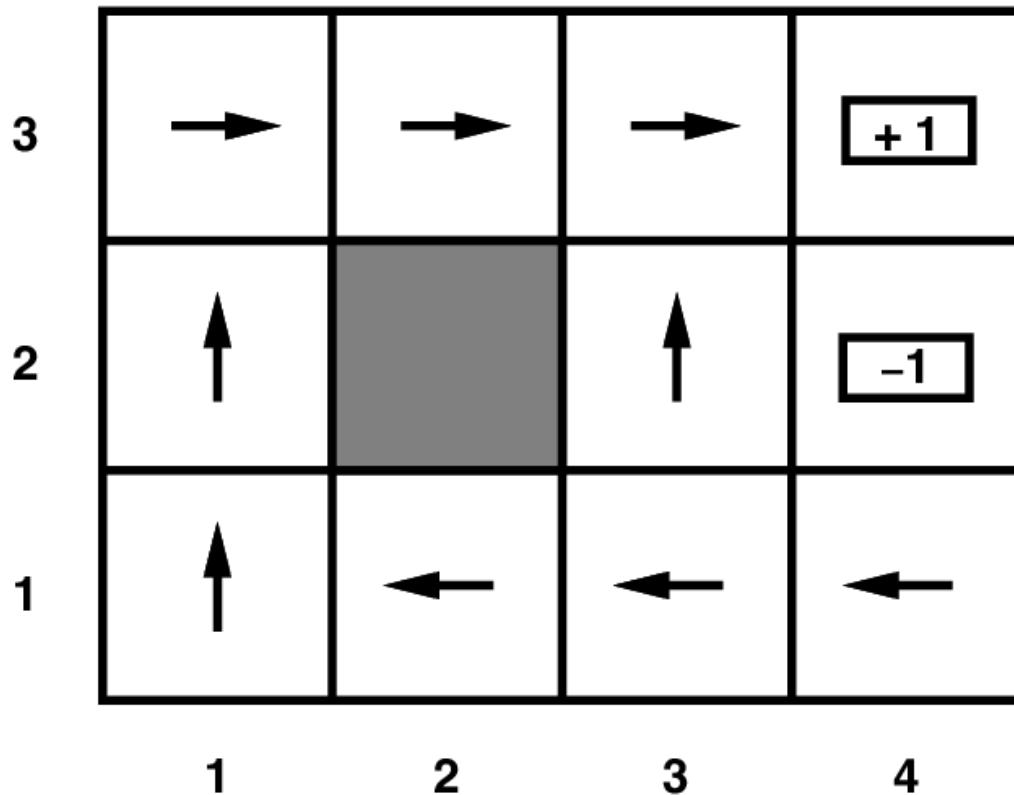
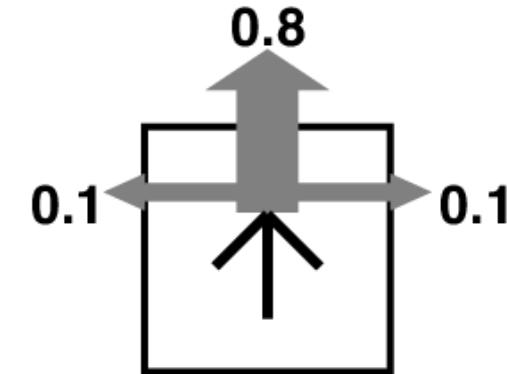
Note: (i) Robot is unreliable (ii) Reach target fast



$r(s) = -0.04$ for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast



$r(s) = -0.04$ for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- **State set S .** Initial state s_0 . **Action set A**
- **State transition model:** $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- **Reward function:** $r(s_t)$
- **Policy:** $\pi(s) : S \rightarrow A$ action to take at a particular state.

How do we find
the best policy?

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Outline

- **Intro to Reinforcement Learning**
 - Basic concepts, mathematical formulation, MDPs, policies
- **Valuing and Obtaining Policies**
 - Value functions, Bellman equation, value iteration, policy iteration

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^\pi(s_0) = \sum_{\substack{\text{sequences} \\ \text{starting from } s_0}} P(\text{sequence})U(\text{sequence})$$

Called the **value function** (for π, s_0)

Discounting Rewards

One issue: these are infinite series. **Convergence?**

- Solution

$$U(s_0, s_1 \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \dots = \sum_{t \geq 0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important **present** is VS **future**
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^\pi(s_0)$ is defined what a should we take?

- First, set $V^*(s)$ to be expected utility for **optimal** policy from s
- What's the expected utility of an action?
- Specifically, action a in state s ?

$$\sum_{s'} P(s'|s, a) V^*(s')$$

all the states we could go to

transition probability

expected rewards

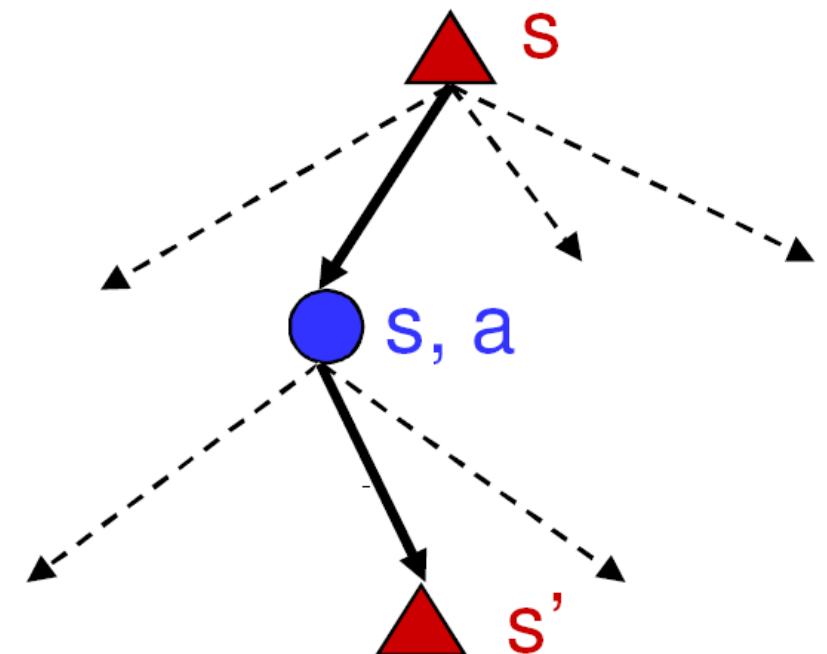
Obtaining the Optimal Policy

We know the expected utility of an action.

- So, to get the optimal policy, compute

$$\pi^*(s) = \operatorname{argmax}_a \sum P(s'|s, a) V^*(s')$$

all the states we could go to s' transition probability expected rewards



Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \operatorname{argmax}_{\color{red}a} \sum_{\color{blue}s'} P(s'|s, \color{red}a) V^*(s')$$

- So we need to know $V^*(s)$.
 - But it was defined in terms of the optimal policy!
 - So we need some other approach to get $V^*(s)$.
 - Need some other **property** of the value function!

Bellman Equation

Let's walk over one step for the value function:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

↑ current state reward

discounted expected future rewards

- Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward $r(s)$, transition probability $P(s'|s,a)$
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V_i(s')$$

Policy Iteration

With value iteration, we estimate V^*

- Then get policy (i.e., indirect estimate of policy)
- Could also try to get policies directly
- This is **policy iteration**. Basic idea:
 - Start with random policy π
 - Use it to compute value function V^π (for that policy)
 - Improve the policy: obtain π'

Policy Iteration: Algorithm

What if don't know the
transition probability?
(next time)

Policy iteration. Algorithm

- Start with random policy π
- Use it to compute value function V^π : a set of linear equations

$$V^\pi(s) = \textcolor{green}{r}(s) + \gamma \sum_{s'} P(s'|s, \textcolor{red}{a}) V^\pi(s')$$

- Improve the policy: obtain π'

$$\pi'(s) = \arg \max_{\textcolor{red}{a}} \textcolor{green}{r}(s) + \gamma \sum_{s'} P(s'|s, \textcolor{red}{a}) V^\pi(s')$$

- Repeat

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala