P
Z
A

R AL
Sy NP

o~

CS 760: Machine Learning
Reinforcement Learning

Misha Khodak

University of Wisconsin-Madison

24 November 2025

Announcements

*Logistics:
*HW 5 out after class, due Dec 8th
*No class Wednesday
*No office hours today; tomorrow they are virtual

*Class roadmap:
*Two more classes on RL
*Two classes on data-efficient learning
*Exam review

Outline

*Review: Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

*Q Learning
*Q function, Q-learning, SARSA, approximation

Outline

*Review: Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

Review: General Model

We have an agent interacting with the world

() >
Actions
(.
Observations
Agent

*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
 Compare to unsupervised learning and supervised learning

Building The Theoretical Model

Basic setup: () R
*Set of states S % o
*Set of actions A fy Observations

*Information: at time t, observe state s, € S. Get reward r,
*Agent makes choice g, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

f

a “policy”

Markov Decision Process (MDP)

The formal mathematical model:

*State set S. Initial state s, Action set A

*State transition model: P(s;,|s;, a;)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7r(3) .- § — A action to take at a particular state.

ao ai a9
Sop —>S1 —> SS9 — ...

Grid World Abstraction

Note: (i) Robot is unreliable

1 START

(ii)) Reach target fast

0.8
0.1%’0.1
r(s) = —0.04 for every

non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:

*State set S. Initial state s, Action set A

-State transition model: P(s;11|s¢, at)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7(s): S — A action to take at a particular state.

How do we find 0 o .
the best policy? S0 — 781 — 7282 —7 ...

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that

r(A) =1, r(B) = 0. Let y be the discounting factor. What is the optimal policy
m(A) and m(B)? What are V' (A), V'(B)?

* A. Stay, Stay, 1/(1-y), 1

 B. Stay, Move, 1/(1-y), 1/(1-y)
* C. Move, Move, 1/(1-y), 1

* D. Stay, Move, 1/(1-y), y/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that
r(A) =1, r(B) = 0. Let y be the discounting factor. What is the optimal policy
m(A) and m(B)? What are V*(4), V*(B)?

* A. Stay, Stay, 1/(1-y), 1

* B. Stay, Move, 1/(1-y), 1/(1-y)

e C. |V|OV€, |V|OV€, 1/(1_)/)’ 1 Want to stay at A, or, if at B, move to A.
e D. Stay, Move, 1/(1_),)’ y/(l_y) Starting at A, sequence AAA,... rewards 1, y, ¥2,....

Start at B, sequence B,AA,... rewards 0, ¥, V2,....

Sums to 1/(1-y) and y/(1-y).

Outline

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = z P(sequence)U(sequence)

sequences
starting from s

Called the value function (for &, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51--) = 1(s0) +77(s1) + 777 (=) 7 (se)

t>0
*Discount factor y between 0 and 1

*Set according to how important present is vs. future
*Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

First, set V(s) to be expected utility for optimal policy from s

*What's the expected utility of an action?
*Specifically, action a in state s?

ZP(S’\S, a)V*(s)

208N

all the states we transition expected
could go to orobability rewards

Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

m*(s) = argmax,, ZP "Is,a)V*(s')

all the states we /

could go to transition expected A :\“
probability ~ rewards S

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing

7 (s) = argmax,, Z P(s'|s,a)V*(s")

So we need to know V(s).
*But it was defined in terms of the optimal policy!
So we need some other approach to get V(s).
*Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1r(s)+ me?XZP(s’\S, a)V*(s")

1 \ SY)

current state discounted expected
reward future rewards

How do we derive the Bellman equation?

Start from the definition of the value of the optimal policy:

V*(s) = r(s) + y max Z P(sequence|a)U (sequence|a)
a

sequences
starting
from s

=7r(s)+y maxz P(s'|s,a) /r(s’) + ¥y max z P(sequence|a’)U(sequence|a’)\
a al
S/

sequences
starting
from s

=7r(s)+y mc?xz P(s'|s,a)V*(s")

Value lteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Viaa(5) = (5) + ymax 3 P(s'ls, a)Vi(s)

Policy Iteration

With value iteration, we estimate V*

*Then get policy (i.e., indirect estimate of policy)
*Could also try to get policies directly

*This is policy iteration. Basic idea:
e Start with random policy it

* Use it to compute value function V” (for that policy)
* Improve the policy: obtain i’

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V7™(s) =r(s) +v) P(s|s,a)V"(s")
* Improve the policy: obtain i’

m'(s) = arg max r(s) + ')/Z P(s'|s,a)V™(s")

* Repeat

Outline

*Q Learning
*Q function, Q-learning, SARSA, approximation

Q-Learning (model-free RL)

What if we don’t know transition probability P(s’|s,a)?
*Need a way to learn to act without it.

*Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s

Note: V(s) = max, Q(s,a)

Now, we can just do m(s) = arg max,Q(s,a)
* But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

*Similar iterative procedure learning rate

Q(5t, at) < Q(s¢,at) + a|r(se) + "y max Q(St+1,0) — Q(st, ay))

Idea: combine old value and new estimate of future value.

Note: We are using a policy m to take actions a; = m(s;); this
policy is based on Q!

Exploration Vs. Exploitation

General question!

* Exploration: take an action with unknown consequences

*Pros:
e Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

*Cons:
* When exploring, not maximizing your utility
* Something bad might happen
* Exploitation: go with the best strategy found so far

°Pros:

* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

*Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

*With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax, . 4 @(s,a) uniform(0,1) > e
a —
random a € A otherwise

Q-Learning: SARSA

An alternative:
*Just use the next action, no max over actions:

Q(St, Clt) — Q(St,@t) + 04[(5t> + WQ<3t+1,at+1) — Q(St, at)]

Called state—action—reward—state—action (SARSA)
*Can use with epsilon-greedy policy

Q-Learning Details

Note: if we have a terminal state, the process ends
*An episode: a sequence of states ending at a terminal state

*Want to run on many episodes
Slightly different Q-update for terminal states

Q-Learning — Compact Representations

Q-table can be quite large... might not even fit memory

*Solution: use some other representation for a more compact
version. Ex: neural networks.

encoding of
the state ()

each input unit encodes a or could have one net for
property of the state (e.g., each possible action
a sensor value)

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
hd v v

m
c
T
8
‘3
3
@
O
g

[
- D
\\

L B L B L B B B o B I B N BN B B
L L I L B NN R I B L R B I R B B

o
=) Q
9 8. 0 5 2 0 PN e

el K Cled iy -)‘ 3
+ Q1+ ~i+1-01+1+ 4 - + Bl | =
CLELEEEREL L]

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action
* B. Perform at least 20,000 iterations.
e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action
 B. Perform at least 20,000 iterations.
e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action

* B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

e C. Re-start with different random initial table values. (No: this is
not necessary in general).

* D. Prioritize exploitation over exploration. (No: insufficient
exploration means potentially unupdated state action pairs).

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala

	Slide 1: CS 760: Machine Learning Reinforcement Learning
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Review: General Model
	Slide 6: Building The Theoretical Model
	Slide 7: Markov Decision Process (MDP)
	Slide 8: Grid World Abstraction
	Slide 9: Grid World Optimal Policy
	Slide 10: Back to MDP Setup
	Slide 11: Break & Quiz
	Slide 12: Break & Quiz
	Slide 13: Break & Quiz
	Slide 14: Outline
	Slide 15: Defining the Optimal Policy
	Slide 16: Discounting Rewards
	Slide 17: From Value to Policy
	Slide 18: Obtaining the Optimal Policy
	Slide 19: Slight Problem…
	Slide 20: Bellman Equation
	Slide 21: How do we derive the Bellman equation?
	Slide 22: Value Iteration
	Slide 23: Policy Iteration
	Slide 24: Policy Iteration: Algorithm
	Slide 25: Outline
	Slide 26: Q-Learning (model-free RL)
	Slide 27: Q-Learning Iteration
	Slide 28: Exploration Vs. Exploitation
	Slide 29: Q-Learning: Epsilon-Greedy Policy
	Slide 30: Q-Learning: SARSA
	Slide 31: Q-Learning Details
	Slide 32: Q-Learning – Compact Representations
	Slide 33: Deep Q-Learning
	Slide 34: Break & Quiz
	Slide 35: Break & Quiz
	Slide 36: Break & Quiz
	Slide 37: Thanks Everyone!

