CS 760: Machine Learning
Reinforcement Learning

Misha Khodak

University of Wisconsin-Madison

1 December 2025

Announcements

*Class roadmap:
Last class on RL
*Two classes on data-efficient learning
*Exam review

Outline

*Review: RL
* MDPs, policies, value function, Q-function, etc.

*Function Approximation
*Value & Q-function approximations, linear, nonlinear

*Policy-based RL

*Policy gradient, policy gradient theorem, REINFORCE
algorithm

Outline

*Review: RL
* MDPs, policies, value function, Q-function, etc.

Review: General Model

We have an agent interacting with the world

() >
Actions
(.
Observations
Agent

*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
 Compare to unsupervised learning and supervised learning

Markov Decision Process (MDP)

The formal mathematical model:

*State set S. Initial state s, Action set A

*State transition model: P(s;,|s;, a;)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7r(3) .- § — A action to take at a particular state.

ao ai a9
Sop —>S1 —> SS9 — ...

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = z P(sequence)U(sequence)

sequences
starting from s

Called the value function (for &, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51--) = 1(s0) +77(s1) + 777 (=) 7 (se)

t>0
*Discount factor y between 0 and 1

*Set according to how important present is vs. future
*Note: has to be less than 1 for convergence

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1r(s)+ me?XZP(s’\S, a)V*(s")

1 \ SY)

current state discounted expected
reward future rewards

Value lteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Viaa(5) = (5) + ymax 3 P(s'ls, a)Vi(s)

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V7™(s) =r(s) +v) P(s|s,a)V"(s")
* Improve the policy: obtain i’

m'(s) = arg max r(s) + ')/Z P(s'|s,a)V™(s")

* Repeat

Q-Learning (model-free RL)

What if we don’t know transition probability P(s’|s,a)?
*Need a way to learn to act without it.

*Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s

Note: V(s) = max, Q(s,a)

Now, we can just do m(s) = arg max,Q(s,a)
* But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

*Similar iterative procedure learning rate

Q(5t, at) < Q(s¢,at) + a|r(se) + "y max Q(St+1,0) — Q(st, ay))

Idea: combine old value and new estimate of future value.

Note: We are using a policy m to take actions a; = m(s;); this
policy is based on Q!

Exploration Vs. Exploitation

General question!

* Exploration: take an action with unknown consequences

*Pros:
e Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

*Cons:
* When exploring, not maximizing your utility
* Something bad might happen
* Exploitation: go with the best strategy found so far

°Pros:

* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

*Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

*With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax, . 4 @(s,a) uniform(0,1) > e
a —
random a € A otherwise

Outline

*Function Approximation
*Value & Q-function approximations, linear, nonlinear

Beyond Tables

So far:
* Represent everything with a table

*Value function V: table size |S| X 1
«Q function: table size ‘S| % ‘A‘

*Too big to store in memory for many tasks

* Backgammon: 1029 states.
*Go: 33% states

*Need some other approach

Beyond Tables: Function Approximation

Both V and Q are functions...
*Can approximate them with models, i.e. neural networks

eSO we write

V7 (s) ~ Vy(s)
*New goal: find the weights §

eLoss function:

J(0) = Ex[(V7(s) — Vo(s))?]

State Representations & Models

How do we represent a state?
*As usual, feature vectors, i.e.

r(s) =

*\What kind of models could we use?
*First, let’s start with linear:

Vo(s) = z(s)T0

Linear VFA With an Oracle

*SGD update is

[(V™(s) = Vo(5))VeVa(s)]
*And for our linear model, we get

(V7 (s) = Va(s))z(s)

[]

Step Size Prediction Error Feature Value

What if We Don’t Have an Oracle?

Similar to what we’ve seen so far, use Monte-Carlo.
*We won’t know VW(St)

*Estimate returns G; = Z'}/th+k+1
k=0

*Can just run episodes and estimate, ie, get some noisy
estimates as training data:

(s1,G1), (s2,G2),...,(s7,GT)

Q-Function Approximation

Similar idea for Q-function

QW(Sv CL) ~ Q@(Sv CL)

Representation: use both states and values
*Can still use linear models
*Note: quite popular to use deep models

Q-Function Approximation: Deep Models

*Note: quite popular to use deep models
*e.g. CNNs if the states are images (like in video games)

3

Convolution Convolution Fully connected Fully connect
- hd A

w

&

L

|

L 2
alrlclele e 55T
EEEEEEREE L

Mnih et al, "Human-level control through deep reinforcement learning"

Outline

*Policy-based RL

*Policy gradient, policy gradient theorem, REINFORCE
algorithm

Policy-Based RL

So far, we either approximated V or Q
*Then use these to extract the optimal policy

Could do the same trick but with the policy

*Note: so far our policies were deterministic, now we’ll allow
a distribution over actions, i.e. 7T(8) — P(CL‘S)

-want: g (S,a) = Py(als)

Policy Gradient

Use the same idea. We'll define an objective J(6)
* And then can get gradients:

Vomg(s,a) = mg(s,a)Vologmy(s,a)

\ J
|

_ . Score Function
*Example: continuous action space.

eGaussian policy @ ~ N(-’IJ(S)TQ)a 02)

*has score: (CL B x(S)TQ)Qj(S)/O-Q

Policy Gradient
Set our objective to be
J(0) = P(s|mg) Y wa(s,a)Q"(s,a)

stationary
distribution

Compute the gradient via the policy gradient theorem

VoJ(0) =) P(s|mg) Y Vomg(s,a)Q" (s, a)

REINFORCE Algorithm

So, to learn a policy, we can run SGD (actually ascent)
Compute gradients via policy gradient theorem

VoJ(0) =) P(s|mg) ¥ Voms(s,a)Q (s, a)
*Just need Q™ (s, a) estimates.

*How? Monte-Carlo again: Use G, for our estimates.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, David Silver, Emma Brunskill, Fred Sala

	Slide 1: CS 760: Machine Learning Reinforcement Learning
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Review: General Model
	Slide 6: Markov Decision Process (MDP)
	Slide 7: Defining the Optimal Policy
	Slide 8: Discounting Rewards
	Slide 9: Bellman Equation
	Slide 10: Value Iteration
	Slide 11: Policy Iteration: Algorithm
	Slide 12: Q-Learning (model-free RL)
	Slide 13: Q-Learning Iteration
	Slide 14: Exploration Vs. Exploitation
	Slide 15: Q-Learning: Epsilon-Greedy Policy
	Slide 16: Outline
	Slide 17: Beyond Tables
	Slide 18: Beyond Tables: Function Approximation
	Slide 19: State Representations & Models
	Slide 20: Linear VFA With an Oracle
	Slide 21: What if We Don’t Have an Oracle?
	Slide 22: Q-Function Approximation
	Slide 23: Q-Function Approximation: Deep Models
	Slide 24: Outline
	Slide 25: Policy-Based RL
	Slide 26: Policy Gradient
	Slide 27: Policy Gradient
	Slide 28: REINFORCE Algorithm
	Slide 29: Thanks Everyone!

