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Announcements

*Logistics:
*No class on Wednesday, November 26t
*HW4 due Monday
*HW5 out Monday



Outline

*Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration
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A General Model

We have an agent interacting with the world

© >
Actions
< .
Observations
Agent

*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
 Compare to unsupervised learning and supervised learning




Examples: Gameplay Agents

AlphaZero:
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https://deepmind.com/research/alphago/



https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari
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Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!
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Examples: Robotics

Training robots to perform tasks (e.g. grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "



Building The Theoretical Model

Basic setup: © §
Set of states S ).K L
*Set of actions A fy Observations

*Information: at time t, observe state s, € S. Get reward r,
*Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

a “policy”



Markov Decision Process (MDP)

The formal mathematical model:
*State set S. Initial state s, Action set A

*State transition model: P(s;q|s;, a;)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7(s):S — Aaction to take at a particular state.

an aq a9
Sop —2 S1 —> SS9 — ...



Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein



Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
© non-terminal state

<Hn



Grid World Abstraction

Note: (i) Robot is unreliable

1 START

(ii) Reach target fast

0.8

0.1+0.1

r(s) = —0.04 for every
non-terminal state




Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
1 2 3 4 non-terminal state



Back to MDP Setup

The formal mathematical model:
*State set S. Initial state s, Action set A

-State transition model: P(S;11/S¢, ()

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7(s):S — A action to take at a particular state.

How do we find . 0 .
the best policy? S0 — 2 81— S — 7 ...



Outline

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration



Defining the Optimal Policy

For policy t, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = Z P(sequence)U (sequence)

sequences
starting from s

Called the value function (for &, s;)



Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51---) = 1(s0) +77(s1) + 777 ( =) 4r(s)

t>0
*Discount factor y between 0 and 1

*Set according to how important present is VS future
*Note: has to be less than 1 for convergence



From Value to Policy

Now that V™ (s,) is defined what a should we take?

*First, set V*(s) to be expected utility for optimal policy from s

*What’s the expected utility of an action?
*Specifically, action a in state s?

ZP(S’|S,@)V*(S’)

AN TN

all the states we transition expected
could go to orobability rewards



Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

m*(s) = argmax,, ZP |s,a)V*(s")

all the states we /

could go to transition expected A :‘A
probability ~ rewards S

Credit L. Lazbenik



Slight Problem...

Now we can get the optimal policy by doing

m*(s) = argmax,, Z P(s'|s,a)V*(s")

*So we need to know V*(s).
*But it was defined in terms of the optimal policy!
*So we need some other approach to get V*(s).
*Need some other property of the value function!



Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + ym(?XZP(sﬂs, a)V*(s')

1 \ SY )

current state discounted expected
reward future rewards

*Bellman: inventor of dynamic programming




Value Iteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

*Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Visa(s) = 1(s) +ymax Y P(s'ls,a)Vi(s)



Policy Iteration

With value iteration, we estimate V*

*Then get policy (i.e., indirect estimate of policy)
*Could also try to get policies directly

*This is policy iteration. Basic idea:
e Start with random policy
* Use it to compute value function V™ (for that policy)
* Improve the policy: obtain i’



Policy Iteration: Algorithm
What if don’t know the

transition probability?

Policy iteration. Algorithm (next time)

e Start with random policy
e Use it to compute value function V™ : a set of linear equations

V7™(s) =r(s) +v ) P(s'|s,a)V7(s)
* Improve the policy: obtain i’

7' (s) = arg max r(s) + 'yz P(s'|s,a)V7™(s')

* Repeat



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala
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