
CS 760: Machine Learning
Transfer learning

Misha Khodak

University of Wisconsin-Madison

8 December 2025

Announcements

•Exam: 5:05 – 7:05 PM on Dec 16th in Sewell 5208
•covers all course topics, with emphasis on second half
•otherwise same policies as midterm

•What should we review on Wednesday?
1. neural network basics
2. CNNs
3. RNNs, Transformers, LMs
4. generative models
5. learning theory
6. kernel methods
7. reinforcement learning
8. data-efficient learning

Outline

•Transfer learning
•motivations, basic approaches, self-supervised learning

•Learning across multiple tasks
•setups, multi-task methods, meta-learning methods

•Foundation models
• overview, fine-tuning, in-context learning

Outline

•Transfer learning
•motivations, basic approaches, self-supervised learning

•Learning across multiple tasks
•setups, multi-task methods, meta-learning methods

•Foundation models
• overview, fine-tuning, in-context learning

Dealing with low-data scenarios

Numerous approaches (too many to cover in detail)

•which one to take is highly application-dependent

•can construct a basic taxonomy:

less-than-full supervision
• do more with less (labeled data)
• last week’s lecture

semi-
supervised

learning

active
learning

weakly-
supervised

learning

transfer learning
• do more with more (o.o.d. data)
• today’s lecture

multi-task
learning

meta
learning

foundation
models

Transfer learning

We typically assume labeled points 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ∼ 𝐷
drawn i.i.d. from the target distribution 𝐷

What if:
•𝑛 is too small to learn a sufficiently expressive model
•but we have access to more data 𝑥1

′ , 𝑦1
′ , … , 𝑥𝑁

′ , 𝑦𝑁
′ ∼ 𝐷′

from a related distribution 𝐷′?

Using data from a related distribution to improve performance
on the target distribution is transfer learning

Canonical example: ImageNet

standard vision pipeline:

1. collect a bunch of data
for your target task

2. download a large CNN
(e.g. a big ResNet)
trained on ImageNet
and replace its
classification layer

3. then
I. either pass its features

to a simpler model
II. or fine-tune it directly

on the task

a few
datapoints
for a few
classes

Arun et al. J. Phytopathology.

thousands of
datapoints

for each of a
thousand

classes
Kaggle

𝑑 × 18
linear

layer to
project
to 18
logits

soft
max

18 logits
18 class

probabilities

Approach I: feature extraction

many convolutions and
pooling layers

𝑑 × 1000
linear layer to

project to a
thousand

logits

soft
max

𝑑-dimensional learned
representation

1000 logits
1000 class

probabilities
input
image

randomly initialized layers
• trained on target task data
• can be more complex

than a linear classifier
(e.g. a shallow MLP)

“frozen” layers
• not updated on target task data
• used only to extract features

Approach II: fine-tuning

many convolutions and
pooling layers

𝑑 × 1000
linear layer to

project to a
thousand

logits

soft
max

𝑑-dimensional learned
representation

1000 logits
1000 class

probabilities
input
image

𝑑 × 18
linear

layer to
project
to 18
logits

soft
max

18 logits
18 class

probabilities

“warm-started” layers
• updated on target task data
• typically much smaller learning rate

randomly initialized layers
• trained on target task data
• can be more complex

than a linear classifier
(e.g. a shallow MLP)

Transfer learning

•Transfer learning has been hugely successful

•Numerous other potential approaches

•Big remaining question: what if the related data lacks labels?

•we chop off the classification layers anyway, so we just need to
extract some representation of the data

• can do so using classical unsupervised learning (PCA, etc.)

•or we can do it with self-supervised learning (SSL)

Stanford CS 231n

Self Supervision: Basic Idea

•Use domain-specific properties of the inputs (𝑥) to create
pseudo-labels (𝑦) corresponding to “pretext tasks”

•Ex: predict stuff you already know

Self Supervision: Using the Representations

•Don’t care specifically about our performance on pretext task

•Use the learned network as a feature extractor

•Once we have labels for a particular task, train on a small
amount of data

Stanford CS 231n

Self Supervision: Pretext Tasks

•Lots of options for pretext tasks
•Predict rotations
•Coloring
•Fill in missing portions of the image
•Solve puzzles

Noroozi and Favaro

Contrastive Learning: Basics

•Type of SSL where we learn representations such that:
• transformed versions of single sample are similar
•different samples are different

Stanford CS 231n

Contrastive Learning: Motivation

•Goal:
•Keep together related representations, push unrelated apart.
•The InfoNCE loss function:

Positive sample:
keep close

Negative samples:
keep far

Van den Oord et al., 2018

Self-supervised learning: Summary

Procedure:

•pretrain a network to do well on a pretext task

•transfer the network to your target task

Most well-known example: predict-the-next-word

Difference with regular (un)supervised training not obvious:

•sometimes pretext tasks are useful (e.g. autocomplete)

•sometimes unsupervised methods are implicitly SSL (e.g. GloVe)

Outline

•Transfer learning
•motivations, basic approaches, self-supervised learning

•Learning across multiple tasks
•setups, multi-task methods, meta-learning methods

•Foundation models
• overview, fine-tuning, in-context learning

Transfer learning from multiple tasks

What if instead of one related task with lots of data we have
many related tasks with similar amounts of data?

Many setups:
•multi-task learning
•meta-learning
•continual learning
• lifelong learning
•…

We’ll cover two of them: multi-task and meta-learning

𝑥1,1, 𝑦1,1 , … , 𝑥1,𝑛1
, 𝑦1,𝑛1

∼ 𝐷1

⋮

𝑥𝑡,1, 𝑦𝑡,1 , … , 𝑥𝑡,𝑛𝑡
, 𝑦𝑡,𝑛𝑡

∼ 𝐷𝑡

⋮

Multi-task learning

Setup: fixed number of related tasks

Examples:

•predict the weather in nearby cities

•diagnose patients in different hospitals

Key challenges:

•how to encode task-relationships?

•how to avoid conflicting tasks?

Fox6 (don’t worry, this isn’t the actual forecast…yet)

Thung & Wee. Multimedia Tools & Applications

One common approach: Layer-sharing

• jointly train a multi-output network

•assumes existence of a good
shared representation ℎ𝜃0

•example objective:

෍

𝑡=1

𝑇

෍

𝑖=1

𝑛𝑡

𝑦𝑡,𝑖 − 𝑓𝜃𝑡
ℎ𝜃0

𝑥𝑡,𝑖

2

𝑓𝜃1

𝑓𝜃3

𝑓𝜃2

ℎ𝜃0

Another common approach: Regularization

• jointly train separate networks

•regularize parameters to be closer together

•example objective:

෍

𝑡=1

𝑇

෍

𝑖=1

𝑛𝑡

𝑦𝑡,𝑖 − 𝑓𝜃𝑡
𝑥𝑡,𝑖

2
+ ෍

𝑡=1

𝑇

෍

𝑢=𝑡+1

𝑇

𝜆𝑡,𝑢 𝜃𝑡 − 𝜃𝑢
2

•allows hand-encoding of task-relationships via the
regularization strengths 𝜆𝑡,𝑢

Meta-learning

Setup:
•meta-training dataset of related tasks
•at meta-test time we get a new
dataset 𝑥1, 𝑦1 , … , 𝑥𝑛 , 𝑦𝑛 ∼ 𝐷
•our goal: low expected error on
unseen examples 𝑥, 𝑦 ∼ 𝐷

𝑥1,1, 𝑦1,1 , … , 𝑥1,𝑛1
, 𝑦1,𝑛1

∼ 𝐷1

⋮

𝑥𝑇,1, 𝑦𝑇,1 , … , 𝑥𝑇,𝑛𝑇
, 𝑦𝑇,𝑛𝑇

∼ 𝐷𝑇

Applications:
• auto-complete for new cellphone users (federated learning)
• image classification with limited labels (few-shot learning)
• robots in related environments (meta-RL)

Why is it called meta-learning?

•no longer learning a model 𝑓𝜃: 𝑋 ↦ 𝑌

•we are learning a learning algorithm 𝐴𝜙: 2𝑋×𝑌 ↦ Θ

•thus also called learning-to-learn

Example: meta-learn an initialization 𝜙 for gradient descent

parameters 𝜙 of the
learning algorithm 𝐴𝜙

set of all possible
training datasets

space of model
parameters 𝜃 ∈ Θ

Meta-learning (one step) gradient descent

MAML approach: 𝐴𝜙 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 = 𝜙 − 𝛼∇𝜙 σ𝑖=1

𝑛 ℓ(𝑦𝑖 , 𝑓𝜙 𝑥𝑖)

•meta-training objective:

argmin
𝜙

෍

𝑡=1

𝑇

෍

𝑖= Τ𝑛𝑡 2+1

𝑛𝑡

ℓ 𝑦𝑡,𝑖 , 𝑓
𝐴𝜙 (𝑥𝑡,𝑖,𝑦𝑡,𝑖 𝑖=1

Τ𝑛𝑡 2 𝑥𝑡,𝑖

•at meta-test time:
•𝜃 ← 𝜙 − 𝛼∇𝜙 σ𝑖=1

𝑛 ℓ𝑖(𝑦𝑖 , 𝑓𝜙 𝑥𝑖)

•make predictions using 𝑓𝜃(𝑥) Finn et al.
ICML 2018

Outline

•Transfer learning
•motivations, basic approaches, self-supervised learning

•Learning across multiple tasks
•setups, multi-task methods, meta-learning methods

•Foundation models
• overview, fine-tuning, in-context learning

What is a foundation model?

1. take a massive neural network
• older / specialized models had 100M+ params
• latest models have 1-100 billion or more

2. pretrain it on Internet-scale data

3. (optionally) post-train on large-scaled supervised data

4. use it for transfer learning for many different tasks

Early history

2017: BERT model (340M)
•Transformer trained on masked
language modeling (pretext task)
•“solved” transfer learning for
language

2017-present: GPT series
•Transformer trained on next-word
prediction
•first observation of in-context
learning capabilities in GPT-3
•ChatGPT post-trained on GPT-3.5

Post-ChatGPT

•many models with varying capabilities

•closed-source models typically
outperform open-source models

•new challenges:
•massive compute costs
•privacy, security, safety

•new opportunities:
• in-context learning
• reasoning

Challenge: Compute costs

pretraining FMs limited to large orgs

•one training run requires 100s of GPUs

•need many training runs (to tune) and
engineers (to manage training)

even fine-tuning is hard:

•SGD on GPT-3 (175B) uses 1.2TB VRAM

•NVIDIA GPUs max out below 200GB

•what can we do?

Parameter-efficient fine-tuning (PEFT)

Most popular approach: LoRA

1. take an FM with pretrained
weight matrices 𝐖1, … , 𝐖𝑁

2. for each matrix 𝐖𝑖 ∈ ℝ𝑑×𝑘:
• set 𝑟 ≪ min 𝑑, 𝑘 and initialize

fine-tuning weights:
• 𝐁𝑖 ∈ ℝ𝑑×𝑟 to 𝐁𝑖 = 0

• 𝐀𝑖 ∈ ℝ𝑟×𝑘 to 𝐀𝑖 ∼ Gaussian

• replace 𝐖𝑖 by 𝐖𝑖 + 𝐁𝑖𝐀𝑖

3. fine-tune on target task but
• freeze 𝐖𝑖
•update 𝐁𝑖 and 𝐀𝑖

𝐖𝑖
𝐱𝑓𝑖 𝐱 = 𝐖𝑖𝐱 =

𝐁𝑖

𝐀𝑖

𝐖𝑖
𝐱 𝐱= +

= 𝐖𝑖𝐱 + 𝐁𝑖𝐀𝑖𝐱

How does LoRA save memory?

•original weights 𝐖𝑖 ∈ ℝ𝑑×𝑘
have 𝑑𝑘 trainable params

•new weights 𝐁𝑖 ∈ ℝ𝑑×𝑟 and
𝐀𝑖 ∈ ℝ𝑟×𝑘 have (d + k)𝑟

•typical values in GPT-3 175B:
•𝑑 ≈ 𝑘 ≈ 104

•𝑟 ≤ 10

•≥ 104x fewer trainable params!

•3x less fine-tuning VRAM

𝐖𝑖

𝐁𝑖

𝐀𝑖

𝐖𝑖
𝐱

𝐱

𝐱

𝑓𝑖 𝐱 = 𝐖𝑖𝐱 =

= +

= 𝐖𝑖𝐱 + 𝐁𝑖𝐀𝑖𝐱

Does LoRA affect accuracy?

Yes, it constrains weights of the
fine-tuned model:

•fine-tuned matrices 𝐖𝑖 + 𝐁𝑖𝐀𝑖 at
most a rank 𝑟 ≪ min 𝑑, 𝑘 update
away from pretrained matrices 𝐖𝑖

•LoRA = Low-Rank Adaptation

• in practice do not need large 𝑟 for
good performance

• learning theory intuition?
Hu et al.

Opportunity: In-context learning

Observation: the perfect next-word
predictor can be prompted to
answer any question correctly

Idea: in-context learning
1. encode task instructions and

data as a context sequence
2. make the FM generate the

remainder of the sequence

Enables learning with target data
without updating the weights at all!

Brown et al.

Opportunity: In-context learning

Usefulness:

•handles tasks with diverse
input and output structures

•directly incorporates
pretraining knowledge

•enables multi-step reasoning

Brown et al.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala

	Slide 1: CS 760: Machine Learning Transfer learning
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Dealing with low-data scenarios
	Slide 6: Transfer learning
	Slide 7: Canonical example: ImageNet
	Slide 8: Approach I: feature extraction
	Slide 9: Approach II: fine-tuning
	Slide 10: Transfer learning
	Slide 11: Self Supervision: Basic Idea
	Slide 12: Self Supervision: Using the Representations
	Slide 13: Self Supervision: Pretext Tasks
	Slide 14: Contrastive Learning: Basics
	Slide 15: Contrastive Learning: Motivation
	Slide 16: Self-supervised learning: Summary
	Slide 17: Outline
	Slide 18: Transfer learning from multiple tasks
	Slide 19: Multi-task learning
	Slide 20: One common approach: Layer-sharing
	Slide 21: Another common approach: Regularization
	Slide 22: Meta-learning
	Slide 23: Why is it called meta-learning?
	Slide 24: Meta-learning (one step) gradient descent
	Slide 25: Outline
	Slide 26: What is a foundation model?
	Slide 27: Early history
	Slide 28: Post-ChatGPT
	Slide 29: Challenge: Compute costs
	Slide 30: Parameter-efficient fine-tuning (PEFT)
	Slide 31: How does LoRA save memory?
	Slide 32: Does LoRA affect accuracy?
	Slide 33: Opportunity: In-context learning
	Slide 34: Opportunity: In-context learning
	Slide 35: Thanks Everyone!

