CS 760: Machine Learning
Transfer learning

Misha Khodak

University of Wisconsin-Madison

8 December 2025

Announcements

Exam: 5:05 — 7:05 PM on Dec 16" in Sewell 5208

ecovers all course topics, with emphasis on second half
*otherwise same policies as midterm

*\WWhat should we review on Wednesday?
neural network basics

CNNs

RNNs, Transformers, LMs

generative models

learning theory

kernel methods

reinforcement learning

data-efficient learning

ONOUnkEWNE

Outline

*Transfer learning
*motivations, basic approaches, self-supervised learning

*Learning across multiple tasks
*setups, multi-task methods, meta-learning methods

*Foundation models
e overview, fine-tuning, in-context learning

Outline

*Transfer learning
*motivations, basic approaches, self-supervised learning

Dealing with low-data scenarios

Numerous approaches (too many to cover in detail)
*which one to take is highly application-dependent
*can construct a basic taxonomy:

less-than-full supervision transfer learning
* do more with less (labeled data) * do more with more (0.0.d. data)
* |ast week’s lecture * today’s lecture

semi- . weakly-
active :
. supervised
learning :
learning

multi-task foundation

learning

supervised
learning

models

Transfer learning

We typically assume labeled points (x1,v1), ..., (X;,, V) ~ D
drawn i.i.d. from the target distribution D

What if:

*n is too small to learn a sufficiently expressive model

*but we have access to more data (x{, y1), ..., (xpn, yn) ~ D’
from a related distribution D'?

Using data from a related distribution to improve performance
on the target distribution is transfer learning

Canonical example: ImageNet

standard vision pipeline:

1.

3.

collect a bunch of data
for your target task

download a large CNN
(e.g. a big ResNet)
trained on ImageNet
and replace its
classification layer

then

either pass its features
to a simpler model

or fine-tune it directly
on the task

a few
Class Class8 | Cass Class10 Class1 Class12 d ata poi ntS
..... for a few
Ay

Arun et al. J. Phytopathology.

¥ datapoints

= foreach of a

¢ thousand
classes

Approach |: feature extraction

d-dimensional learned

representation 1000 class

1000 logits probabilities

F 21000

: linear laye. .
many convolutions and

pooling layers ‘ ‘ project to a [

thousar'’

“frozen” layers
* not updated on target task data

* used only to extract features 18 logits 18 CI?TC'S.
d % 18 probabilities
linear
randomly initialized layers layer to ') soft
* trained on target task data project max

e can be more complex —— to 18

than a linear classifier logits
(e.g. a shallow MLP)

Approach II: fine-tuning

d-dimensional learned

representation 1000 class

1000 logits probabilities

21000
linear laye. .

‘ ‘ project to a [

many convolutions and

pooling layers ‘

“warm-started” layers
e updated on target task data

thousar'’

* typically much smaller learning rate 18 logits 18 c|§§§
d % 18 probabilities
linear
randomly initialized layers layer to ') soft
* trained on target task data project max

e can be more complex —— to 18

than a linear classifier logits
(e.g. a shallow MLP)

Transfer learning

*Transfer learning has been hugely successful
*Numerous other potential approaches

*Big remaining question: what if the related data lacks labels?

* we chop off the classification layers anyway, so we just need to
extract some representation of the data

 can do so using classical unsupervised learning (PCA, etc.)

*or we can do it with self-supervised learning (SSL)

Self Supervision: Basic Idea

*Use domain-specific properties of the inputs (x) to create
pseudo-labels (y) corresponding to “pretext tasks”

*Ex: predict stuff you already know

b l
]

o

b 4

image completion rotation prediction “‘ligsaw puzzle” colorization
Stanford CS 231n

Self Supervision: Using the Representations

*Don’t care specifically about our performance on pretext task
*Use the learned network as a feature extractor

*Once we have labels for a particular task, train on a small
amount of data

e ™
feature -

Vs ™~ / \ I./’F ™
:> self-supervised [> extractor = supervised — evaluate on the ‘
learning ' (e.g.,a learning target task |
\) -/. '\.- - - o

convnet))

lots of
unlabeled

e.g. classification, detection
data
small amount of

A {{ - bird
labeled data on

the target task conv v Imear
classifier

Stanford CS 231n

Self Supervision: Pretext Tasks

*Lots of options for pretext tasks
* Predict rotations
*Coloring
* Fill in missing portions of the image
* Solve puzzles

Noroozi and Favaro

Contrastive Learning: Basics

*Type of SSL where we learn representations such that:
* transformed versions of single sample are similar
e different samples are different

?
same object .

Stanford CS 231n

N g >
different object

Contrastive Learning: Motivation

*Goal:

* Keep together related representations, push unrelated apart.
* The InfoNCE loss function:

L =—-Fx

Van den Oord et al., 2018

exp(s(f(x), f(zT))

log

exp(s(f(z),

t

Flat)) + 32500 exp(s(f (@), f(27)
t

P Positive sample: Negative sample S
keep close keep far

Self-supervised learning: Summary

Procedure:
*pretrain a network to do well on a pretext task

*transfer the network to your target task . ChatGPT

Most well-known example: predict-the-next-word

Difference with regular (un)supervised training not obvious:
*sometimes pretext tasks are useful (e.g. autocomplete)
*sometimes unsupervised methods are implicitly SSL (e.g. GloVe)

Outline

*Learning across multiple tasks
*setups, multi-task methods, meta-learning methods

Transfer learning from multiple tasks

What if instead of one related task with lots of data we have
many related tasks with similar amounts of data?

Many setups: (er,1,¥1,1)s 0 (P10 Y1,) ~ D1
*multi-task learning

*meta-learning

econtinual learning (%61, ¥61)s o (Xemps Veme) ~ Dy
elifelong learning

We'll cover two of them: multi-task and meta-learning

Multi-task learning

Setup: fixed number of related tasks

Examples:

*predict the weather in nearby cities
ediagnose patients in different hospitals

4
f

Key challenges: T
*how to encode task-relationships? e,
*how to avoid conflicting tasks? ==

One common approach: Layer-sharing

e jointly train a multi-output network Shared Task-specific

Layers Layers

e assumes existence of a good ho o, B Task 1
shared representation /1 0 /

e example objective: X | = |~ —’f > | Task 2
6

T N¢ 5

2 ()’tz fo, heo (xt 1))) f | || || Task 3

t=1i=1 93

Thung & Wee. Multimedia Tools & Applications

Another common approach: Regularization

*jointly train separate networks
*regularize parameters to be closer together
*example objective:

T ng T T
ZZ Yt,i_fet(xtl +Z Z /1t,u||9t_3u”2
t=11i=1 t=1u=t+1

*allows hand-encoding of task-relationships via the
regularization strengths A, ,,

Meta-learning

X1 1, , e, WX , ~ D
Setup: (11 yl'l) (1,n, ylﬂh) 1

*meta-training dataset of related tasks

*at meta-test time we get a new
dataset (xq, V1), ..., (X5, V) ~ D (71, ¥7,1), o (X100 Y107) ~ Dr

*our goal: low expected error on
unseen examples (x,y) ~ D

Applications:

e auto-complete for new cellphone users (federated learning)
* image classification with limited labels (few-shot learning)

* robots in related environments (meta-RL)

Why is it called meta-learning?

set of all possible
training datasets

—

*we are learning a learning algorithm A: 24X 5 @

\ \

space of model
parameters 6 € ©

*no longer learning a model fg: X —» Y

*thus also called learning-to-learn
parameters ¢ of the

learning algorithm A

Example: meta-learn an initialization ¢ for gradient descent

Meta-learning (one step) gradient descent

MAML approach: Ay ({(x;, yi)}iz1) = ¢ — aV Xim1 (i, fo (X))
*meta-training objective: \ X
\

argmlnz: 2 (ytl {(x“yt l}nt/Z)(xt 1))

=1i=n¢/2+1

*at meta-test time:
0 —¢d—aVy Xio (v fo(x))

*make predictions using fg (x) Finn et al.

Outline

*Foundation models
e overview, fine-tuning, in-context learning

What is a foundation model?

1. take a massive neural network
* older / specialized models had 100M+ params
e |atest models have 1-100 billion or more

2. pretrain it on Internet-scale data
3. (optionally) post-train on large-scaled supervised data

4. use it for transfer learning for many different tasks

Early history

2017: BERT model (340M)

*Transformer trained on masked
language modeling (pretext task)

*“solved” transfer learning for
language

2017-present: GPT series

*Transformer trained on next-word

prediction

first observation of in-context
learning capabilities in GPT-3

*ChatGPT post-trained on GPT-3.5

you has the highest probability you,they, your..

[CLS] how are doing today [SEP]

N

BERT masked language model i

N L I

[CLS] how are doing today [SEP]

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe => girafe peluche

cheese => prompt

Post-ChatGPT

*many models with varying capabilities

The AI ecosystem

e Aishwarya Srinivasan DONT FORGET TO SAVE

*closed-source models typically e
outperform open-source models | .2, .2, e B0

hatGPT MidJourney Perplexity Notion Al Al copilots

@

{3

Tools @

Qe) W&B

*new challenges: e o i men
* massive compute costs e

. . (" rameworks
* privacy, security, safety 6 @
K PyTorch LangChain LangGraph CrewAl

4 Inference Providers

*new opportunities: N |
. i n -co ntext Iea rn i ng \._ Fireworks Al Huggmg Face AWS Bedrock GOOgI& Vertex

o . Foundation Model Builders D
reasonlng @ !:Ifmg \%Claude

OpenAl (GPT) Meta (Llama) Anthropic (Claude)

Challenge: Compute costs

pretraining FMs limited to large orgs
*one training run requires 100s of GPUs

*need many training runs (to tune) and
engineers (to manage training)

even fine-tuning is hard:
*SGD on GPT-3 (175B) uses 1.2TB VRAM

*NVIDIA GPUs max out below 200GB
ewhat can we do?

Model

&

A100 GPU accelerator
(PCle card)!##214431

H100 GPU accelerator
(PCle card)***

H100 GPU accelerator
(SXM card)

H200 GPU accelerator
(PCle card)*+

H200 GPU accelerator
(SXM card)

H800 GPU accelerator
(SXM card)

L40 GPU
accelerator %'l

L4 GPU
accelerator' 17314541

B100 GPU
accelerator'*?7!

B200 GPU
accelerator 3!

Microarchitecture

“*

Hopper

Ada
Lovelace

Blackwell

Launch

March 22,
202214481

November
18
2024142

March 21,

October
13, 2022

March 21,
20231458

November
2024

2024

Core

-

1= GA100-
B883AA-A1

1=
GH100147]

1= GH100

1< GH100

1x
AD104!

2x GB102

2x GB100

Core

clock | Core config
(MHz) 5]

a Py
+
0T 1£.432

-160:432:0
(108)

14592:456
— :24:456:0
(114)

16896:528
24:528:0
(132)

18176:568

— 192:568:142

(142)

T424:240
— 80:240:0
(60)

2x
16896:528
24:528:0
(132)

Shaders

Base
clock
(MHz)

765

10685

1085

1365

1580

1085

795

1665

1665

Py
+

1755
CUDA
1620
TC

1980
CuDA
1830
TC

1785

1980

1755

2490

2040

1837

1837

type

Py
+

HBM2

HBMZE

HBM3

HBM3E

HBM3E

HBM3

GDDR6

GDDR6

HBM3E

HBM3E

widt
(bit)

e

512

512

512

512

512

512

364

192

2=
409

2=
409

Memory
—

Size | [Clock | Bandwidth

(GB) | [MTIs) | (GBIs)
LN% * *
o |[|1215 | 1885
80

80 ||1000 | 2039
64
or

80 ||1500 | 3352
or

95

141 | [1313 | 3360
141 | [1313 | 3360
80 ||1313 | 3380
48 ||2250 | 864
24 ||1563 | 300
2 oo00 | 2x4100
96)

2x

2000 | 2= 4100

9

Parameter-efficient fine-tuning (PEFT)

Most popular approach: LoRA

1. take an FM with pretrained
weight matrices Wy, ..., Wy

2. for each matrix W; € R&*k:

*set r < min{d, k} and initialize
fine-tuning weights:
*B, e R**"toB; =0
A; € R™ to A; ~ Gaussian
*replace W; by W; + B;A;
3. fine-tune on target task but

*freeze W;
*update B; and A;

WiX + BiAiX

sl B ;

t

A

How does LoRA save memory?

*original weights W; € R4*k
have dk trainable params

*new weights B; € R**" and
A; € R"™* have (d + k)r

*typical values in GPT-3 175B:
.d ~ k ~ 104 = WiX + BiAiX
r <10

A

sl B ;

t

«> 10*x fewer trainable params!

*3x less fine-tuning VRAM

e
-
wu

Does LoRA affect accuracy?

o
q
o

Yes, it constrains weights of the
fine-tuned model:

Validation Accuracy
o o
[#)] [o)]
o u

*fine-tuned matrices W; + B;A; at

most a rank r < min{d, k} update

away from pretrained matrices W; .
*LoRA = Low-Rank Adaptation o
*in practice do not need large r for 085

good performance 0.84

*learning theory intuition?

WikiSQL

Method

e Fine-Tune
PrefixEmbed
PrefixLayer
Adapter(H)
LoRA

7 8 9 10 11
log.p # Trainable Parameters

MultiNLI-matched

7 8 9 10 11
log.o # Trainable Parameters

Hu et al.

Opportunity: In-context learning

Observation: the perfect next-word
predictor can be prompted to
answer any qguestion correctly

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

|dea: in-context learning

1. enCOde taSk instructlons and Translate English to French: task description
data as a context sequence sea otter => loutre de mer examples

eppermint => menthe poivrée
2. make the FM generate the e e
remainder of the sequence

plush girafe => girafe peluche

cheese => prompt

Enables learning with target data
without updating the weights at all!

Brown et al.

Opportunity: In-context learning

Usefulness:

*handles tasks with diverse
input and output structures

edirectly incorporates
pretraining knowledge

*enables multi-step reasoning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Brown et al.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala

	Slide 1: CS 760: Machine Learning Transfer learning
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Dealing with low-data scenarios
	Slide 6: Transfer learning
	Slide 7: Canonical example: ImageNet
	Slide 8: Approach I: feature extraction
	Slide 9: Approach II: fine-tuning
	Slide 10: Transfer learning
	Slide 11: Self Supervision: Basic Idea
	Slide 12: Self Supervision: Using the Representations
	Slide 13: Self Supervision: Pretext Tasks
	Slide 14: Contrastive Learning: Basics
	Slide 15: Contrastive Learning: Motivation
	Slide 16: Self-supervised learning: Summary
	Slide 17: Outline
	Slide 18: Transfer learning from multiple tasks
	Slide 19: Multi-task learning
	Slide 20: One common approach: Layer-sharing
	Slide 21: Another common approach: Regularization
	Slide 22: Meta-learning
	Slide 23: Why is it called meta-learning?
	Slide 24: Meta-learning (one step) gradient descent
	Slide 25: Outline
	Slide 26: What is a foundation model?
	Slide 27: Early history
	Slide 28: Post-ChatGPT
	Slide 29: Challenge: Compute costs
	Slide 30: Parameter-efficient fine-tuning (PEFT)
	Slide 31: How does LoRA save memory?
	Slide 32: Does LoRA affect accuracy?
	Slide 33: Opportunity: In-context learning
	Slide 34: Opportunity: In-context learning
	Slide 35: Thanks Everyone!

