
CS 760: Machine Learning
Final review

Misha Khodak

University of Wisconsin-Madison

10 December 2025

Announcements

•Exam: 5:05 – 7:05 PM on Dec 16th in Sewell 5208
•covers all course topics, with emphasis on second half
•otherwise same policies as midterm

•Reminder to submit course evaluations

Outline

Generative models

Learning theory

Kernel methods

Reinforcement learning

Outline

Generative models

Learning theory

Kernel methods

Reinforcement learning

Goal: Learn a Distribution

•Want to estimate pdata from samples

•Desired abilities:
• Inference: compute p(x) for some x
•Sampling: obtain a sample from p(x)

Goal: Learn a Distribution

•Want to estimate pdata from samples

•One way: build a histogram:

•Bin data space into k groups.
•Estimate p1, p2, …, pk

•Train this model:
•Count times bin i appears in dataset

Histograms: Inference & Samples

•Inference: check our estimate of pi

•Sampling: straightforward, select bin 𝑖 with probability 𝑝𝑖,
then select uniformly from bin 𝑖.

•But …
• inefficient in high dimensions

Parametrizing Distributions

•Don’t store each probability, store pθ(x)

•One approach: likelihood-based
•We know how to train with maximum likelihood

Parametrizing Distributions

•One approach: likelihood-based
•We know how to train with maximum likelihood

•Then, train with SGD

• Just need to make some choices for pθ(x)
•For example, recall Gaussian mixture models.
•But many types of data have more complex underlying

distributions.

Parametrizing Distributions: Autoregressive models

•e.g. recurrent neural networks, transformers.

Flow Models

•One way to specify pθ(x)

•Use a latent variable z with a “simple” (e.g Gaussian)
distribution.

•Then use a “complex” transformation, 𝑥 = 𝑓𝜃(𝑧).

Flow Models

• We will need to compute the inverse transformation and
take its derivative as well (for training).

• So compose multiple “simple” transformations

Flow Models

•Transform a simple distribution to a complex one via a chain
of invertible transformations (the “flow”)

image from Lilian Weng

Flow Models: How to sample?

•Sample from 𝑧 (the latent variable)---has a simple
distribution that lets us do it: Gaussian, uniform, etc.

•Then run the sample 𝑧 through the flow to get a sample x

Flows: Transformations

•What kind of f transformations should we use?

•Many choices:
•Affine: f(x) = A-1(x - b)
•Elementwise: f(x1, …, xd) = (f(x1), …, f(xd))
•Splines

•Desirable properties:
• Invertible
•Differentiable

GANs: Generative Adversarial Networks

•So far we’ve been modeling the
density…
•What if we just want to get high-quality

samples?

•GANs do this.
•Think of art forgery
• Left: original
•Right: forged version
•Two-player game:

•Generator wants to pass off the
discriminator as an original

•Discriminator wants to distinguish
forgery from original

GANs: Basic Setup

•Let’s set up networks that implement this idea:
•Discriminator network
•Generator network

image from Stanford CS231n / Emily Denton

GAN Training: Discriminator

•How to train these networks? Two sets of parameters to
learn: θd (discriminator) and θg (generator)

•Let’s fix the generator. What should the discriminator do?
•Distinguish fake and real data: binary classification.
•Use the cross-entropy loss, we get

Real data, want
to classify 1

Fake data, want
to classify 0

GAN Training: Generator & Discriminator

•How to train these networks? Two sets of parameters to
learn: θd (discriminator) and θg (generator)

•This makes the discriminator better, but also want to make
the generator more capable of fooling it:
•Minimax game! Train jointly.

Real data, want
to classify 1

Fake data, want
to classify 0

GAN Training: Alternating Training

•So we have an optimization goal:

•Alternate training:
•Gradient ascent: fix generator, make the discriminator better:

•Gradient descent: fix discriminator, make the generator better

GAN Training: Issues

•Training often not stable

•Many tricks to help with this:
•Replace the generator training with

•Better gradient shape
•Choose number of alternating steps carefully

•Can still be challenging.

Outline

Generative models

Learning theory

Kernel methods

Reinforcement learning

PAC learning

Formalizes learning task while allowing for imperfect learning due
to randomness / approximation (parameterized via 𝛿 and 𝜀)

Inconsistent case guarantee for a finite hypothesis class 𝐻:

w.p. ≥ 1 − 𝛿, 𝑒𝑟𝑟 ℎ ≤ ෞ𝑒𝑟𝑟 ℎ +
1

2𝑚
log

2 𝐻

𝛿
 ∀ ℎ ∈ 𝐻

What if the hypothesis space is infinite? Can we still learn?
•linear models
•neural networks
•…

𝑒𝑟𝑟 ℎ ≤ ෞ𝑒𝑟𝑟 ℎ +
1

2𝑚
log

2 𝐻

𝛿

Infinite hypothesis classes

Most practical learning algorithms operate over infinite
hypothesis classes

Basic PAC results give infinite sample complexity for 𝐻 = ∞

Need a different way to quantify the capacity of the class

The Vapnik-Chervonenkis (VC) dimension does this by
measuring how easy it is for function in 𝐻 to fit arbitrary labels

Getting started: Shattering

Hypothesis space 𝐻 shatters a set of points 𝑆 = 𝑥1, … , 𝑥𝑘 ∈ 𝑋
if for every possible labeling 𝑦1, … , 𝑦𝑘 ∈ {0,1} of 𝑆 there exists
a function ℎ ∈ 𝐻 such that produces that labeling, i.e.

ℎ 𝑥1 = 𝑦1, … , ℎ 𝑥𝑘 = 𝑦𝑘

Demonstrates that 𝐻 is expressive enough to make arbitrary
distinctions between these a set of 𝑘 points.

Shattering example: Lines in 2D

Hypotheses: 𝐻 = sign 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 : 𝑤1, 𝑤2, 𝑏 ∈ ℝ
Set of points: 𝑆 = { 0,0 , 1,0 , 0,1 }

23 possible labelings:
• (0,0,0)
• (0,0,1)
• (0,1,0)
• (0,1,1)
• (1,0,0)
• (1,0,1)
• (1,1,0)

• (1,1,1)

(1,0)(0,0)

(0,1)

VC dimension

The VC dimension of a hypothesis class 𝑯 is the size of the
largest set of points in 𝑋 that can be shattered by 𝐻

Two step procedure to show 𝑉𝐶 𝐻 = 𝑑:

1. find a set of points 𝑆 ⊂ 𝑋 of size 𝑆 = 𝑑 that is shattered by 𝐻
• i.e. find 𝑑 points that can be labeled arbitrarily by functions ℎ ∈ 𝐻
•easier step: only need to find one set of shattered points, NOT all

2. show that no set of 𝑑 + 1 points can be shattered

VC dimension example: Lines in 2D

Already demonstrated a set of three points that is shattered
by 𝐻, so 𝑉𝐶 𝐻 ≥ 3

Is there a set of four points shattered by 𝐻?

No! Thus 𝑉𝐶 𝐻 < 4, and so 𝑉𝐶 𝐻 = 3

Case 1: collinear points Case 2: one point
inside convex hull

Case 3: quadrilateral

What does the VC-dimension get us?

If 𝐻 has VC dimension 𝑑 and we draw 𝑚 samples i.i.d. from 𝐷
then with probability at least 1 − 𝛿 the following is true for all
ℎ ∈ 𝐻:

𝑒𝑟𝑟 ℎ ≤ ෞ𝑒𝑟𝑟 ℎ +
2𝑑

𝑚
log

𝑒𝑚

𝑑
+

1

𝑚
log

1

𝛿

VC-dimension roughly takes the place of log |𝐻| as a measure
of the capacity of the hypothesis class.

VC dimensions of other classes

Linear classifiers in ℝ𝑑: 𝑑 + 1

Finite hypothesis spaces: ≤ log |𝐻|

𝐿-layer ReLU networks with 𝑊 weights: 𝑂(𝑊𝐿 log 𝑊)

Implications of VC-dimension

Bound suggests roughly 𝑚 ≈ 𝑑 = 𝑉𝐶 𝐻 examples suffice to
start getting meaningful generalization

𝑒𝑟𝑟 ℎ ≤ ෞ𝑒𝑟𝑟 ℎ +
2𝑑

𝑚
log

𝑒𝑚

𝑑
+

1

𝑚
log

1

𝛿

•sometimes okay for linear models over sufficiently large data

•vacuous for modern deep nets (CNNs with millions of
weights do well on CIFAR-10, a dataset with <100K examples)

A different decomposition

The bias-variance decomposition separates the expected risk
of a model training procedure (learning algorithm) into

•bias: expected error of the learned model

•variance: sensitivity of the algorithm to the training set

•irreducible error: inherent noisiness of the problem

Statistical way of understanding the tradeoff between
approximation error (bias) and estimation error (variance)

Setup

Consider the task of learning a regression model given a
training set 𝐷 = (𝑥(1), 𝑦(1)), . . . , (𝑥(𝑛), 𝑦(𝑛)) ⊂ 𝑋 × 𝑌

Assume data is generated by the model 𝑦 = 𝑓 𝑥 + 𝜀 , where
𝜀 is a random variable with mean zero and variance 𝜎2.

We use 𝐷 to train a model መ𝑓: 𝑋 ↦ 𝑌

What is the expected MSE of መ𝑓 at a fixed point 𝑥 ∈ 𝑋?

Goal

Define the MSE at a fixed point 𝑥 ∈ 𝑋 as

𝑒𝑟𝑟𝑥
መ𝑓 = 𝔼𝑦|𝑥

መ𝑓 𝑥 − 𝑦
2

Related to the risk 𝑒𝑟𝑟 but at a fixed input point rather than
w.r.t. a joint distribution over (𝑥, 𝑦) pairs:

𝑒𝑟𝑟 መ𝑓 = 𝔼(𝑥,𝑦)
መ𝑓 𝑥 − 𝑦

2

Interested in expected MSE w.r.t. the randomness of drawing D:

𝔼𝐷 𝑒𝑟𝑟𝑥
መ𝑓 = 𝔼𝐷𝔼𝑦|𝑥

መ𝑓 𝑥 − 𝑦
2

The decomposition

𝔼𝐷 𝑒𝑟𝑟𝑥
መ𝑓

= 𝔼𝐷𝔼𝑦|𝑥
መ𝑓 𝑥 − 𝑦

2

= 𝔼𝐷
መ𝑓 𝑥 − 𝑓 𝑥

2
+ 𝔼𝐷

መ𝑓 𝑥 − 𝔼𝐷
መ𝑓 𝑥

2
+ 𝜎2

irreducible
errorbias: how far away is

the average prediction
from the true function?

variance: how different is
the prediction on average
across different samples
of the dataset?

Understanding bias: 𝔼𝐷
መ𝑓 𝑥 − 𝑓 𝑥

Large if መ𝑓 𝑥 is far away from 𝑓 𝑥 across different draws of
the dataset 𝐷

Indicates that the learning algorithm does not fit the data
well, i.e. is underfitting

Can be caused by:

•an inflexible model class, e.g. fitting a nonlinear 𝑓 with a
hypothesis class of linear models

•poor optimization, i.e. not minimizing the training error

Understanding variance: 𝔼𝐷
መ𝑓 𝑥 − 𝔼𝐷

መ𝑓 𝑥
2

Large if the prediction varies መ𝑓 𝑥 significantly across different
random draws of the dataset 𝐷

Indicates that the learning algorithm may be overfitting

Can be caused by using a high-capacity model that can adapt
to random noise rather than the true signal 𝑓

Example: Polynomial Interpolation

•1st order polynomial has high bias, low variance

•50th order polynomial has low bias, high variance

•4th order polynomial represents a good trade-off

The bias-variance tradeoff

The B-V decomposition models
predictive error as having two
controllable components

•more expressive learners reduce
bias but increase variance

• typically depicted via a capacity
vs. error plot suggesting an
optimal capacity

• can be extended beyond
regression to classification

The double descent phenomenon

In 2019, Belkin et al. identify double descent:

•generalization improves again after an interpolation threshold

•identified in kernel methods, random forests, and simple MLPs

•“benign overfitting”

So what now?

Traditional learning theory

•does not explain generalization in modern deep nets

•is not sufficiently predictive to guide the development of
neural network architectures or learning algorithms

Perhaps we can at least use optimization theory to develop
better training algorithms?

What does classical optimization theory
say about setting the step-size?

Recall that for 𝐿-smooth 𝑓 we had to use step size 𝜂 ≤ 1/𝐿

For quadratics, we can get away with 𝜂 ≤ 𝟐/𝐿

Why can’t we go higher?

So does classical optimization theory explain the
convergence of gradient descent for deep nets?

Why can’t we go higher?

•gradient descent oscillates if the curvature (𝐿) is too high!

•consider 𝑓 𝑥 =
1

2
𝐿𝑥2:

𝜂 < 2/𝐿 𝜂 > 2/𝐿

What about in deep learning?

Can measure local curvature or sharpness by taking the top
eigenvalue of the Hessian ∇2𝑓(𝑤) at parameter 𝑤:

𝐿 𝑤 = 𝜆1 ∇2𝑓 𝑤

According to classical optimization theory:

•if GD is at a point 𝑥 in the parameter space, it will start
behaving poorly if using a step-size 𝜂 > 2/𝐿(𝑤)

•since GD works on deep nets, this suggests it never reaches a
high-curvature point where 𝐿 𝑤 > 2/𝜂

Full gradient descent trajectory

•loss goes down non-monotonically

•sharpness equilibrates around 2/𝜂

What if we train at a different learning rate?

same network, smaller learning rate 𝜂 = 0.01

gradient descent trains at the edge of stability
(Cohen et al., 2021)

Expectation vs. reality

realityexpectation

This behavior is generic across neural networks

This behavior is generic across neural networks

What is the takeaway?

we always reach a point where the smoothness is too high for
the theory to be valid, i.e. where 𝜂 > 2/𝐿

•classical theory fails to explain performance of GD applied to
deep nets

•we can’t use it to pick learning rates!

Outline

Generative models

Learning theory

Kernel methods

Reinforcement learning

Linear classification revisited

𝑤⊤𝑥 + 𝑏 = 0

Class +1

Class -1

𝑤

𝑤⊤𝑥 + 𝑏 > 0

𝑤⊤𝑥 + 𝑏 < 0

Linear classification revisited

•Which classifier is better for generalization?

Class +1

Class -1

Linear classification revisited

• Intuitively, expect a large margin to generalize better

• In fact, this intuition can be made formal!

large margin

Class +1

Class -1

Recall: Distance to a hyperplane

𝑥 has distance
|𝑓𝑤,𝑏(𝑥)|

∥𝑤∥
to the hyperplane 𝑓𝑤,𝑏(𝑧) = 𝑤⊤𝑧 + 𝑏 = 0

𝑤

∥ 𝑤 ∥

𝑥𝑤

∥ 𝑤 ∥
𝑟

𝑥𝑝

𝑓𝑤,𝑏(𝑧) = 𝑤⊤𝑧 + 𝑏 = 0

Support Vector Machines

The SVM idea: maximize the “minimum margin” over all
training points:

Equivalently:

If 𝑓𝑤,𝑏 incorrect on some 𝑥𝑖, the margin is negative

𝛾(𝑤, 𝑏) = min
𝑖

|𝑓𝑤,𝑏(𝑥𝑖)|

𝑤

𝛾 𝑤, 𝑏 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖

𝑤
, 𝑦i ∈ {±1}

Support Vector Machines: Candidate Goal

Assume data is linearly separable (for now)

Objective idea 1: maximize margin over all training data points:

max
𝑤,𝑏

𝛾(𝑤, 𝑏) = max
𝑤,𝑏

min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖

𝑤
= max

𝑤,𝑏
min

𝑖

𝑦𝑖(𝑤⊤𝑥𝑖 + 𝑏)

𝑤

Minimax Optimization may be difficult to solve!
(recall optimization difficulties with GANs)

SVM: Simplified Goal

Observation: when (𝑤, 𝑏) scaled by a factor 𝑐 > 0, the
margin is unchanged

𝑦𝑖(𝑐𝑤𝑇𝑥𝑖 + 𝑐𝑏)

𝑐𝑤
=

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏)

𝑤

Let us consider a fixed scale such that

𝑦𝑖∗ 𝑤𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane

SVM: Simplified Goal

Let us consider a fixed scale such that

𝑦𝑖∗ 𝑤𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane

Then for all points 𝑖 we have 𝑦𝑖 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1 , and the inequality is
tight for at least one 𝑖

Then the margin over all training points is
|𝑤⊤𝑥𝑖∗+𝑏|

∥𝑤∥
=

1

∥𝑤∥

Writing the SVM as an optimization problem

Objective idea 2:

max
𝑤,𝑏

1

𝑤
 subject to 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Rewrite as

min
𝑤,𝑏

 1
2

𝑤 2 subject to 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Why?

• It’s a convex quadratic program, for which there are many efficient solvers.

•Can apply the kernel trick for nonlinear classification (coming up)

So why are they called support vector machines?

Instances where inequality is tight are the support vectors

• Lie on the margin boundary

• Solution does not change if we delete other instances!

support

vectors

Ben-Hur & Weston, Methods in Molecular Biology 2010

SVM: Soft Margin

What if our data isn’t linearly separable?

•Adjust approach by adding slack variables (denoted by 𝜁𝑖) to
tolerate errors

min
𝑤,𝑏,𝜁𝑖

 1
2 𝑤 2 + 𝐶 ෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀ 𝑖

•adds a hyperparameter 𝐶 ≥ 0
• trades-off maximizing margin vs. minimizing slack
• roughly an inverse regularization parameter

SVM: Soft Margin

min
𝑤,𝑏,𝜁𝑖

1
2 𝑤 2 + 𝐶 ෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀ 𝑖

Ben-Hur & Weston, Methods in Molecular Biology 2010

What if we have nonlinearly separated data?

Issue: sometimes the data is
well-separated but not in a
linear way

Solution: classify in a higher-
dimensional space using a
feature map

Issue: what if the dimension of
the space is too high to
represent efficiently?

Solution: reformulate the
optimization problem to only
depend on the similarity
between points

Ben-Hur & Weston, Methods in Molecular Biology 2010

𝐾 𝑥, 𝑥′ = 𝜙 𝑥 ⊤𝜙(𝑥′)

𝜙 𝑥 =

𝑥1
2

2𝑥1𝑥2

𝑥2
2

How do we use duality to reformulate SVMs?

Recall our SVM optimization problem:

min
𝑤,𝑏

 1
2

𝑤 2 subject to 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

To find its dual problem, we need to

•write out the Lagrangian: ℒ 𝑤, 𝑏, 𝜶 = 1

2
𝑤 2 − σ𝑖 𝛼𝑖[𝑦𝑖 𝑤𝑇𝑥𝑖 + 𝑏 − 1]

•minimize w.r.t. 𝑤, 𝑏: 𝑓dual 𝜶 = min
𝑤,𝑏

ℒ 𝑤, 𝑏, 𝜶

• the dual problem is then a maximization over the dual variables 𝜶 ≥ 0

SVM: Reformulation

To minimize ℒ 𝑤, 𝑏, 𝜶 = 1

2
𝑤 2 − σ𝑖 𝛼𝑖[𝑦𝑖 𝑤𝑇𝑥𝑖 + 𝑏 − 1] w.r.t 𝑤, 𝑏, take FOCs:

∇𝑤ℒ 𝑤, 𝑏, 𝜶 = 0 → 𝑤 = ෍

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

𝜕𝑏ℒ 𝑤, 𝑏, 𝜶 = 0 → 0 = ෍

𝑖

𝛼𝑖𝑦𝑖

Plug back into ℒ:

𝑓dual 𝜶 = 1
2

෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 − ෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 − 𝑏 ෍

𝑖

𝛼𝑖𝑦𝑖 + ෍

𝑖

𝛼𝑖

Yielding the dual SVM problem

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

SVM: Training with dual version

Simply take the training data (𝑥𝑖 , 𝑦𝑖) and find the dual variables
optimizing

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

• this is another convex quadratic program

• training only involves the input data via inner products 𝑥𝑖
⊤𝑥𝑗, not the

vectors 𝑥𝑖 themselves

SVM: Testing with dual version

Suppose we’ve found the dual variables 𝜶∗ optimizing

max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 subject to ෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

How do we make predictions on a new input point 𝑥 ∈ 𝑋?

1. compute the optimal primal variables:
• 𝑤∗ = σ𝑖 𝛼𝑖

∗𝑦𝑖𝑥𝑖 (from the first-order conditions)
• 𝑏∗ is more involved but can be computed

2. predict 1 if 𝑤∗⊤
𝑥 + 𝑏∗ = σ𝑖 𝛼𝑖

∗𝑦𝑖𝑥𝑖
⊤𝑥 + 𝑏∗ ≥ 0 and -1 otherwise

Prediction also depends on 𝑥, 𝑥𝑖 only through inner products!

data points 𝑥𝑖 with 𝛼𝑖
∗ > 0 lie on the margin boundary and are

called support vectors

•the solution 𝑤∗ is a linear combination of support vectors!

•the solution does not change if we delete points with 𝛼𝑖 = 0

support

vectors

SVM: Support vectors in the dual case

Review: General Model

We have an agent interacting with the world

•Agent receives a reward based on state of the world
•Goal: maximize reward / utility
•Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Markov Decision Process (MDP)

The formal mathematical model:
•State set S. Initial state s0. Action set A

•State transition model:
•Markov assumption: transition probability only depends on st and at, and

not previous actions or states.

•Reward function: r(st)

•Policy: action to take at a particular state.

Defining the Optimal Policy

For policy , expected utility over all possible state
sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = ෍

sequences

starting from 𝑠0

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?

•Solution

•Discount factor  between 0 and 1
•Set according to how important present is vs. future
•Note: has to be less than 1 for convergence

Bellman Equation

Let’s walk over one step for the value function:

discounted expected
future rewards

current state
reward

Value Iteration

Q: how do we find V*(s)?
•Why do we want it? Can use it to get the best policy

•Know: reward r(s), transition probability P(s’|s,a)

•Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Policy Iteration: Algorithm

Policy iteration. Algorithm
•Start with random policy π
•Use it to compute value function Vπ : a set of linear equations

• Improve the policy: obtain π’

•Repeat

Q-Learning (model-free RL)

What if we don’t know transition probability P(s’|s,a)?
•Need a way to learn to act without it.

•Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s

•Note: V*(s) = maxa Q(s,a)

•Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎
•But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
•Similar iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy 𝜋 to take actions 𝑎𝑡 = 𝜋(𝑠𝑡); this
policy is based on Q!

learning rate

Exploration Vs. Exploitation

General question!
•Exploration: take an action with unknown consequences
•Pros:

• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

•Cons:
• When exploring, not maximizing your utility
• Something bad might happen

•Exploitation: go with the best strategy found so far
•Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

•Cons:
• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?
•With some 0<ε<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

Beyond Tables

So far:

• Represent everything with a table

•Value function V: table size

•Q function: table size

•Too big to store in memory for many tasks
•Backgammon: 1020 states.
•Go: 3361 states

•Need some other approach

Beyond Tables: Function Approximation

Both V and Q are functions…

•Can approximate them with models, i.e. neural networks

•So we write

•New goal: find the weights

•Loss function:

Q-Function Approximation: Deep Models

•Note: quite popular to use deep models
•e.g. CNNs if the states are images (like in video games)

Mnih et al, "Human-level control through deep reinforcement learning"

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Jeremy Cohen

	Slide 1: CS 760: Machine Learning Final review
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Goal: Learn a Distribution
	Slide 6: Goal: Learn a Distribution
	Slide 7: Histograms: Inference & Samples
	Slide 8: Parametrizing Distributions
	Slide 9: Parametrizing Distributions
	Slide 10: Parametrizing Distributions: Autoregressive models
	Slide 11: Flow Models
	Slide 12: Flow Models
	Slide 13: Flow Models
	Slide 14: Flow Models: How to sample?
	Slide 15: Flows: Transformations
	Slide 16: GANs: Generative Adversarial Networks
	Slide 17: GANs: Basic Setup
	Slide 18: GAN Training: Discriminator
	Slide 19: GAN Training: Generator & Discriminator
	Slide 20: GAN Training: Alternating Training
	Slide 21: GAN Training: Issues
	Slide 22: Outline
	Slide 23: PAC learning
	Slide 24: Infinite hypothesis classes
	Slide 25: Getting started: Shattering
	Slide 26: Shattering example: Lines in 2D
	Slide 27: VC dimension
	Slide 28: VC dimension example: Lines in 2D
	Slide 29: What does the VC-dimension get us?
	Slide 30: VC dimensions of other classes
	Slide 31: Implications of VC-dimension
	Slide 32: A different decomposition
	Slide 33: Setup
	Slide 34: Goal
	Slide 35: The decomposition
	Slide 36: Understanding bias: double-struck cap E sub cap D , open bracket f hat open paren x , close paren close bracket minus f of x
	Slide 37: Understanding variance: double-struck cap E sub cap D , open paren f hat open second paren x , close second paren minus double-struck cap E sub cap D , open bracket f hat open second paren x , close second paren close bracket , close paren squar
	Slide 38: Example: Polynomial Interpolation
	Slide 39: The bias-variance tradeoff
	Slide 40: The double descent phenomenon
	Slide 41: So what now?
	Slide 42: What does classical optimization theory say about setting the step-size?
	Slide 43: So does classical optimization theory explain the convergence of gradient descent for deep nets?
	Slide 44: What about in deep learning?
	Slide 45: Full gradient descent trajectory
	Slide 46: What if we train at a different learning rate?
	Slide 47: Expectation vs. reality
	Slide 48: This behavior is generic across neural networks
	Slide 49: This behavior is generic across neural networks
	Slide 50: What is the takeaway?
	Slide 51: Outline
	Slide 52: Linear classification revisited
	Slide 53: Linear classification revisited
	Slide 54: Linear classification revisited
	Slide 55: Recall: Distance to a hyperplane
	Slide 56: Support Vector Machines
	Slide 57: Support Vector Machines: Candidate Goal
	Slide 58: SVM: Simplified Goal
	Slide 59: SVM: Simplified Goal
	Slide 60: Writing the SVM as an optimization problem
	Slide 61: So why are they called support vector machines?
	Slide 62: SVM: Soft Margin
	Slide 63: SVM: Soft Margin
	Slide 64: What if we have nonlinearly separated data?
	Slide 65: How do we use duality to reformulate SVMs?
	Slide 66: SVM: Reformulation
	Slide 67: SVM: Training with dual version
	Slide 68: SVM: Testing with dual version
	Slide 69: SVM: Support vectors in the dual case
	Slide 70: Review: General Model
	Slide 71: Markov Decision Process (MDP)
	Slide 72: Defining the Optimal Policy
	Slide 73: Discounting Rewards
	Slide 74: Bellman Equation
	Slide 75: Value Iteration
	Slide 76: Policy Iteration: Algorithm
	Slide 77: Q-Learning (model-free RL)
	Slide 78: Q-Learning Iteration
	Slide 79: Exploration Vs. Exploitation
	Slide 80: Q-Learning: Epsilon-Greedy Policy
	Slide 81: Beyond Tables
	Slide 82: Beyond Tables: Function Approximation
	Slide 83: Q-Function Approximation: Deep Models
	Slide 84: Thanks Everyone!

