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Announcements

•Class roadmap:
•Last class on RL
•Two classes on data-efficient learning
•Exam review



Outline

•Review: RL
•MDPs, policies, value function, Q-function, etc.

•Function Approximation
•Value & Q-function approximations, linear, nonlinear

•Policy-based RL
•Policy gradient, policy gradient theorem, REINFORCE 
algorithm
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Review: General Model

We have an agent interacting with the world

•Agent receives a reward based on state of the world
•Goal: maximize reward / utility
•Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World
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Actions

Observations

($$$)



Markov Decision Process (MDP)

The formal mathematical model:
•State set S. Initial state s0. Action set A

•State transition model:
•Markov assumption: transition probability only depends on st and at, and 

not previous actions or states. 

•Reward function: r(st)

•Policy:                            action to take at a particular state. 



Defining the Optimal Policy

For policy , expected utility over all possible state 
sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = ෍

sequences 
starting from 𝑠0

𝑃 sequence 𝑈(sequence)



Discounting Rewards

One issue: these are infinite series. Convergence?

•Solution

•Discount factor  between 0 and 1
•Set according to how important present is vs. future
•Note: has to be less than 1 for convergence



Bellman Equation

Let’s walk over one step for the value function:

discounted expected 
future rewards

current state 
reward



Value Iteration

Q: how do we find V*(s)?
•Why do we want it? Can use it to get the best policy

•Know: reward r(s), transition probability P(s’|s,a)

•Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update



Policy Iteration: Algorithm

Policy iteration. Algorithm
•Start with random policy π
•Use it to compute value function Vπ : a set of linear equations

• Improve the policy: obtain π’

•Repeat



Q-Learning (model-free RL)

What if we don’t know transition probability P(s’|s,a)?
•Need a way to learn to act without it.

•Q-learning: get an action-utility function Q(s,a) that tells us the 
value of doing a in state s

•Note: V*(s) = maxa Q(s,a)

•Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎
•But need to estimate Q!



Q-Learning Iteration

How do we get Q(s,a)?
•Similar iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy 𝜋 to take actions 𝑎𝑡 = 𝜋(𝑠𝑡); this 
policy is based on Q!

learning rate



Exploration Vs. Exploitation

General question!
•Exploration: take an action with unknown consequences
•Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

•Cons: 
•When exploring, not maximizing your utility
• Something bad might happen

•Exploitation: go with the best strategy found so far
•Pros:
•Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

•Cons: 
•Might also prevent you from discovering the true optimal strategy

 



Q-Learning: Epsilon-Greedy Policy

How to explore?
•With some 0<ε<1 probability, take a random action at each 
state, or else the action with highest Q(s,a) value.
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Beyond Tables

So far:

• Represent everything with a table

•Value function V: table size 

•Q function: table size

•Too big to store in memory for many tasks
•Backgammon: 1020 states. 
•Go: 3361 states

•Need some other approach



Beyond Tables: Function Approximation

Both V and Q are functions… 

•Can approximate them with models, i.e. neural networks

•So we write

 

•New goal: find the weights

•Loss function: 



State Representations & Models

How do we represent a state? 

•As usual, feature vectors, i.e.

•What kind of models could we use?
•First, let’s start with linear: 



Linear VFA With an Oracle

•SGD update is

•And for our linear model, we get 

Step Size Prediction Error Feature Value



What if We Don’t Have an Oracle?

Similar to what we’ve seen so far, use Monte-Carlo. 
•We won’t know

•Estimate returns 

•Can just run episodes and estimate, ie, get some noisy 
estimates as training data:



Q-Function Approximation

Similar idea for Q-function

Representation: use both states and values

•Can still use linear models

•Note: quite popular to use deep models



Q-Function Approximation: Deep Models

•Note: quite popular to use deep models
•e.g. CNNs if the states are images (like in video games)

Mnih et al, "Human-level control through deep reinforcement learning"
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Policy-Based RL

So far, we either approximated V or Q
•Then use these to extract the optimal policy

Could do the same trick but with the policy
•Note: so far our policies were deterministic, now we’ll allow 
a distribution over actions, i.e. 

•Want: 



Policy Gradient

Use the same idea. We’ll define an objective 

• And then can get gradients:

•Example: continuous action space. 

•Gaussian policy 

•has score: 

Score Function



Policy Gradient

Set our objective to be

•Compute the gradient via the policy gradient theorem

stationary 
distribution



REINFORCE Algorithm

So, to learn a policy, we can run SGD (actually ascent)

•Compute gradients via policy gradient theorem

•Just need                    estimates.

•How? Monte-Carlo again: Use Gt for our estimates.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, David Silver, Emma Brunskill, Fred Sala
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