CS 760: Machine Learning
Final review

Misha Khodak

University of Wisconsin-Madison

10 December 2025



Announcements

*Exam: 5:05 - 7:05 PM on Dec 16t in Sewell 5208

ecovers all course topics, with emphasis on second half
*otherwise same policies as midterm

‘Reminder to submit course evaluations



Outline

Generative models
Learning theory
Kernel methods

Reinforcement learning



Outline

Generative models



Goal: Learn a Distribution

*Want to estimate p,.,, from samples

x(l),x(z), . ,x(n) ~ Pdata ()

e Desired abilities:

* Inference: compute p(x) for some x
e Sampling: obtain a sample from p(x)



Goal: Learn a Distribution

*Want to estimate p,.,, from samples

(1) (2)

9 7”'733(”/) diata(aj)

*One way: build a histogram:

*Bin data space into k groups.
* Estimate p4, py, .., Py

006 1

Probability

* Count times bin i appears in dataset

002 1

(.01 1

0.00 -

(.05 1

*Train this model:

003 1

100




Histograms: Inference & Samples

*Inference: check our estimate of p,

*Sampling: straightforward, select bin i with probability p;,
then select uniformly from bin 1.

*But ...
* inefficient in high dimensions



Parametrizing Distributions
*Don’t store each probability, store pg4(x)

*One approach: likelihood-based

e We know how to train with maximum likelihood

1 .
in — — 1 (%)
arg min —— Z og po(z'")

1=1



Parametrizing Distributions

*One approach: likelihood-based

 We know how to train with maximum likelihood
*Then, train with SGD

* Just need to make some choices for pg(x)
* For example, recall Gaussian mixture models.

* But many types of data have more complex underlying
distributions.



Parametrizing Distributions: Autoregressive models

*e.g. recurrent neural networks, transformers.

!

L
& . &



Flow Models
*One way to specify pgy(x)

*Use a latent variable z with a “simple” (e.g Gaussian)
distribution.

*Then use a “complex” transformation, x = fg(2).



Flow Models

* We will need to compute the inverse transformation and
take its derivative as well (for training).

e So compose multiple “simple” transformations

z = fo,(fo,. (.- fo,(2)))
2= fo (fo. (- fo (2)))



Flow Models

*Transform a simple distribution to a complex one via a chain

of invertible transformations (the

fl (ZO) @ fz (Zi_l)
/,’ \\\

/ \ /
/ \ /
! \ 1
I j\ 1 |
\ : I \

“flow”)

@fi—i—l(zi)
// \\\
\
\

\ | / \ | >
\ / \ /
\\ ,// \\ ///

Zy ~~ pO(ZO) Zg ~ pz’(zi)

\——’

Zi ~ pK(ZK)

image from Lilian Weng



Flow Models: How to sample?

*Sample from z (the latent variable)---has a simple
distribution that lets us do it: Gaussian, uniform, etc.

*Then run the sample z through the flow to get a sample x

f1(2o) fz(zz 1) fiv1(zs)
‘ @ - ©@=E)- (o) =
N\ ,: z /\/\ /V\I[\/\

\ -
\ / /

Zy ~ po(Zo) Z; ~ pz(zz) Zg ~ pK(ZK)



Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
o Affine: f(x) = A1(x - b)
* Elementwise: f(xy, ..., Xg) = (f(xy), ..., f(X4))
*Splines

*Desirable properties:

e Invertible
e Differentiable



GANSs: Generative Adversarial Networks

*So far we’'ve been modeling the
density...

* What if we just want to get high-quality
samples?

*GANSs do this.
* Think of art forgery

e Left: original
* Right: forged version
* Two-player game:
* Generator wants to pass off the
discriminator as an original

* Discriminator wants to distinguish
forgery from original




GANSs: Basic Setup

*|Let’s set up networks that implement this idea:
* Discriminator network
* Generator network

Real or Fake

?

Discriminator Network

Fake Images | Real Images
(from generator) | | e (from training set)

Generator Network

Random noise

t

Vs

image from Stanford CS231n / Emily Denton



GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?

* Distinguish fake and real data: binary classification.
* Use the cross-entropy loss, we get

Irbax Ewdiata lOg DQd (:U) + EZNP(Z) log(l B ng (GQQ (Z)))
t T

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

r%in max L mopanta 108 Do, (T) + E,p(z) log(1l — Do, (Gy,(2)))
g d
| I

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Alternating Training

*So we have an optimization goal:

min max

0, 0Og

{:xr\"pdata log ng (aj) —I_

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max ]E'aijdata log ng (ZC)

04

{"zrvp(Z) log(l — DQd (GQQ (Z)))

= EZNp(Z) 10g(1 — Dy, (GQQ (Z)))

* Gradient descent: fix discriminator, make the generator better

minlE, ;) log(1 — Dy, (G, (2)))

Og



GAN Training: Issues

*Training often not stable

* Many tricks to help with this:
* Replace the generator training with

wmax . . p(z) log(Do, (Go, (2)))

* Better gradient shape
* Choose number of alternating steps carefully

*Can still be challenging.



Outline

Learning theory



PAC learning

Formalizes learning task while allowing for imperfect learning due
to randomness / approximation (parameterized via é and &)

Inconsistent case guarantee for a finite hypothesis class H:

w.p.=>1-—6,err(h) <eérr(h) - \/ logle|

VheH

What if the hypothesis space is infinite? Can we still learn?
*linear models
1 2|H|

*neural networks err(h) < érr(h) + |=—log
. \ 2m )




Infinite hypothesis classes

Most practical learning algorithms operate over infinite
hypothesis classes

Basic PAC results give infinite sample complexity for |[H| = oo
Need a different way to quantify the capacity of the class

The Vapnik-Chervonenkis (VC) dimension does this by
measuring how easy it is for function in H to fit arbitrary labels



Getting started: Shattering

Hypothesis space H shatters a set of points S = {x{, ..., x} € X

if for every possible labeling {y4, ..., ¥} € {0,1} of S there exists
a function h € H such that produces that labeling, i.e.

h(x) = yq, ..., h(x) = yy

Demonstrates that H is expressive enough to make arbitrary
distinctions between these a set of k points.



Shattering example: Lines in 2D

Hypotheses: H = {sign(w;x; + wy,x, + b): wy,w,, b € R}
Set of points: S = {(0,0), (1,0), (0,1)}

27 possible labelings: .
«(0,0,0) }
+(0,0,1) "
+(0,1,0) “
*(0,1,1)
*(1,0,0)

*(1,0,1) ¢ —u

(0,0) (1,0)

*(1,1,0)
*(1,1,1)



VC dimension

The VC dimension of a hypothesis class H is the size of the
largest set of points in X that can be shattered by H

Two step procedure to show VC(H) = d:

1. find a set of points S © X of size |S| = d that is shattered by H
*i.e. find d points that can be labeled arbitrarily by functions h € H
e easier step: only need to find one set of shattered points, NOT all

2. show that no set of d + 1 points can be shattered



VC dimension example: Lines in 2D

Already demonstrated a set of three points that is shattered
by H,soVC(H) = 3

Is there a set of four points shattered by H?

= o 7
0o —
[ P -

Case 1: collinear points Case 2: one point Case 3: quadrilateral

inside convex hull

No! Thus VC(H) < 4,and so VC(H) = 3



What does the VC-dimension get us?

If H has VC dimension d and we draw m samples i.i.d. from D
then with probability at least 1 — 6 the following is true for all
h € H:

e 2d em 1 1
err(h) < err(h) + —log —log—=
d \J m 0

N

VC-dimension roughly takes the place of log |H| as a measure
of the capacity of the hypothesis class.



VC dimensions of other classes

Linear classifiers in R%: d + 1
Finite hypothesis spaces: < log |H|

L-layer ReLU networks with W weights: O(W L log W)



Implications of VC-dimension

Bound suggests roughly m =~ d = VC(H) examples suffice to
start getting meaningful generalization

e 2d  em 1 1
err(h) <err(h) + |[—log— + |—log—
NI d NLL )

*sometimes okay for linear models over sufficiently large data

evacuous for modern deep nets (CNNs with millions of
weights do well on CIFAR-10, a dataset with <100K examples)



A different decomposition

The bias-variance decomposition separates the expected risk
of a model training procedure (learning algorithm) into

*bias: expected error of the learned model
evariance: sensitivity of the algorithm to the training set
eirreducible error: inherent noisiness of the problem

Statistical way of understanding the tradeoff between
approximation error (bias) and estimation error (variance)



Setup

Consider the task of learning a regression model given a
training set D = {(x®,yW),..., x™,yM} c X x Y

Assume data is generated by the model y = f(x) + €, where
¢ is a random variable with mean zero and variance o?.

We use D to trainamodel f: X » Y

What is the expected MSE off at a fixed point x € X?



Goal

Define the MSE at a fixed point x € X as

erty(f) = Eypx [(f(x) B Y)Zl

Related to the risk err but at a fixed input point rather than
w.r.t. a joint distribution over (x, y) pairs:

err(f) = Exy [(f(x) B Y)Zl

Interested in expected MSE w.r.t. the randomness of drawing D:

Eperr(f)] = EpEypx | (F00) ~ )"



The decomposition

Ep [errx(f)]
= EpEypx [(f(0) = )|

= (Eo[f )] - f@) +Ep [(f(0) - Ep[f)])°] + 07

g J g J \
Y Y . .
irreducible
bias: how far away is variance: how different is error

the average prediction  the prediction on average
from the true function? across different samples

of the dataset?



Understanding bias: *D[f(x)] — f(x)

Large if f(x) is far away from f(x) across different draws of
the dataset D

Indicates that the learning algorithm does not fit the data
well, i.e. is underfitting

Can be caused by:

*an inflexible model class, e.g. fitting a nonlinear f with a
hypothesis class of linear models

*poor optimization, i.e. not minimizing the training error



Understanding variance: E, (f(x) — Ep [f(x)])z

Large if the prediction varies f (x) significantly across different
random draws of the dataset D

Indicates that the learning algorithm may be overfitting

Can be caused by using a high-capacity model that can adapt
to random noise rather than the true signal f



Example: Polynomial Interpolation

*1st order polynomial has high bias, low variance
*50th order polynomial has low bias, high variance
*4th order polynomial represents a good trade-off

true model
O observations
-------- interpolation
polynomials models: 9 CH
50th order 1




The bias-variance tradeoff

The B-V decomposition models
predictive error as having two
controllable components

* more expressive learners reduce
bias but increase variance

* typically depicted via a capacity
vs. error plot suggesting an
optimal capacity

*can be extended beyond
regression to classification

hias

underfitting

Zone

Errar

generalization

overfitting
zZone

variance

optimal capacity

P capacity



The double descent phenomenon

under-fitting over-fitting

. Test risk

under-parameterized

Test risk

A\ over-parameterized

'Mm 'EMD “classical” “modern”
Ea' D’E regime interpolating regime
~
~ o ‘Training risk ~ Training risk:
sweet Spot\\:.‘ - _ T~ . _interpolation threshold
Capacity of H Capacity of H

In 2019, Belkin et al. identify double descent:

egeneralization improves again after an interpolation threshold
*identified in kernel methods, random forests, and simple MLPs
*“benign overfitting”



So what now?

Traditional learning theory
*does not explain generalization in modern deep nets

*is not sufficiently predictive to guide the development of
neural network architectures or learning algorithms

Perhaps we can at least use optimization theory to develop
better training algorithms?



What does classical optimization theory
say about setting the step-size?

Recall that for L-smooth f we had to use step sizen < 1/L
For quadratics, we can get away withn < 2/L

Why can’t we go higher?



So does classical optimization theory explain the
convergence of gradient descent for deep nets?

Why can’t we go higher?

*gradient descent oscillates if the curvature (L) is too high!

econsider f(x) = %szz

n<2/L n>2/L



What about in deep learning?

Can measure local curvature or sharpness by taking the top
eigenvalue of the Hessian V2 f (w) at parameter w:

L(w) = A1 (V*f(w))

According to classical optimization theory:

*if GD is at a point x in the parameter space, it will start
behaving poorly if using a step-sizen > 2/L(w)

*since GD works on deep nets, this suggests it never reaches a
high-curvature point where L(w) > 2/n



Full gradient descent trajectory

0.4 A
0.3
0.2 A

0.1 A

*|loss goes down non-monotonically
*sharpness equilibrates around 2 /7

train loss

0

1000 2000 3000 4000 5000 6000 7000 8000
step

100

80 A

60

top Hessian eigenvalue (sharpness)

0

1000 2000 3000 4000 5000 6000 7000 8000
step



What if we train at a different learning rate?

0.4 A

0.3 A

0.2 A

0.1 A

train loss

0

1000 2000 3000 4000 5000 6000 7000 8000
step

200 -+

150 A

100 ~

50 -

top Hessian eigenvalue (sharpness)

0 1000 2000 3000 4000 5000 6000 7000 8000
step

same network, smaller learning raten = 0.01



Expectation vs. reality

expectation reality

gradient descent trains at the edge of stability
(Cohen et al., 2021)



This behavior is generic across neural networks

train loss

sharpness

CNN

0.5 4

0.4 -

0.3 1

0.2

0.1 4

0.0 -

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0.40 A

0.35 A

0.30 -

0.25 A

0.20 -

0.15 A

200 -

150 A

100 A

50 -

VIT

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0.35 A

0.30 A

0.25 A

0.20 A

0.15 ~

0.10 A

200 -
175 4
150 A
125 4

ResNet

0 1000 2000 3000

100 -

75
50 ~

0 1000 2000 3000




This behavior is generic across neural networks

0.4

train loss

0.1 1

sharpness

o
1

LSTM

0.3 1

0.2 -

0

1000 2000 3000 4000 5000 6000

0

1000 2000 3000 4000 5000 6000

0.4

0.3

0.2

0.1 -

0.0 -

100 ~

80 A

60 -

40 A

Transformer

0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000

0.30 A

0.25 A

0.20 A

0.15 A

0.10 1+

400 -

300 -

200 -

Mamba

0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000



What is the takeaway?

we always reach a point where the smoothness is too high for
the theory to be valid, i.e. wheren > 2/L

eclassical theory fails to explain performance of GD applied to
deep nets

*we can’t use it to pick learning rates!



Outline

Kernel methods



Linear classification revisited

wlx+b=0

.WTx+b<0

Class +1

® Class -1




Linear classification revisited

* Which classifier is better for generalization?

.0 .0
0’ 0’ 0’
¢ ¢ ¢

¢ & *
¢ & *
* ¢ *
. g’ 0. Q.
. ‘0 .0 ‘0
.‘0 .‘0 ’0
O KN Y e
¢ & ¢
* ¢ ¢
Class +1 - g - B
.0 ’0 .0
O K o o ©® P
.0 ‘0 ‘0
| K R O
* & ¢
O . . o
o o o ° O Class -1
o o S @
’0 .0 .0 .
. . . O
0’ 0’ 0’
* * *
* & *
* & ¢
* & ¢
¢ ¢ ¢
* & *
¢ * ¢
¢ ’0 *



Linear classification revisited

*|ntuitively, expect a large margin to generalize better

]
Class +1 /

Class -1

large margin

*|n fact, this intuition can be made formal!



Recall: Distance to a hyperplane

|fw,p(X)|

Iwll

x has distance to the hyperplane f,,,(z) =w'z+b =0




Support Vector Machines

The SVM idea: maximize the “minimum margin” over all
training points:
| fw,b (X))

[w]l

y(w,b) = min
l

Equivalently:

If fw p incorrect on some Xx;, the margin is negative



Support Vector Machines: Candidate Goal
Assume data is linearly separable (for now)

Objective idea 1: maximize margin over all training data points:

~ YVifwp(x) ~yi(w'x; +b)
maxy(w, b) = max min = max min
w,b w,b i ”W“ wb 1 ”W”

Minimax Optimization may be difficult to solve!
(recall optimization difficulties with GANSs)



SVM: Simplified Goal

Observation: when (w, b) scaled by a factor ¢ > 0, the
margin is unchanged

yi(ew"x; +cb)  y;(w'x; + b)
lewl] 4l

Let us consider a fixed scale such that
yir(w'xp + b) = 1

where X;* is the point closest to the hyperplane



SVM: Simplified Goal

Let us consider a fixed scale such that
yirW'x= +b) =1

where x;+ is the point closest to the hyperplane

Then for all points i we have y;(wlx; + b) = 1, and the inequality is
tight for at least one i

. o wTapdb] 1
Then the margin over all training points is wi il




Writing the SVM as an optimization problem

Objective idea 2:

r‘r/tl]%x ﬁ subjectto y;(w'x; +b) =1V i
Rewrite as

%151 %”W”Z subjectto y;(wTx; +b) =1V i
Why?

* It’s a convex quadratic program, for which there are many efficient solvers.
e Can apply the kernel trick for nonlinear classification (coming up)



So why are they called support vector machines?

Instances where inequality is tight are the support vectors

* Lie on the margin boundary

* Solution does not change if we delete other instances!

1.0 0.5 0.0 0.5 1.0
Ben-Hur & Weston, Methods in Molecular Biology 2010

. support

vectors



SVM: Soft Margin

What if our data isn’t linearly separable?

* Adjust approach by adding slack variables (denoted by (;) to
tolerate errors

min 3wll? +¢ ) ¢,

w,b,(;
l
yiwlx;+b)>1-0;,{; =0,V i

*adds a hyperparameter C = 0
* trades-off maximizing margin vs. minimizing slack
*roughly an inverse regularization parameter



SVM: Soft Margin
min Z[lwll? + Cz {;

w,b,{; :
l

y:(wlx; +b) =>1—-¢,( =0,V i

C=100

1.0

19% 05 00 05 1.0 -1.0 05 00 05 10

Ben-Hur & Weston, Methods in Molecular Biology 2010



What if we have nonlinearly separated data?

Issue: sometimes the data is
well-separated but not in a
linear way

Solution: classify in a higher-
dimensional space using a
feature map

Issue: what if the dimension of
the space is too high to
represent efficiently?

Solution: reformulate the
optimization problem to only
depend on the similarity
between points

linear kernel
™

o+

-1'-01.0 -0.5 0.0 05 1.0-1.0 -0.5 0.6 05 1.0-10 -05 0.0 0.5 1.0

polynomial degree 5

polynomial degree 2

Ben-Hur & Weston, Methods in Molecular Biology 2010

¢ %3 X1
x
x| X 2 | X b 4
X % X 5( X x x : S xx X XZZ
(Of; ﬁg 3¢ ©19 Oﬂg
X % ) % 1 o 00 a2 ZI
% X X
X X e
2

K(x,x") = ¢(x)Tp(x")



How do we use duality to reformulate SVMs?

Recall our SVM optimization problem:

migl %IIWII2 subjectto y;(w'x; +b) =1V i
w,

To find its dual problem, we need to
» write out the Lagrangian: L(w, b, @) = lw||* = ¥; a;[y;(w"x; + b) — 1]

*minimize w.r.t. w, b: faua (@) = migl L(w,b, a)
w,

*the dual problem is then a maximization over the dual variables o = 0



SVM: Reformulation

To minimize L(w, b, @) = 3||w||* = ¥; a;[y;(w"x; + b) — 1] w.rtw, b, take FOCs:

2

Vo,Lw,b,a) =0 2> w= z a;y; X;
i

pL(w,b,a) =0 > 0= z a;yi
i

Plug back into L:
faval(@) = %z ai“j)’i)’jxiij — z “i“jyl'ijiij —b z a;y; + z o
i,j i,j i i
Yielding the dual SVM problem
1
maxz a; ——= al-ajyiijiij SUbjeCt to z a;y; = O, aiZ 0
a 2

i i i



SVM: Training with dual version

Simply take the training data (x;, y;) and find the dual variables
optimizing

1
maxz a; — = ala]yly]xlTx] SllbjeCt fo z a;y; = 0, (ZiZ 0
a 2

i L,j l

* this is another convex quadratic program

*training only involves the input data via inner products xl-Tx-, not the
vectors x; themselves



SVM: Testing with dual version

Suppose we’ve found the dual variables a* optimizing

1
maxz a; — E ala]yly]xlTx] subject fo Z a;y; = 0, C(iZ 0

a ] '] ] 'l
i i,j i

How do we make predictions on a new input point x € X?
1. compute the optimal primal variables:

W =), a;y;x; (from the first-order conditions)
* b™is more involved but can be computed

2. predict 1ifw* x + b* = Y. a;y;x'x + b* = 0 and -1 otherwise

Prediction also depends on x, x; only through inner products!



SVM: Support vectors in the dual case

data points x; with @; > 0 lie on the margin boundary and are
called support vectors

*the solution w™ is a linear combination of support vectors!

*the solution does not change if we delete points with a; = 0

1.0

__. support
vectors




Review: General Model

We have an agent interacting with the world

© >
Actions
< .
Observations
Agent

*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
 Compare to unsupervised learning and supervised learning




Markov Decision Process (MDP)

The formal mathematical model:
*State set S. Initial state s, Action set A

*State transition model: P(s;q|s;, a;)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7(s):S — Aaction to take at a particular state.

an aq a9
Sop —2 S1 —> SS9 — ...



Defining the Optimal Policy

For policy t, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = Z P(sequence)U (sequence)

sequences
starting from s

Called the value function (for &, s;)



Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51---) = 1(s0) +77(s1) + 777 ( =) 4r(s)

t>0
*Discount factor y between 0 and 1

*Set according to how important present is vs. future
*Note: has to be less than 1 for convergence



Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + ’)/m(?XZP<S/|S, a)V*(s')

T \ Sv )

current state discounted expected
reward future rewards




Value Iteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

*Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Visa(s) = 1(s) +ymax Y P(s'ls,a)Vi(s)



Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy
e Use it to compute value function V™ : a set of linear equations

V7™(s) =r(s) +v ) P(s'|s,a)V7(s)
* Improve the policy: obtain i’

7' (s) = arg max r(s) + 'yz P(s'|s,a)V7™(s')

* Repeat



Q-Learning (model-free RL)

What if we don’t know transition probability P(s’|s,a)?
*Need a way to learn to act without it.

*Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing g in state s

*Note: V*(s) = max, Q(s,a)

*Now, we can just do m*(s) = arg max,Q(s, a)
* But need to estimate Q!




Q-Learning Iteration

How do we get Q(s,a)?

*Similar iterative procedure learning rate

Q(5¢, ar) <= Q(s¢,a¢) + a|r(se) + ymax Q(St41,a) — Q(5¢,a¢)]

Idea: combine old value and new estimate of future value.

Note: We are using a policy m to take actions a; = m(s;); this
policy is based on Q]



Exploration Vs. Exploitation

General question!

* Exploration: take an action with unknown consequences

*Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

*Cons:
* When exploring, not maximizing your utility
* Something bad might happen
* Exploitation: go with the best strategy found so far

* Pros:

 Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

*Cons:
* Might also prevent you from discovering the true optimal strategy



Q-Learning: Epsilon-Greedy Policy

How to explore?

*With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

(argmaxaeA Q(s,a) uniform(0,1) > €

random a € A otherwise

\



Beyond Tables

So far:
* Represent everything with a table

*Value function V: table size |S| X 1
Q function: table size ‘S| % ‘A‘

*Too big to store in memory for many tasks
* Backgammon: 10%° states.
*Go: 3361 states

*Need some other approach



Beyond Tables: Function Approximation

Both V and Q are functions...
*Can approximate them with models, i.e. neural networks

*So we write

V7 (s) ~ Vp(s)
*New goal: find the weights {

eLoss function:

J(0) = E-[(V™(s) — Va(s))?]




Q-Function Approximation: Deep Models

*Note: quite popular to use deep models
*e.g. CNNs if the states are images (like in video games)

3

Convolution Convolution Fully connected Fully connect
hd A

w w

&

&)

O

-

NRCAARROAN
- + b B B 4 - + >
LEEEEEREE L]

Mnih et al, "Human-level control through deep reinforcement learning"



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Jeremy Cohen



	Slide 1: CS 760: Machine Learning Final review
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Goal: Learn a Distribution
	Slide 6: Goal: Learn a Distribution
	Slide 7: Histograms: Inference & Samples
	Slide 8: Parametrizing Distributions
	Slide 9: Parametrizing Distributions
	Slide 10: Parametrizing Distributions: Autoregressive models
	Slide 11: Flow Models
	Slide 12: Flow Models
	Slide 13: Flow Models
	Slide 14: Flow Models: How to sample?
	Slide 15: Flows: Transformations
	Slide 16: GANs: Generative Adversarial Networks
	Slide 17: GANs: Basic Setup
	Slide 18: GAN Training: Discriminator
	Slide 19: GAN Training: Generator & Discriminator
	Slide 20: GAN Training: Alternating Training
	Slide 21: GAN Training: Issues
	Slide 22: Outline
	Slide 23: PAC learning
	Slide 24: Infinite hypothesis classes
	Slide 25: Getting started: Shattering
	Slide 26: Shattering example: Lines in 2D
	Slide 27: VC dimension
	Slide 28: VC dimension example: Lines in 2D
	Slide 29: What does the VC-dimension get us?
	Slide 30: VC dimensions of other classes
	Slide 31: Implications of VC-dimension
	Slide 32: A different decomposition
	Slide 33: Setup
	Slide 34: Goal
	Slide 35: The decomposition
	Slide 36: Understanding bias: double-struck cap E sub cap D , open bracket f hat open paren x , close paren close bracket minus f of x 
	Slide 37: Understanding variance: double-struck cap E sub cap D , open paren f hat open second paren x , close second paren minus double-struck cap E sub cap D , open bracket f hat open second paren x , close second paren close bracket , close paren squar
	Slide 38: Example: Polynomial Interpolation 
	Slide 39: The bias-variance tradeoff
	Slide 40: The double descent phenomenon
	Slide 41: So what now?
	Slide 42: What does classical optimization theory say about setting the step-size?
	Slide 43: So does classical optimization theory explain the convergence of gradient descent for deep nets?
	Slide 44: What about in deep learning?
	Slide 45: Full gradient descent trajectory
	Slide 46: What if we train at a different learning rate?
	Slide 47: Expectation vs. reality
	Slide 48: This behavior is generic across neural networks
	Slide 49: This behavior is generic across neural networks
	Slide 50: What is the takeaway?
	Slide 51: Outline
	Slide 52: Linear classification revisited
	Slide 53: Linear classification revisited
	Slide 54: Linear classification revisited
	Slide 55: Recall: Distance to a hyperplane
	Slide 56: Support Vector Machines
	Slide 57: Support Vector Machines: Candidate Goal
	Slide 58: SVM: Simplified Goal
	Slide 59: SVM: Simplified Goal
	Slide 60: Writing the SVM as an optimization problem
	Slide 61: So why are they called support vector machines?
	Slide 62: SVM: Soft Margin
	Slide 63: SVM: Soft Margin
	Slide 64: What if we have nonlinearly separated data?
	Slide 65: How do we use duality to reformulate SVMs?
	Slide 66: SVM: Reformulation
	Slide 67: SVM: Training with dual version
	Slide 68: SVM: Testing with dual version
	Slide 69: SVM: Support vectors in the dual case
	Slide 70: Review: General Model
	Slide 71: Markov Decision Process (MDP)
	Slide 72: Defining the Optimal Policy
	Slide 73: Discounting Rewards
	Slide 74: Bellman Equation
	Slide 75: Value Iteration
	Slide 76: Policy Iteration: Algorithm
	Slide 77: Q-Learning (model-free RL)
	Slide 78: Q-Learning Iteration
	Slide 79: Exploration Vs. Exploitation
	Slide 80: Q-Learning: Epsilon-Greedy Policy
	Slide 81: Beyond Tables
	Slide 82: Beyond Tables: Function Approximation
	Slide 83: Q-Function Approximation: Deep Models
	Slide 84: Thanks Everyone!

