



# CS 760: Machine Learning Transfer learning

Misha Khodak

University of Wisconsin-Madison

8 December 2025

# Announcements

- **Exam:** 5:05 – 7:05 PM on Dec 16<sup>th</sup> in Sewell 5208
  - covers all course topics, with emphasis on second half
  - otherwise same policies as midterm
- What should we review on Wednesday?
  1. neural network basics
  2. CNNs
  3. RNNs, Transformers, LMs
  4. generative models
  5. learning theory
  6. kernel methods
  7. reinforcement learning
  8. data-efficient learning

# Outline

- **Transfer learning**
  - motivations, basic approaches, self-supervised learning
- **Learning across multiple tasks**
  - setups, multi-task methods, meta-learning methods
- **Foundation models**
  - overview, fine-tuning, in-context learning

# Outline

- **Transfer learning**
  - motivations, basic approaches, self-supervised learning
- **Learning across multiple tasks**
  - setups, multi-task methods, meta-learning methods
- **Foundation models**
  - overview, fine-tuning, in-context learning

# Dealing with low-data scenarios

Numerous approaches (too many to cover in detail)

- which one to take is highly application-dependent
- can construct a basic taxonomy:

## **less-than-full supervision**

- do more with less (labeled data)
- last week's lecture

## **transfer learning**

- do more with more (o.o.d. data)
- today's lecture

semi-supervised learning

active learning

weakly-supervised learning

multi-task learning

meta learning

foundation models

# Transfer learning

We typically assume labeled points  $(x_1, y_1), \dots, (x_n, y_n) \sim D$  drawn i.i.d. from the **target distribution  $D$**

What if:

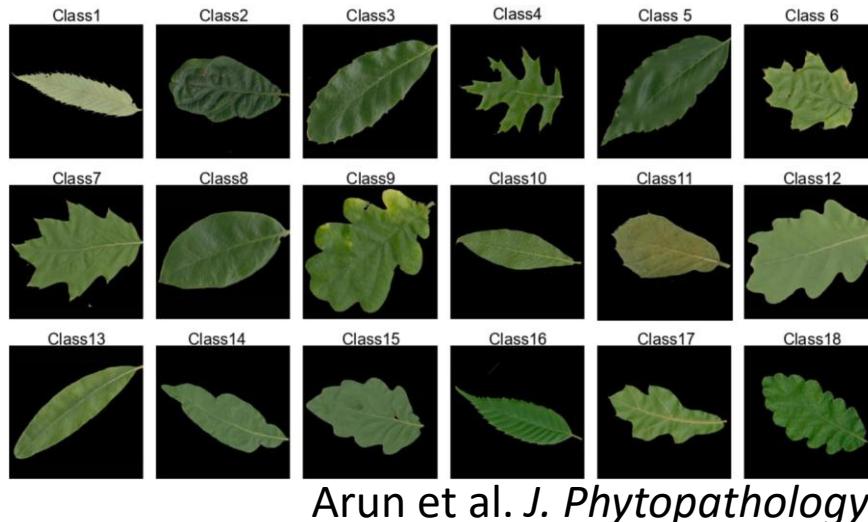
- $n$  is too small to learn a sufficiently expressive model
- but we have access to more data  $(x'_1, y'_1), \dots, (x'_N, y'_N) \sim D'$  from a **related distribution  $D'$** ?

Using data from a related distribution to improve performance on the target distribution is **transfer learning**

# Canonical example: ImageNet

standard vision pipeline:

1. collect a bunch of data for your target task
2. download a large CNN (e.g. a big ResNet) trained on ImageNet and **replace its classification layer**
3. then
  - I. either pass its **features** to a simpler model
  - II. or **fine-tune** it directly on the task



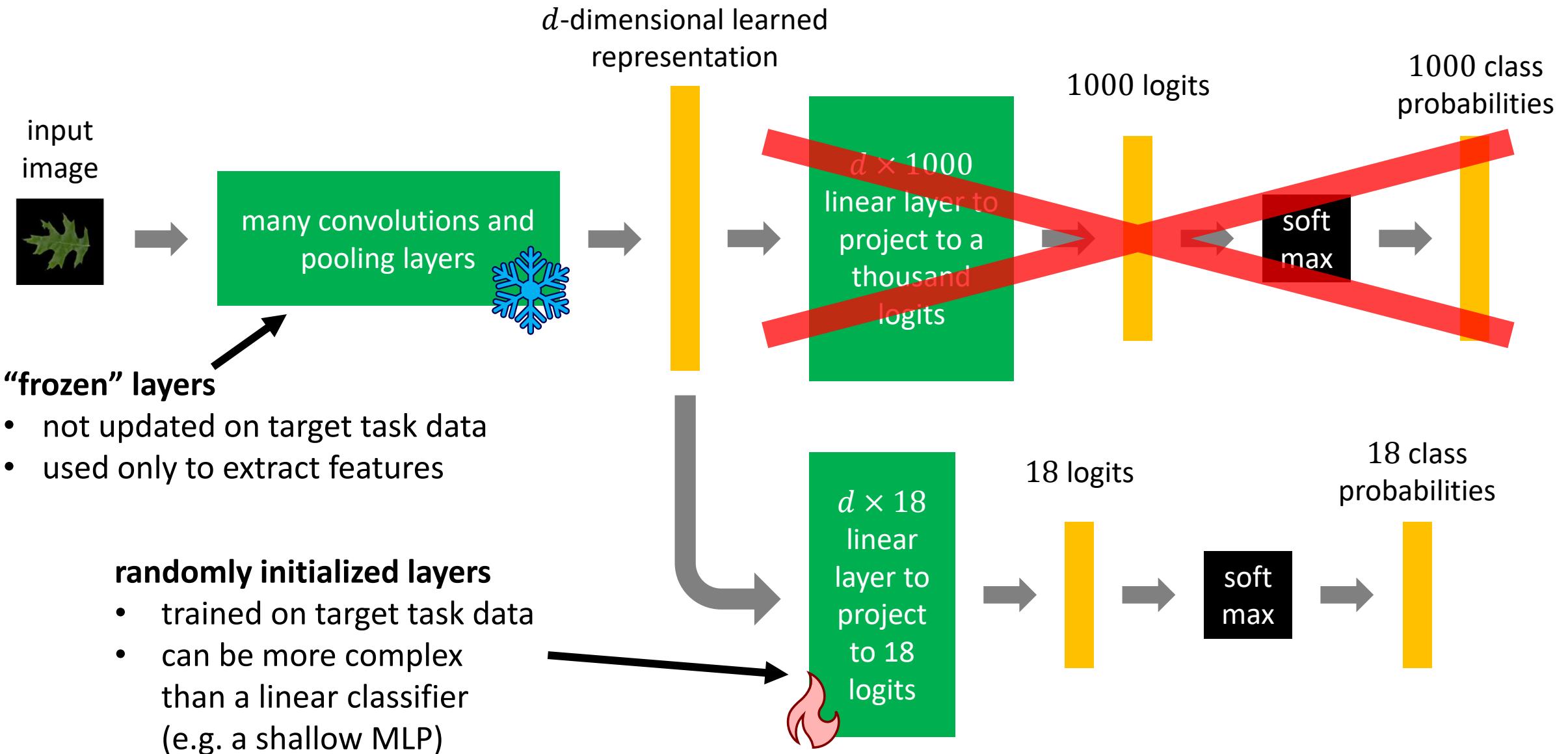
a few datapoints for a few classes



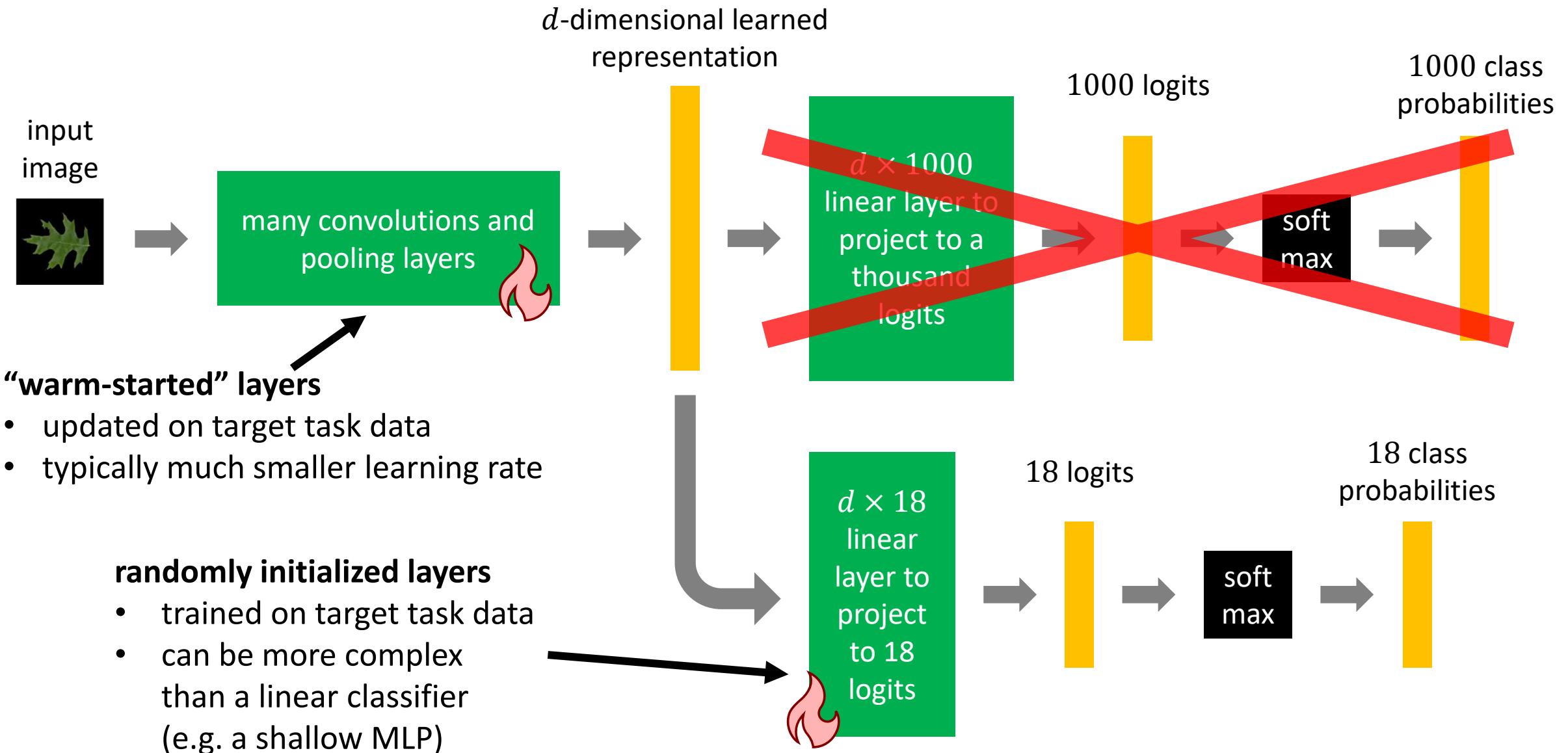
thousands of datapoints for each of a thousand classes

Kaggle

# Approach I: feature extraction



# Approach II: fine-tuning



# Transfer learning

- Transfer learning has been hugely successful
- Numerous other potential approaches
- Big remaining question: **what if the related data lacks labels?**
  - we chop off the classification layers anyway, so we just need to extract some **representation** of the data
  - can do so using classical unsupervised learning (PCA, etc.)
  - or we can do it with **self-supervised learning (SSL)**

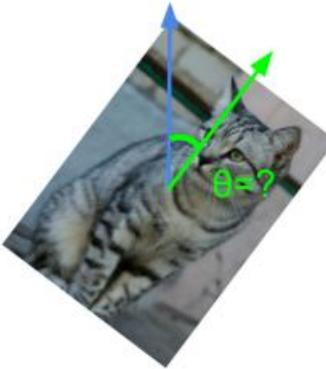
# Self Supervision: Basic Idea

- Use domain-specific properties of the inputs ( $x$ ) to create pseudo-labels ( $y$ ) corresponding to “**pretext tasks**”
- Ex: predict stuff you already know



image completion

Stanford CS 231n



rotation prediction



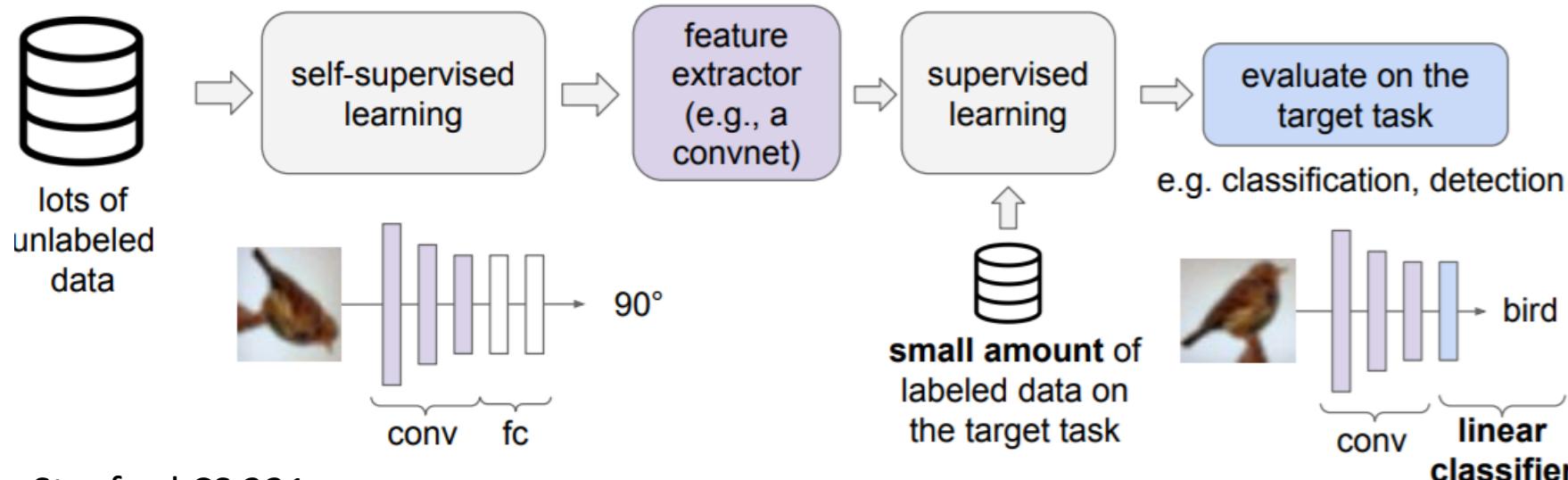
“jigsaw puzzle”



colorization

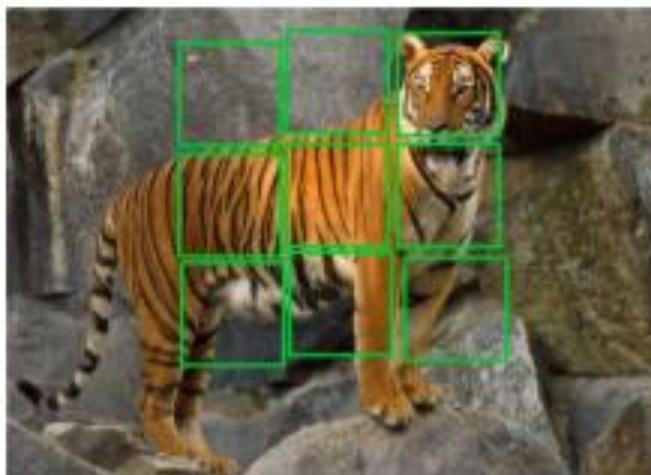
# Self Supervision: Using the Representations

- Don't care specifically about our performance on pretext task
- Use the learned network as a feature extractor
- Once we have labels for a particular task, train on a small amount of data



# Self Supervision: Pretext Tasks

- Lots of options for pretext tasks
  - Predict rotations
  - Coloring
  - Fill in missing portions of the image
  - Solve puzzles



(a)



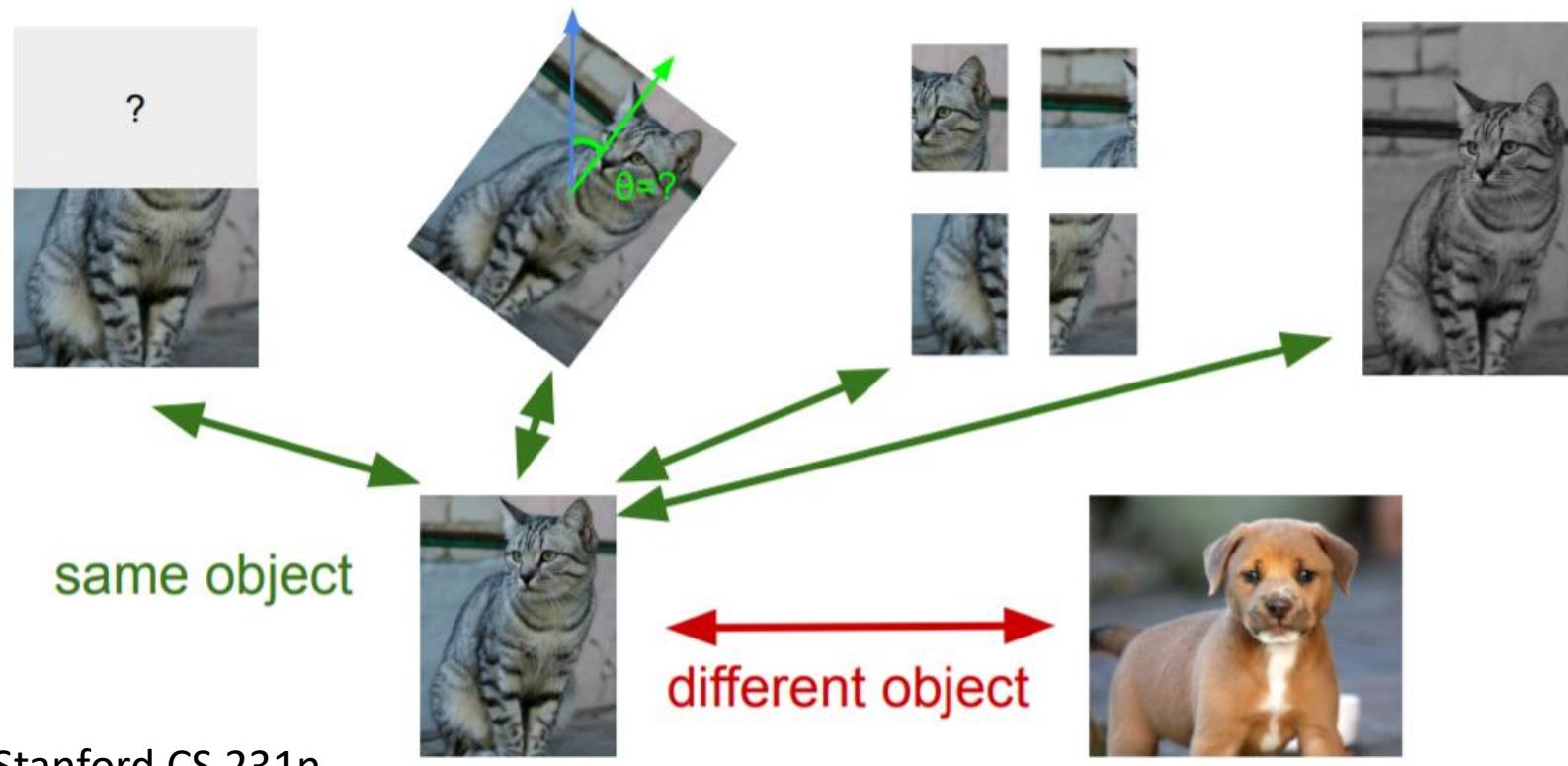
(b)



(c)

# Contrastive Learning: Basics

- Type of SSL where we learn representations such that:
  - transformed versions of single sample are similar
  - different samples are different



# Contrastive Learning: Motivation

- Goal:
  - Keep together related representations, push unrelated apart.
  - The InfoNCE loss function:

Van den Oord et al., 2018

$$L = -E_X \left[ \log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+))) + \sum_{j=1}^{k-1} \exp(s(f(x), f(x_j^-)))} \right]$$



x



## Positive sample: keep close



## Negative sample keep far



3



$$x_1^-$$



$$x_2^-$$



$$x_3^-$$

... ■ ■ ■

# Self-supervised learning: Summary

Procedure:

- **pretrain** a network to do well on a pretext task
- **transfer** the network to your target task



Most well-known example: predict-the-next-word

Difference with regular (un)supervised training not obvious:

- sometimes pretext tasks are useful (e.g. autocomplete)
- sometimes unsupervised methods are implicitly SSL (e.g. GloVe)

# Outline

- **Transfer learning**
  - motivations, basic approaches, self-supervised learning
- **Learning across multiple tasks**
  - setups, multi-task methods, meta-learning methods
- **Foundation models**
  - overview, fine-tuning, in-context learning

# Transfer learning from multiple tasks

What if instead of one related task with lots of data we have **many related tasks with similar amounts of data?**

Many setups:

- multi-task learning
- meta-learning
- continual learning
- lifelong learning
- ...

$$(x_{1,1}, y_{1,1}), \dots, (x_{1,n_1}, y_{1,n_1}) \sim D_1$$

⋮

$$(x_{t,1}, y_{t,1}), \dots, (x_{t,n_t}, y_{t,n_t}) \sim D_t$$

⋮

We'll cover two of them: **multi-task** and **meta-learning**

# Multi-task learning

Setup: **fixed number of related tasks**

Examples:

- predict the weather in nearby cities
- diagnose patients in different hospitals

Key challenges:

- how to encode task-relationships?
- how to avoid conflicting tasks?



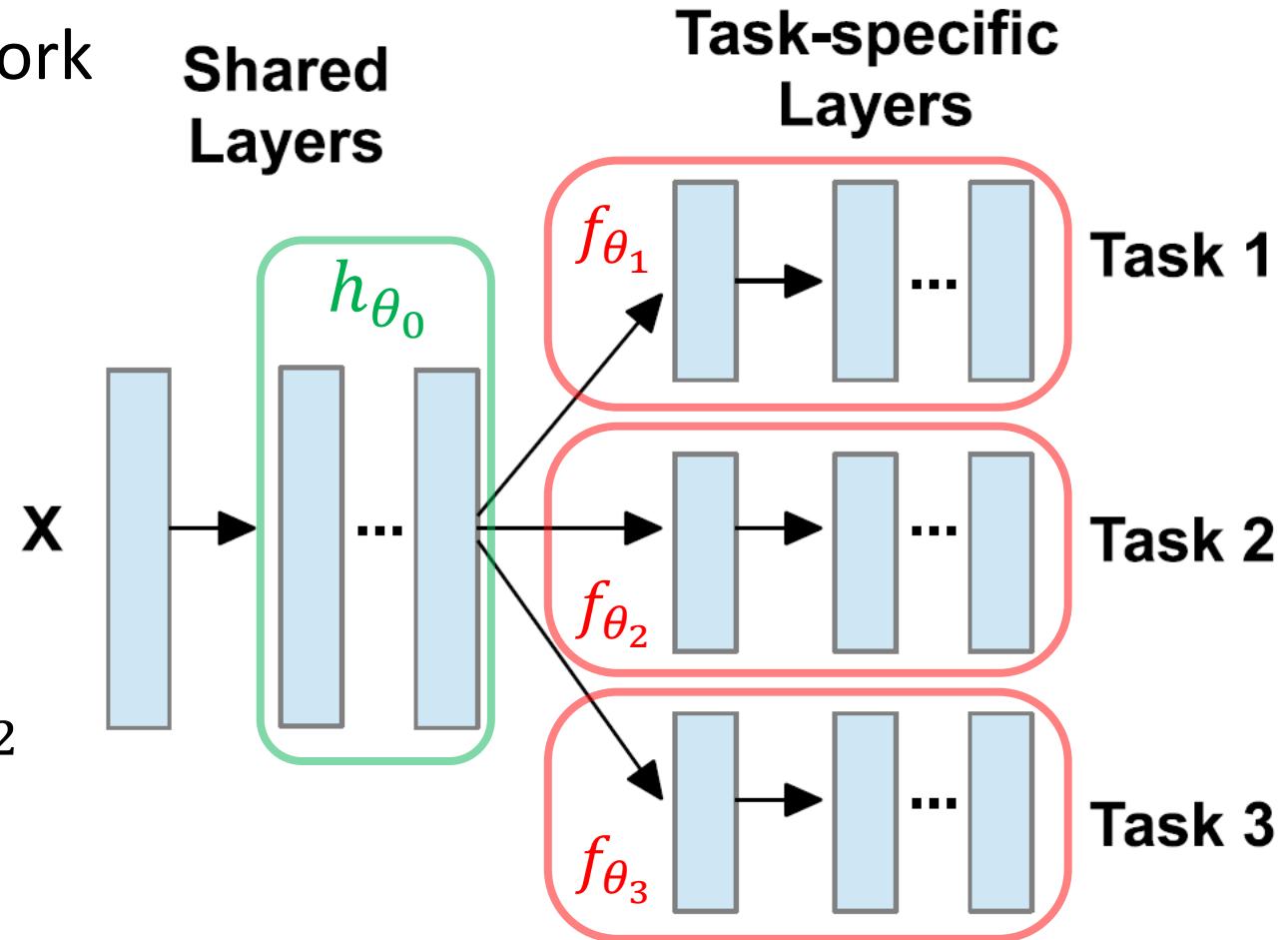
Fox6 (don't worry, this isn't the actual forecast...yet)



# One common approach: Layer-sharing

- jointly train a multi-output network
- assumes existence of a good **shared representation**  $h_{\theta_0}$
- example objective:

$$\sum_{t=1}^T \sum_{i=1}^{n_t} \left( y_{t,i} - f_{\theta_t} (h_{\theta_0}(x_{t,i})) \right)^2$$



# Another common approach: **Regularization**

- jointly train separate networks
- regularize parameters to be closer together
- example objective:

$$\sum_{t=1}^T \sum_{i=1}^{n_t} (y_{t,i} - \mathbf{f}_{\theta_t}(x_{t,i}))^2 + \sum_{t=1}^T \sum_{u=t+1}^T \lambda_{t,u} \|\theta_t - \theta_u\|^2$$

- allows hand-encoding of task-relationships via the regularization strengths  $\lambda_{t,u}$

# Meta-learning

Setup:

- **meta-training** dataset of related tasks
- **at meta-test time** we get a new dataset  $(x_1, y_1), \dots, (x_n, y_n) \sim D$
- **our goal:** low expected error on unseen examples  $(x, y) \sim D$

$$(x_{1,1}, y_{1,1}), \dots, (x_{1,n_1}, y_{1,n_1}) \sim D_1$$

:

$$(x_{T,1}, y_{T,1}), \dots, (x_{T,n_T}, y_{T,n_T}) \sim D_T$$

Applications:

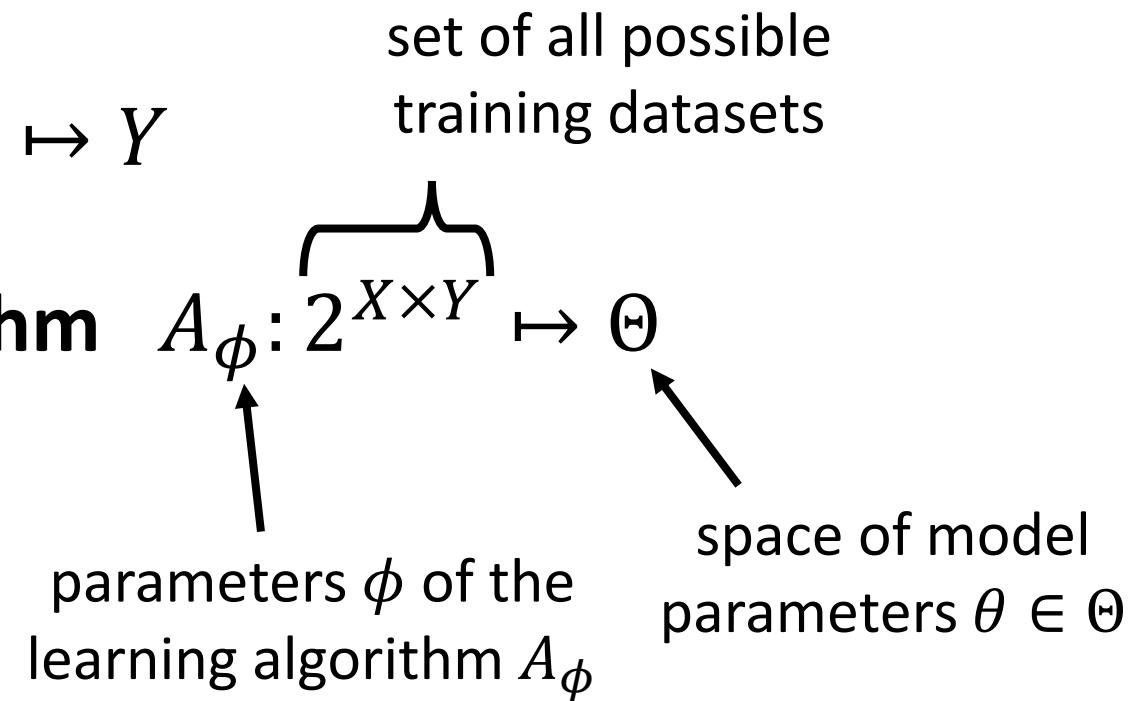
- auto-complete for new cellphone users (federated learning)
- image classification with limited labels (few-shot learning)
- robots in related environments (meta-RL)

# Why is it called meta-learning?

- no longer learning a model  $f_\theta: X \mapsto Y$

- we are learning a **learning algorithm**

- thus also called **learning-to-learn**



Example: meta-learn an initialization  $\phi$  for gradient descent

# Meta-learning (one step) gradient descent

MAML approach:  $A_\phi(\{(x_i, y_i)\}_{i=1}^n) = \phi - \alpha \nabla_\phi \sum_{i=1}^n \ell(y_i, f_\phi(x_i))$

- meta-training objective:

$$\operatorname{argmin}_\phi \sum_{t=1}^T \sum_{i=n_t/2+1}^{n_t} \ell \left( y_{t,i}, f_{A_\phi \left( \{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t/2} \right)}(x_{t,i}) \right)$$

- at meta-test time:

- $\theta \leftarrow \phi - \alpha \nabla_\phi \sum_{i=1}^n \ell_i(y_i, f_\phi(x_i))$
- make predictions using  $f_\theta(x)$

# Outline

- **Transfer learning**
  - motivations, basic approaches, self-supervised learning
- **Learning across multiple tasks**
  - setups, multi-task methods, meta-learning methods
- **Foundation models**
  - overview, fine-tuning, in-context learning

# What is a foundation model?

1. take a **massive neural network**
  - older / specialized models had 100M+ params
  - latest models have 1-100 billion or more
2. **pretrain** it on Internet-scale data
3. (optionally) **post-train** on large-scaled supervised data
4. use it for transfer learning for many different tasks

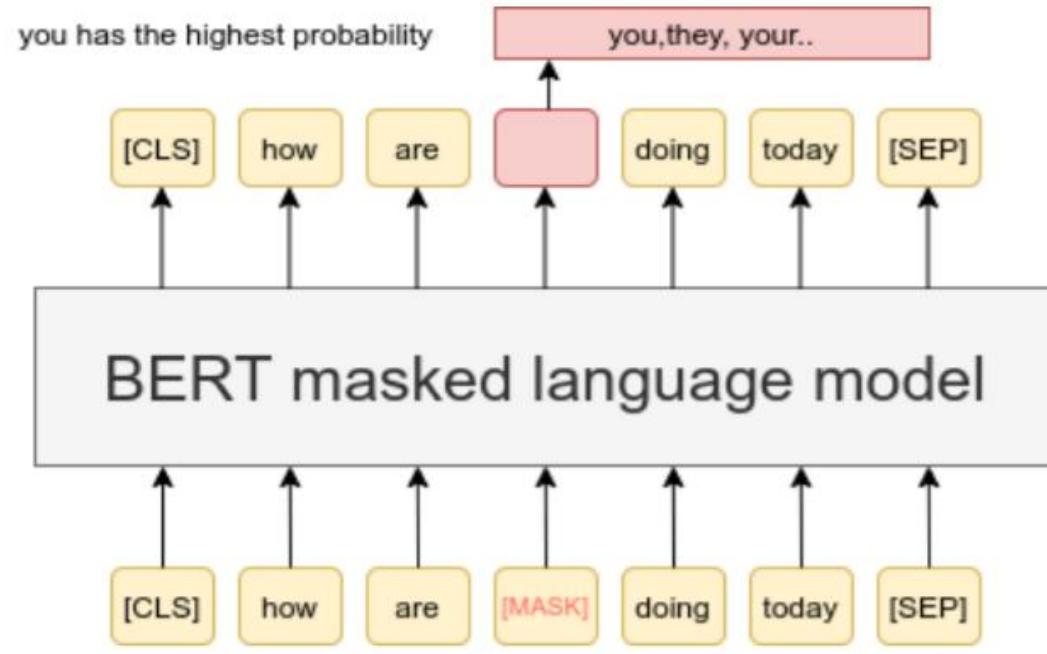
# Early history

2017: BERT model (340M)

- Transformer trained on masked language modeling (pretext task)
- “solved” transfer learning for language

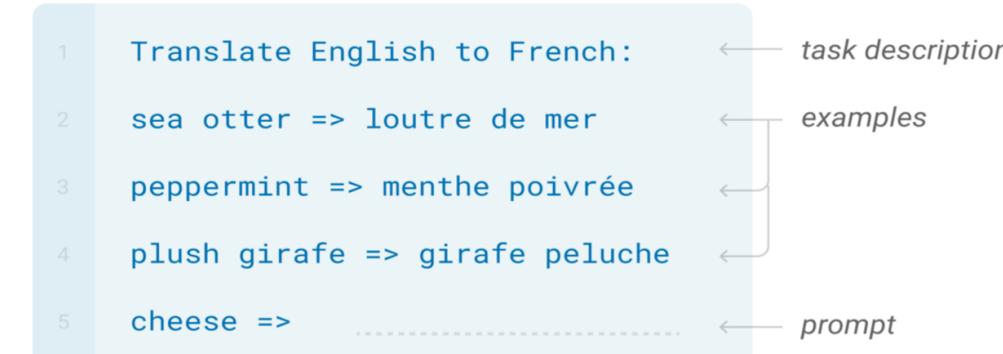
2017-present: GPT series

- Transformer trained on next-word prediction
- first observation of **in-context** learning capabilities in GPT-3
- ChatGPT post-trained on GPT-3.5



## Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



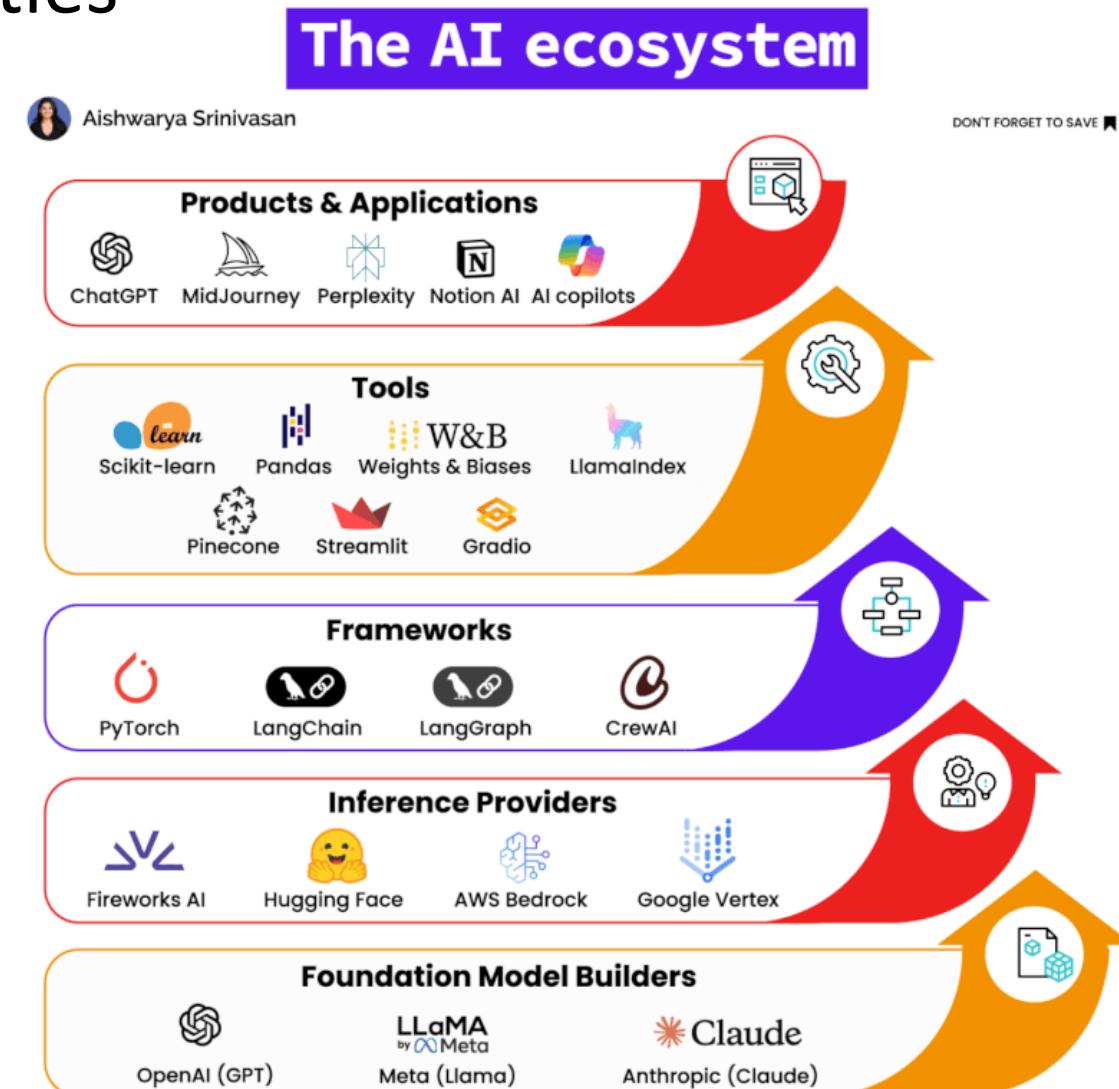
# Post-ChatGPT

- many models with varying capabilities

- closed-source models typically outperform open-source models

- new challenges:
  - massive compute costs**
  - privacy, security, safety

- new opportunities:
  - in-context learning**
  - reasoning



# Challenge: Compute costs

pretraining FMs limited to large orgs

- one training run requires 100s of GPUs
- need many training runs (to tune) and engineers (to manage training)

even fine-tuning is hard:

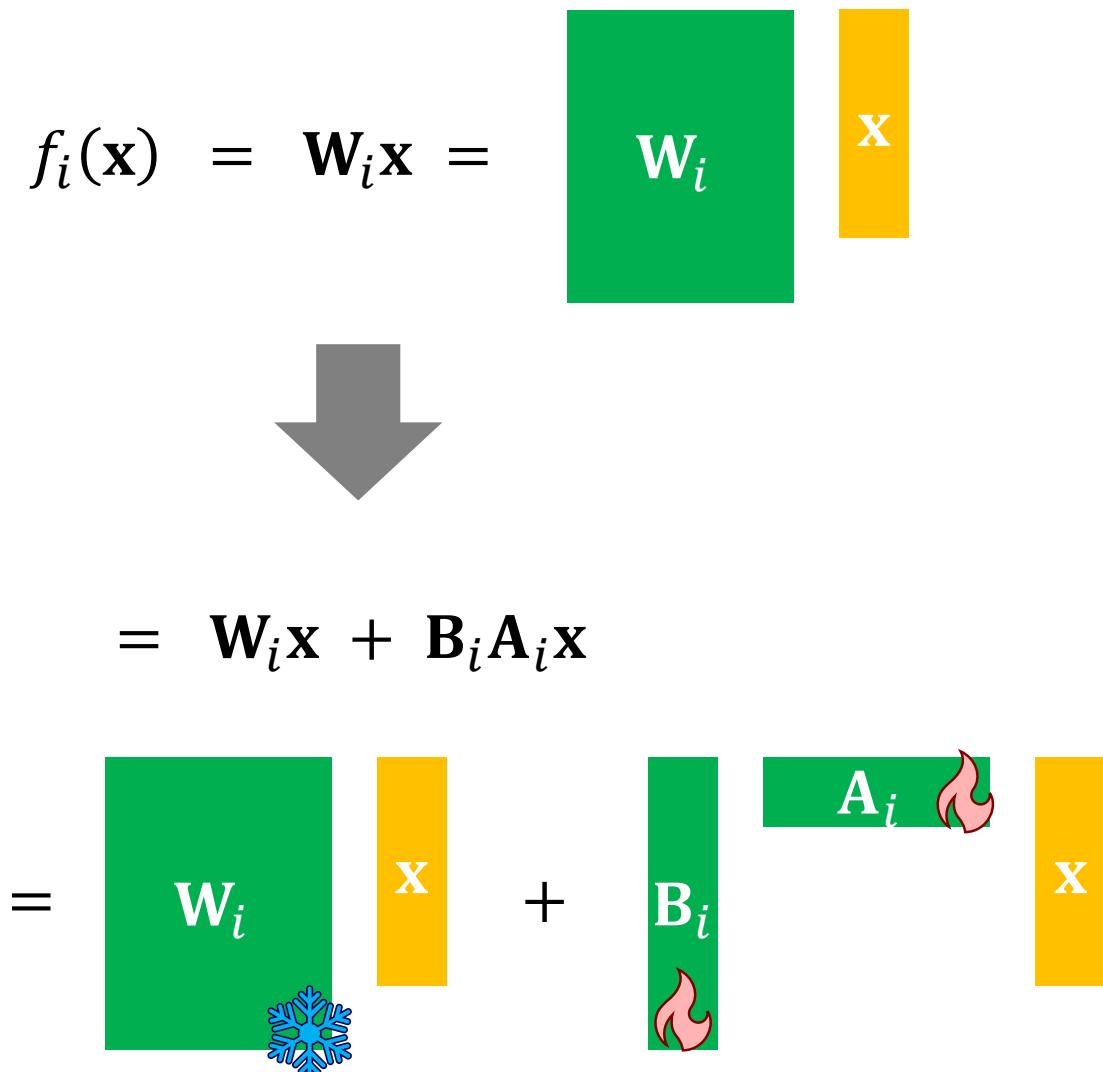
- SGD on GPT-3 (175B) uses 1.2TB VRAM
- NVIDIA GPUs max out below 200GB
- what can we do?

| Model                                                  | Microarchitecture | Launch                             | Core                      | Core clock (MHz)                  | Shaders         |                  |                                      | Memory   |                 |              |
|--------------------------------------------------------|-------------------|------------------------------------|---------------------------|-----------------------------------|-----------------|------------------|--------------------------------------|----------|-----------------|--------------|
|                                                        |                   |                                    |                           |                                   | Core config [a] | Base clock (MHz) | Max boost clock (MHz) <sup>[d]</sup> | Bus type | Bus width (bit) | Size (GB)    |
| A100 GPU accelerator (PCIe card) <sup>[442][443]</sup> | Hopper            | May 14, 2020 <sup>[444]</sup>      | 1× GA100-883AA-A1         | —<br>0914.432 :160:432.0 (108)    | 765             | 1410             | HBM2                                 | 5120     | 4096 or 80      | 1215 1555    |
| H100 GPU accelerator (PCIe card) <sup>[445]</sup>      |                   | March 22, 2022 <sup>[446]</sup>    | 1× GH100 <sup>[447]</sup> | —<br>14592.456 :24:456.0 (114)    | 1065            | 1755             | CUDA 1620 TC                         | HBM2E    | 5120            | 80 1000 2039 |
| H100 GPU accelerator (SXM card)                        |                   | —                                  | —                         | —<br>1065                         | 1980            | CUDA 1830 TC     | HBM3                                 | 5120     | 64 or 80 or 96  | 1500 3352    |
| H200 GPU accelerator (PCIe card) <sup>[448]</sup>      |                   | November 18, 2024 <sup>[449]</sup> | 1× GH100                  | —<br>16896.528 :24:528.0 (132)    | 1365            | 1785             | HBM3E                                | 5120     | 141 1313        | 3360         |
| H200 GPU accelerator (SXM card)                        |                   | —                                  | —                         | —<br>1590                         | 1980            | HBM3E            | 5120                                 | 141 1313 | 3360            |              |
| H800 GPU accelerator (SXM card)                        |                   | March 21, 2023 <sup>[450]</sup>    | 1× GH100                  | —<br>1095                         | 1755            | HBM3             | 5120                                 | 80 1313  | 3360            |              |
| L40 GPU accelerator <sup>[451]</sup>                   | Ada Lovelace      | October 13, 2022                   | 1× AD102 <sup>[452]</sup> | —<br>18176.568 :192:568:142 (142) | 735             | 2490             | GDDR6                                | 384      | 48 2250         | 864          |
| L4 GPU accelerator <sup>[453][454]</sup>               |                   | March 21, 2023 <sup>[455]</sup>    | 1× AD104 <sup>[456]</sup> | —<br>7424.240 :80:240.0 (60)      | 795             | 2040             | GDDR6                                | 192      | 24 1563         | 300          |
| B100 GPU accelerator <sup>[457]</sup>                  | Blackwell         | November 2024                      | 2× GB102                  | —<br>2× 16896.528 :24:528.0 (132) | 1665            | 1837             | HBM3E                                | 2× 4096  | 2× 96           | 2000 2× 4100 |
| B200 GPU accelerator <sup>[459]</sup>                  |                   | 2024                               | 2× GB100                  | —<br>1665                         | 1837            | HBM3E            | 2× 4096                              | 2× 96    | 2000 2× 4100    |              |

# Parameter-efficient fine-tuning (PEFT)

Most popular approach: **LoRA**

1. take an FM with **pretrained weight** matrices  $\mathbf{W}_1, \dots, \mathbf{W}_N$
2. for each matrix  $\mathbf{W}_i \in \mathbb{R}^{d \times k}$ :
  - set  $r \ll \min\{d, k\}$  and initialize **fine-tuning weights**:
    - $\mathbf{B}_i \in \mathbb{R}^{d \times r}$  to  $\mathbf{B}_i = 0$
    - $\mathbf{A}_i \in \mathbb{R}^{r \times k}$  to  $\mathbf{A}_i \sim \text{Gaussian}$
  - replace  $\mathbf{W}_i$  by  $\mathbf{W}_i + \mathbf{B}_i \mathbf{A}_i$
3. fine-tune on target task but
  - freeze  $\mathbf{W}_i$
  - update  $\mathbf{B}_i$  and  $\mathbf{A}_i$



# How does LoRA save memory?

- original weights  $\mathbf{W}_i \in \mathbb{R}^{d \times k}$  have  $dk$  trainable params

$$f_i(\mathbf{x}) = \mathbf{W}_i \mathbf{x} = \begin{matrix} \mathbf{W}_i \\ \mathbf{x} \end{matrix}$$

- new weights  $\mathbf{B}_i \in \mathbb{R}^{d \times r}$  and  $\mathbf{A}_i \in \mathbb{R}^{r \times k}$  have  $(d + k)r$

$$= \mathbf{W}_i \mathbf{x} + \mathbf{B}_i \mathbf{A}_i \mathbf{x}$$

- typical values in GPT-3 175B:

- $d \approx k \approx 10^4$
- $r \leq 10$

- $\geq 10^4$  x fewer trainable params!

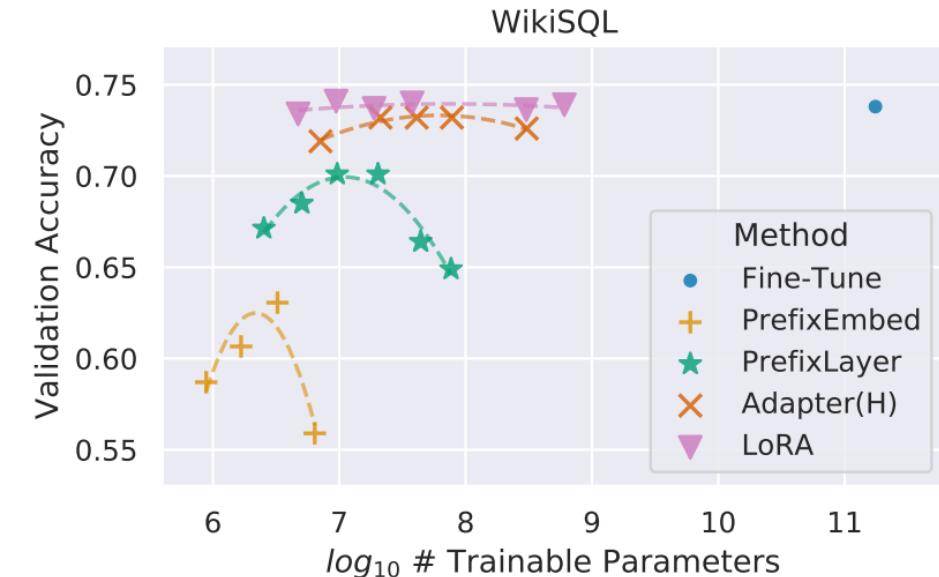
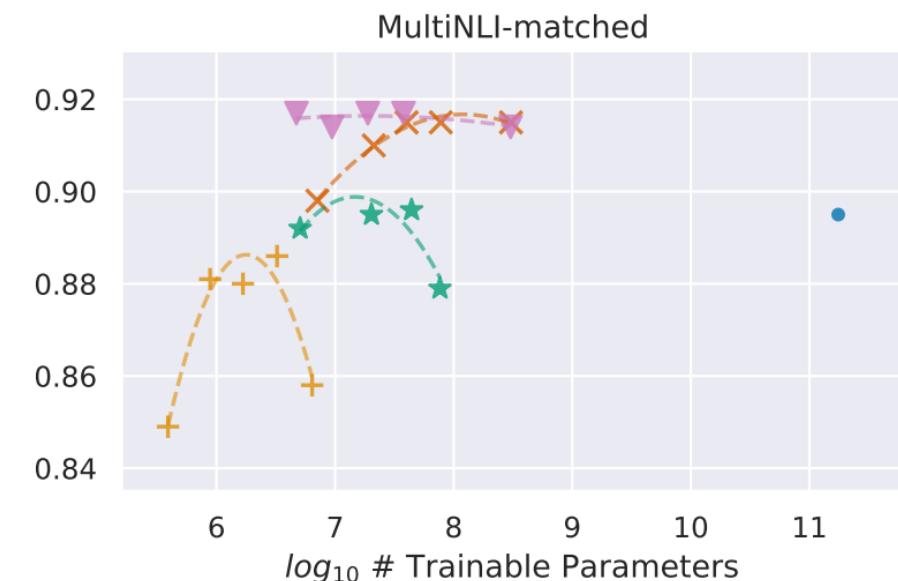
- 3x less fine-tuning VRAM

$$= \begin{matrix} \mathbf{W}_i \\ \mathbf{x} \end{matrix} + \begin{matrix} \mathbf{B}_i \\ \mathbf{A}_i \end{matrix} \begin{matrix} \mathbf{x} \\ \mathbf{x} \end{matrix}$$

# Does LoRA affect accuracy?

Yes, it constrains weights of the fine-tuned model:

- fine-tuned matrices  $\mathbf{W}_i + \mathbf{B}_i \mathbf{A}_i$  at most a rank  $r \ll \min\{d, k\}$  update away from pretrained matrices  $\mathbf{W}_i$
- LoRA = **Low-Rank Adaptation**
- in practice do not need large  $r$  for good performance
- learning theory intuition?



# Opportunity: In-context learning

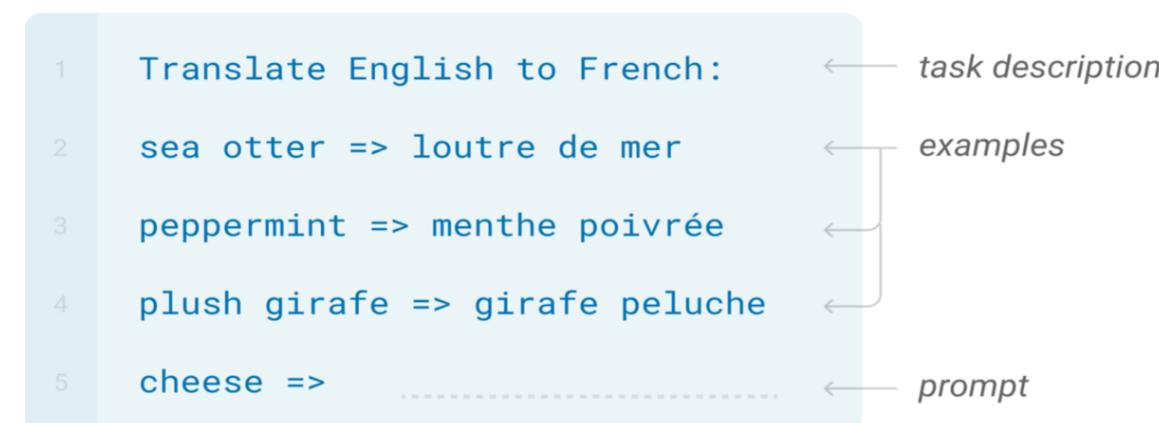
Observation: the perfect next-word predictor can be **prompted** to answer any question correctly

Idea: **in-context learning**

1. encode task instructions and data as a **context** sequence
2. make the FM generate the remainder of the sequence

**Few-shot**

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Enables learning with target data  
**without updating the weights at all!**

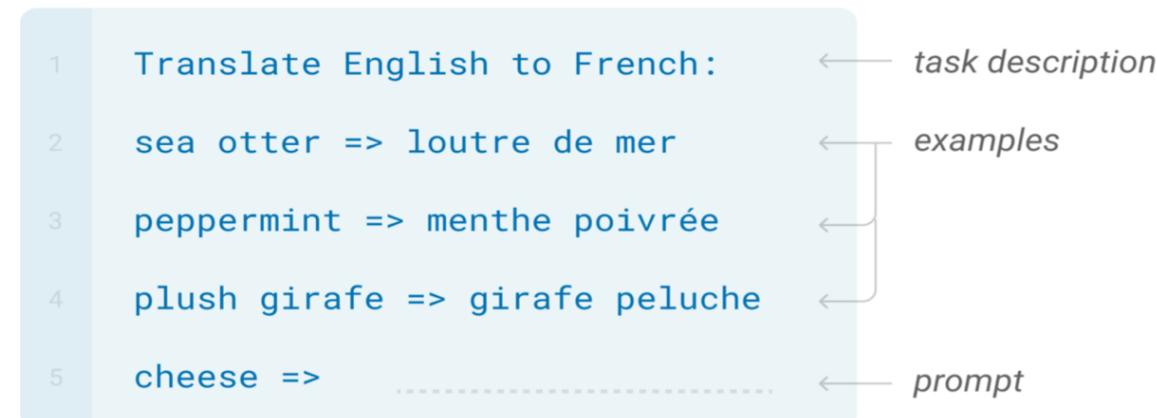
# Opportunity: In-context learning

## Usefulness:

- handles tasks with diverse input and output structures
- directly incorporates pretraining knowledge
- enables multi-step reasoning

### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.





# Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala