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Announcements
*HW 0 due Wednesday next week before class

*Reminder about office hours:
*Misha: Mondays 10:45-12:15 in MH 5512
*Haotian: Fridays 2-3 in MH 2513
*Avi: Wednesdays 3:30-4:30 in MH 2513

*CS department does not allow observers on Canvas

*Go here for info:
https://pages.cs.wisc.edu/~khodak/cs760fall2025/



Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization

*Instance-based learning
*k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias
*Decision trees

e Setup, splits, learning, information gain, strengths and
weaknesses



Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization



Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f: X =)

* Set of models (a.k.a. hypotheses):  H = {h‘h X — y}

Get

* Training set of instances for unknown target function,
where y(?’) ~ f(a:(?’))




Supervised Learning: Objects

Three types of sets
* Input space, output space, hypothesis class
XV, H
*Examples:

» Input space: feature vectors X C R4

* Qutput space:
* Binary y — {—1,—|—1}

e Continuous y Q R

safe poisonous

13.23°



Output space: Classification vs. Regression

Choices of ' have special names:

*Discrete: “classification”. The elements of )/ are classes
* Note: doesn’t have to be binary

NED
AN) /‘N\

Versmo'or

7/

*Continuous: “regression”
* Example: linear regression

*There are other types...




Hypothesis class

*Pick specific class of models. Ex: linear models: -

h@(il?) — (9() -+ (91561 —+ (9232‘2 + ...+ ded

*Ex: feedforward neural networks

f¥(a) = o(Wy 57V (x)))

Wikipedia



Supervised Learning: Training & Generalization

Goal: model h that best approximates f
*One way: empirical risk minimization (ERM)

f = arg m1n—Z€ ), ')

hE?—L n
\
Model prediction

Hypothesis Class
Loss function (how far are we)?

* Recall: we want to generalize.
* Do well on future (test) data points, not just on training data.



reak & Questions



Outline

*Instance-based learning

*k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias



Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the
same label

*Example: classify car/no car
* All features same, except location of car

*What does “nearby” mean?




1-Nearest Neighbors: Algorithm

Training/learning: given

{(zW),yW) (2@ y@)), o (2™ y(m))}

Prediction: for &,
1. find nearest training point z(7)
2. return y\)




1-Nearest Neighbors: Algorithm

safe

poisonous

Prediction: for o,
1. find nearest training point z(7)
2. return y(])poisonous




1NN: Decision Regions

Defined by “Voronoi Diagram”
*Each cell contains points closer to a particular training point




k-Nearest Neighbors: Classification

Training/learning: given

{(xzW), gy W) (2@ 4@ o (2(m) (M)}

Prediction: for &, find k most similar training points
Return plurality class k

j = argmax » 1(y=y")

*i.e. among the k points, output most popular class.



k-Nearest Neighbors: Distances

Discrete features: Hamming distance

d
d (¢, z0)) = " 1{al) # 2{))
. a=1
Continuous features:

d >
*Euclidean distance: d(x(i),x(j)) _ (Z(wg,) - xgj))z)

a=1
d
L1 (Manhattan) dist.: (]) Z ‘x(z _ a’;(J)\



k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
*Compute empirical mean/stddev for a feature (in train set) 1

1 n i 1 n Z 2
:g;f’/‘g) Oa—(nZ(()uz))

1=1

* Do the same for test points! Oq

24
*Standardize features: 7(7) —



k-Nearest Neighbors: Mixed Distances

Might have features of both types
e Sum two types of distances component

* Might need normalization, (e.g. normalize individual
distances to maximum value of 1)



k-Nearest Neighbors: Regression

Training/learning: given

{(xzW), gy W) (2@ 4@ o (2(m) (M)}

Prediction: for &, find k most similar training points

Return 1 k |
g=17p y
i=1

*i.e. among the k points, output mean label.



k-Nearest Neighbors: Variations

Could contribute to predictions via a weighted distance
*All k no longer equally contribute

*Classification / regression
k
- 1
arg max .
YN NEY £ d(x, 2 )2

1=1

5(v,yV)

Sy @ /d(w,2)?
Zle 1/d(x, 2(1))2

A
yi
Y s



Dealing with Irrelevant Features

One relevant feature x; Effect of an irrelevant feature x,
on distances and nearest

1-NN rule classifies each neighbors

instance correctly

[ S— ®
@
o ©
X2
,,,,,,,, -
o
° @




Instance-Based Learning: Strengths & Weaknesses

Strengths

* Easy to explain predictions

* Simple to implement and conceptualize.
* No training!

e Often good in practice

Weaknesses

 Sensitive to irrelevant + correlated features
e Can try to solve via variations. More later

* Prediction stage can be expensive
* No “model” to interpret



Inductive Bias

* Inductive bias: assumptions a learner uses to predict y, for a previously unseen
instance x;
e Two components (mostly)
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN decomposition of space determined instances in neighborhood
by nearest neighbors belong to same class







Q1-1: Table shows all the training points in 2D space and their labels. Assume 3NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

X Yy label
1. A:+, B:-
0 0 +
2. A:-, B:+
1 0 +
3. A:-, B:-
4. A:+, B: + 2 0 i
2 2 +
3 nearest neighbors to point A are (0, 1) [-], (1, 0 1
0) [+], (1, 2) [-]. Hence, the label should be [-] 0 ,
1 2
3 nearest neighbors to point B are (2, 0) [+], (2,
2) [+], (3, 1) [-]. Hence, the label should be [+] 3 1




Q1-2: In a distance-weighted nearest neighbor, which of the following
weight is NOT appropriate? Let p be the test data point and x; {i = 1: N} be

training data points.

1. W, = d(p, Xi)y2
.. w; =d(p, x)?
. W, = exp(-d(p, x))

4. Wi=1

4

The intuition behind weighted kNN, is to give more weight to
the points which are nearby and less weight to the points
which are farther away. Any function whose value decreases as
the distance increases can be used as a function for the
weighted knn classifier. w = 1 is also OK as it reduces to our
traditional nearest-neighbor algorithm.



Outline

Decision trees

e Setup, splits, learning, information gain, strengths and
weaknesses



Decision Trees: Heart Disease Example

normal

# major_vessels >0

true

chest_pain_type

thal

fixed _defect

present

false

absent

absent

absent

absent

reversible defect

present

Each internal node tests one feature x;

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

present




Decision Trees: Logical Formulas

* Suppose X, ... X, are Boolean features, and Y is also
Boolean

* How would you represent the following with decision trees?
Y =X,X: (le.Y =X, AX:)
Y =X, Vv X,

Y = X, X, v X,—X,



Decision Trees: Textual Description

Med_d efect

thal

# major_vessels >0 present
trye false
present absent

thal = normal
[# major_vessels > 0] = true: present
[# _major_vessels > 0] = false: absent
thal = fixed defect: present



Decision Trees: Mushrooms Example

odor = a: e (400.0) > if odor=almond, predict edible
ocdor = ¢: p (192.0)
cdor = f£: p (2160.0)
cdor = 1: & (400.0)
cdor = m: p (36.0)
odor = n
spore=print=color = b: e (48.0)
spore=print=color = h: e (48.0)
spore-print-color = k: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-=print-color = r: p (72.0)
gspore=print=color = u: e (0.0)
spore-print-color = w if odor=none /\
gill=size = b: e (528.0)
gill-size = n _ 1 _ — 1
il mpacing = ¢t p (32.0) spore-print-color=white A
gill-spacing = d: e (0.0) 55555“-$> Neciva—
e - o gill-size=narrow A
population = a: e (0.0) . . _
population = ¢: p {16.0) gill-spacing=crowded,
population = n: e (0.0) d- .
population = s: e (0.0) pre |Ct pOlSOﬂOUS
population = v: e (48.0)
population = v: e (0.0)
spore=print-color = y: e (48.0)

odor = p: p (256.0)
odor g8: p (576.0)
odor v: p (576.0)




Decision Trees: Learning

*Learning Algorithm:

{(z®, y®) (2@ 4@, (2™, y(m))}

MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)
if stopping criteria is met
make a leaf node N
determine class label for N
else
make an internal node N
S = FindBestSplit(D, C)
for each group £ of S
D, = subset of training data in group &
k™ child of N = MakeSubtree(D,)

return subtree rooted at N



Decision Trees: Learning

eLeq rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met

(@0 y0), (@@ y @), (@0, 5l make aleaf node N
determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)

for each group £ of S
D, = subset of training data in group &
k™ child of N = MakeSubtree(D,)

return subtree rooted at N




1. DT Learning: Candidate Splits

First, need to determine how to split features
*Splits on nominal features have one branch per value

thal

*Splits on numeric features use a threshold/interval

weight < 35

truNse

ID3, C4.5



DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature X,

*Sort the values of X;in D

e Evaluate split thresholds in intervals between instances of
different classes

weight £ 35

weight <—0—0—0—\—0 @ ® ‘ ® o>
’ true false
17 35




Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction
DetermineCandidateNumericSplits(set of training instances D, feature X))
C={} // initialize set of candidate splits for feature X,

let v; denote the value of X; for the j” data point

sort the dataset using v; as the key for each data point

for each pair of adjacent v, v, , in the sorted order
if the corresponding class labels are different
add candidate split X;<(v;+v; ))2to C

return C



DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

thal

Vwble_defect V fixed_defect

color

red Vblue/\:en V vyellow




Decision Trees: Learning

eLeq rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met

(@0 y0), (@@ y @), (@0, 5l make aleaf node N
determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)

for each group £ of S
D, = subset of training data in group &
k™ child of N = MakeSubtree(D,)

return subtree rooted at N




Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

*Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Occam’s razor
* “when you have two competing theories that make the same [| #
predictions, the simpler one is the better” |




DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

*Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?

* There are fewer short models (i.e. small trees) than long ones
* A short model is unlikely to fit the training data well by chance
* A long model is more likely to fit the training data well coincidentally

f
h

R -
W

7, -
IE i
——
.y
= A c-' A
¥




DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?
* NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

*|nstead, we’ll use an information-theoretic heuristic to
greedily choose splits




Information Theory: Super-Quick Intro

e Goal: communicate information to a receiver in bits
*Ex: as bikes go past, communicate the maker of each bike




Information Theory: Encoding

*Could send out the names of the manufacturers in binary
coded ASCII

* Suppose there are 4: Trek, Specialized, Cervelo, Serrota

*|nefficient... since there’s just 4, we could encode them
* # of bits: 2 per communication

type code
Trek 11
Specialized 10
Cervelo 01

Serrota 00




Information Theory: Encoding

*Now, some bikes are rarer than others...
* Cervelo is a rarer specialty bike.

* We could save some bits... make more popular messages fewer
bits, rarer ones more bits

* Note: this is on average

° Expected # bItS 1.75 Type/probability # bits code
P(Trek)=0.5
- Z P IOgZ (y) P(Specialized) =0.25 2 01
yey P(Cervelo)=0.125 3 001

P(Serrota) =0.125 3 000



Information Theory: Entropy

*Measure of uncertainty for random variables/distributions

*Expected number of bits required to communicate the value
of the variable 1

Z P 10g2 y) %Oﬁ

yey

0 0.5
Pr(X=1)



Information Theory: Conditional Entropy

*Suppose we know X. CE: how much uncertainty left in Y?

H(YY|X)=-)>» P(X=x)H(Y|X =ux)

reX

*Here,
HY|X =z)=-)_,cP(Y =y|X =x)log, P(Y = y|X = z)

*What is it if Y=X?
*What if Y is independent of X?



Information Theory: Conditional Entropy

*Example. Y is still the bike maker, X is color.

Specialized 0.125 0.125

Cervelo 0.125 0

0 0.125

H(Y|X=black) = -0.5 log(0.5) — 0.25 log(0.25) — 0.25 log(0.25) - 0= 1.5
H(Y | X=white) = -0.5 log(0.5) — 0.25 log(0.25) —0 — 0.25 log(0.25) = 1.5
H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5




Information Theory: Mutual Information

*Similar comparison between R.V.s:

[(V;X)=H(Y) - HY|X)

Interpretation:
*How much can the uncertainty of Y be reduced by knowing X?
*Or, how much information about Y can you glean by knowing X?

Specialized 0.125 0.125
Cervelo 0.125 0

0 0.125

I(Y:X) = H(Y) = H(Y|X) = 1.75 — 1.5 = 0.25



DT Learning: Back to Splits

Want to choose split S that maximizes

InfoGain(D, S) = Hp(Y) — Hp(Y]S)

i.e. mutual information.

*Note: D denotes that this is the empirical entropy
* We don’t know the real distribution of Y, just have our dataset

* Equivalent to maximally reducing the entropy of Y
conditioned on a split S



DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

PlayTennis: training examples

Day Outlook Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No




DT Learning: InfoGain For One Split

e What is the information gain of splitting on Humidity?

D: [9+, 5-]

9 9) 5 5
— H (Y)=——1o ~ 1o 0.940
Humidity () 14 gz(mj 14 gz(m]
hV\normal
D: [3+, 4-] D: [6+, 1-]

6 6 1 1
. 3 3 4 4 __ bl B il
HD<Y|h1gh>=—;log2(7j—;1og{;j H, (¥’ [normal) 71"“”2(7] 71°g2(7j

=0.985 =0.592

InfoGain(D, Humidity) = H,(Y) — H,(Y | Humidity)
=0.940 - 7 (0.985) + 1(0.592)
14 14

=0.151



DT Learning: Comparing Split InfoGains

e |s it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+, 5-]
Humidity Wind
hV\normal We/\strong
D: [3+, 4-] D: [6+, 1-] D: [6+, 2-] D: [3+, 3-]

H,(Y|weak)=0.811 H,(Y |strong)=1.0

InfoGain(D, Humidity) = 0.940 — {% (0.985) + % (0.592)}
=0.151
: : 8 6
InfoGain(D, Wind) = 0.940 — " (0.811) + 2 (1.0)

=0.048



DT Learning: InfoGain Limitations

*InfoGain is biased towards tests with many outcomes

 Splitting on it results in many branches, each of which is
“pure” (has instances of only one class)

*|n the extreme: A feature that uniquely identifies each instance
* Maximal information gain!

*Use GainRatio: normalize information gain by entropy

GainRatio(D, S) = Infogii?é?»s) — HD(Y]Z[;?%(Y'S)



Homework: What is a good stopping criteria?

eLeq rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met

(@0 y0), (@@ y @), (@0, 5l make aleaf node N
determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)
for each group £ of S
D, = subset of training data in group &
k™ child of N = MakeSubtree(D,)
return subtree rooted at N




Inductive Bias

* Recall: Inductive bias: assumptions a learner uses to predict y; for a previously
unseen instance x;
* Two components
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision trees trees with single-feature, axis-parallel small trees identified by greedy
splits search
k-NN Decomposition of spce determined by instances in neighborhood

nearest neighbors belong to same class




Q2-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.

. We should split along all features to create a decision tree.

. We should keep splitting the tree until there is only one data point

left at each leaf node.

All falsel



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie
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