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Announcements

•Homework 0:

•Available on Canvas; submit on 
Gradescope.

•Due 9:30 AM (right before class)
on Wednesday (17 September)



Outline

• Wrapping up decision trees
• Review, variations, information gain, regression
• Evaluation in decision trees: overfitting, pruning

• Evaluation: Measuring generalization
• Train/test split, random sampling, cross validation

• Evaluation: Performance metrics
• Confusion matrices, ROC curves, precision/recall



Outline

• Wrapping up decision trees
• Review, variations, information gain, regression
• Evaluation in decision trees: overfitting, pruning

• Evaluation: Measuring generalization
• Train/test split, random sampling, cross validation

• Evaluation: Performance metrics
• Confusion matrices, ROC curves, precision/recall



[Review] Decision Trees: Learning 

MakeSubtree(set of training instances D)

 C = DetermineCandidateSplits(D)

 if stopping criteria is met

  make a leaf node N

  determine class label/probabilities for N

 else

  make an internal node N

  S = FindBestSplit(D, C)

  for each outcome k of S

   Dk = subset of instances that have outcome k

   kth child of N = MakeSubtree(Dk)

 return subtree rooted at N

• Learning Algorithm:



[Review] Candidate Splits - Nominal Features

Instead of using k-way splits for k-valued features, could 
require binary splits on all nominal features 
(Classification and Regression Trees / CART does this)

thalassemia

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow



[Review] Candidate Splits - Numeric Features

Given a set of training instances D and a specific feature Xi

• Sort the values of Xi in D

• Evaluate split thresholds in intervals between instances of different 
classes

•  Do this for every numeric feature and add it to the candidate splits

weight

17 35

weight ≤ 35

true false



[Review] Find Best Split

Hypothesis: simplest tree that classifies the 
training instances accurately will generalize

Occam’s razor: “when you have two competing theories that 
make the same predictions, the simpler one is the better”

Want to choose split S that maximizes

i.e. mutual information.



[Review] InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is 
“pure” (has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance

•Maximal information gain!

•Use GainRatio: normalize information gain by entropy



Stopping Criteria

Some ideas
• Stop when you reach a single data point?

• Stop when the subset of instances are all in the same class?

• Stop when we a large fraction of the instances are all in the same 
class?

• We have exhausted all of the candidate splits

Stop earlier?



Variations

• Probability estimation trees
• Leaves: estimate the probability of each class

• Regression trees
• Either numeric values (e.g. average label) or functions (e.g. linear functions) at each leaf.

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1

X5 > 10

X3

P(Y=pos) = 0.5

P(Y=neg) = 0.5

P(Y=pos) = 0.1

P(Y=neg) = 0.9

P(Y=pos) = 0.8

P(Y=neg) = 0.2

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]



Variations

• Probability estimation trees
• Leaves: estimate the probability of each class

• Regression trees
• Either numeric values (e.g. average label) or functions (e.g. linear functions) at each leaf.

• Tree ensembles
• Random forests [Breiman, 2001]

• XGBoost [Chen & Guestrin, 2016]
• Winner of many Kaggle competitions



Decision Trees: Comments

•  Widely used approach
• Many variations

•  Provides humanly comprehensible models 
•  Not true for big trees / tree ensembles

•Insensitive to monotone transformations of 
numeric features

•Implementation can (and does) vary, 
performance may depend on specific choices.



Decision Trees: Learning 

MakeSubtree(set of training instances D)

 C = DetermineCandidateSplits(D)

 if stopping criteria is met

  make a leaf node N

  determine class label/probabilities for N

 else

  make an internal node N

  S = FindBestSplit(D, C)

  for each outcome k of S

   Dk = subset of instances that have outcome k

   kth child of N = MakeSubtree(Dk)

 return subtree rooted at N

• Learning Algorithm:



Break & Quiz



Q1-1: How many distinct (binary classification) decision trees are 
possible with 4 Boolean attributes? Here distinct means representing 
different functions.

1. 24

2. 28

3. 216

4. 232



Q1-1: How many distinct (binary classification) decision trees are 
possible with 4 Boolean attributes? Here distinct means representing 
different functions.

1. 24

2. 28

3. 216

4. 232

#distinct decision trees 
= #distinct Boolean functions
= #functions of 24 = 16 inputs, binary label for each 
input
= 216



Model Selection in Decision Trees



Evaluation: Accuracy

•Can we just calculate the fraction of training instances that 
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random 
with P(Y = 1) = 0.5 

• How accurate would it be on its training set, if you stop when all instances 
are in the same class? (training accuracy = 100%)

• How accurate would a learned decision tree be on previously unseen 
instances?

• Recall: our goal is to do well on future data.



Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a 
set of instances that are held-aside during learning

• This is called a test set

all instances

test

train



Wikipedia

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorP(h)

Model h overfits training data if it has 
•  low error on the training data (low errorD(h))

•  high error on the entire distribution (high errorP(h))



Overfitting Example: Noisy Data

(unknown) Target function is 
• There is noise in some feature values

• Training set:

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value



Overfitting Example: Noisy Data

Correct tree Tree that fits noisy training data

X1

X2

T F

t f

f

T F

X1

X2

T F

X3t

f

f

f

X4

T F

FT

T F

t



Overfitting Example: Noise-Free Data

Target function is 
• P(X3 = t) = 0.5 for both classes

• P(Y = t) = 0.67

• Training set:

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f



Overfitting Example: Noise-Free Data

• Training set is a limited sample. There might be (combinations of) features that 
are correlated with the target concept by chance

X3

T F

t f

t 66% 66%

Training set
accuracy

Test set
accuracy

100% 50%

X3 Y

t t

t t

t t

f f

f f



Overfitting Example: Polynomial Regression

• Is higher-degree  = better?



Overfitting: Tree Size vs. Accuracy 

• Tree size vs accuracy



General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville



General Phenomenon

Reconciling modern machine learning practice and the bias-variance trade-off. Belkin et al



Modern Understanding – Double Descent

Belkin et al. Reconciling modern machine learning practice and the bias-variance trade-off.



Modern Understanding – Double Descent

Nakkiran et al. Deep Double Descent: Where Bigger Models and More Data Hurt.



Modern Understanding – Double Descent

even our curve-
fitting example 
might not be 
the full story!

Fernández-Villaverde. Deep learning for solving economic models. 



Decision Tree Learning: Avoiding Overfitting

Two general strategies to avoid overfitting
1. During training: create two-way instead of multi-way splits, stop if further 

splitting not justified by a statistical test

2. Post-pruning: grow a large tree, then prune back some nodes

1. evaluate impact on tuning-set accuracy of pruning each node

2. greedily remove the one that most improves tuning-set accuracy



all instances

testtrain

tuning

Tuning Sets

• A tuning set (a.k.a. validation set) is
• not used for primary training process (e.g. tree growing)

• but used to select among models (e.g. trees pruned to 
varying degrees)

• Why can’t you use the
 training set to prune?

• Why can’t you use the
 test set to prune?



Break & Quiz



Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting. 

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the 
capacity/complexity of a model.

4. More training data may help preventing overfitting.



Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting. 

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the 
capacity/complexity of a model.

4. More training data may help preventing overfitting.

1. We can still have false correlation that leads to overfitting.
2. Overfitting would undermine the generalization ability.
3. Generalization error often first decreases and then 

increases as the model capacity increases.
4. Increasing training data size would help better 

approximate the true distribution.



True or False:

In k-NN, using large k leads to over-fitting. 



True or False:

In k-NN, using large k leads to over-fitting. 

False!



Outline

• Wrapping up decision trees
• Review, Variations, information gain, regression
• Model selection in decision trees: overfitting, 
pruning, variations

• Evaluation: Generalization
• Train/test split, random sampling, cross validation

• Evaluation: Metrics
• Confusion matrices, ROC curves, precision/recall



Accuracy of a Model

How can we estimate the 
accuracy of a learned model?

•Typically: use a statistic ෠𝜃 
that is an unbiased estimator 
of 𝜃 computed over an 
independent test set

𝔼 ෠𝜃 = 𝜃

labeled data set

training set test set

accuracy estimate

learned model

learning 

method



Using a Test Set

•  How can we estimate the accuracy of a learned model?
• When learning a model, you should pretend that you don’t 

have the test data yet
• If the test-set labels influence the learned model in any way, 

accuracy estimates will not be correct, as you may have 
fitted to your test set.

•  Don’t train on the test set!!!



Figure from Perlich et al. Journal of Machine Learning Research, 2003

Learning Curves

•Accuracy of a method as a function of the train set size?
• Plot learning curves

Training/test set partition

• for each sample size s on learning curve

• (optionally) repeat n times

• randomly select s instances from training set

• learn model

• evaluate model on test set to determine 
accuracy a

• plot (s, a) or (s, avg. accuracy and error 
bars)

What are these intervals?



Confidence Intervals 

Scenario:
•  For some model h, a test set S with n samples 
•  We have h producing r errors out of n.
•  Our estimate of the error rate: errorS(h) = r/n

With C% probability, true error is in interval 

• zC depends on C, similar to a z-score

errorS (h)± zC
errorS (h)(1- errorS (h))

n



Single Train/Test Split: Limitations 

1. May not have enough data for sufficiently large 
training/test sets
• A larger test set gives us more reliable estimate of accuracy 

(i.e. a lower variance estimate)

• But… a larger training set will be more representative of 
how much data we actually have for the learning process

2. A single training set cannot reveal how 
sensitive accuracy is to specific training 
samples.



Strategy I: Random Resampling

•  Address the second issue by repeatedly randomly 
partitioning the available data into training and test sets. 

labeled data set
+++++- - - - -

+++- - - ++- -

random
partitions

+++- - - ++- -

+++ - - - ++- -

training sets test sets



Strategy I: Stratified Sampling

•  When randomly selecting training or validation sets, we may want to 
ensure that class proportions are maintained in each selected set

labeled data set
++++++++++++ - - - - - - - -

training set
++++++ - - - -

test set
++++++ - - - -

validation set
+++ - -

This can be done via stratified sampling: first 
stratify instances by class, then randomly 
select instances from each class proportionally.



Strategy II: k-fold Cross Validation

labeled data set

s1
s2 s3 s4 s5

iteration train on test on

1 s2   s3   s4     s5 s1

2 s1  s3   s4    s5 s2

3 s1   s2    s4     s5 s3

4 s1   s2    s3    s5 s4

5 s1   s2    s3    s4 s5 

Partition data
into k subsamples

Iteratively leave one 
subsample out for the 
test set, train on the 
rest



Strategy II: 5-fold Cross Validation Example

•Suppose we have 100 instances, and we want to estimate 
accuracy with 5-fold cross validation

iteration train on test on correct

1 s2   s3   s4     s5 s1 11 / 20

2 s1  s3   s4    s5 s2 17 / 20

3 s1   s2    s4     s5 s3 16 / 20

4 s1   s2    s3    s5 s4 13 / 20

5 s1   s2    s3    s4 s5 16 / 20

accuracy = 73/100 = 73%



Strategy II: Cross Validation Tips

• 10-fold cross validation is common, but smaller values folds are often 
used when learning takes a lot of time

• in leave-one-out cross validation, k = # instances

• in stratified cross validation, stratified sampling is used when 
partitioning the data

• CV makes efficient use of the available data for testing

• note that whenever we use multiple training sets, as in CV and random 
resampling, we are evaluating a learning method (with specific choices) 
as opposed to an individual learned hypothesis

• You can use CV for tuning as well!



Break & Quiz



Q2-1: Are these statements true or not?
(A) The accuracy of a model is the training set accuracy, and its 
estimator is the test set accuracy.
(B) An unbiased estimator ෠𝜃 always equals its correspond true 
parameter 𝜃.

1. True, True

2. True, False

3. False, True

4. False, False



(A)The accuracy of a model is based on its true distribution; 
training/test sets only approximate this.

(B)It only equals the true parameter in expectation, i.e. it’s 
true in the limit of a large number of estimates. This 
means there’s no systematic error.

Q2-1: Are these statements true or not?
(A) The accuracy of a model is the training set accuracy, and its 
estimator is the test set accuracy.
(B) An unbiased estimator ෠𝜃 always equals its correspond true 
parameter 𝜃.

1. True, True

2. True, False

3. False, True

4. False, False



Q2-2: Are these statements true or not?
(A) The sample size on the learning curve is the size of test set.
(B) A larger training set would provide a lower variance estimate of the 
accuracy of a learned model.

1. True, True

2. True, False

3. False, True

4. False, False



Q2-2: Are these statements true or not?
(A) The sample size on the learning curve is the size of test set.
(B) A larger training set would provide a lower variance estimate of the 
accuracy of a learned model.

1. True, True

2. True, False

3. False, True

4. False, False (A)The sample size on the learning curve is 
for training set.

(B)A larger test set rather than a larger 
training set does so.



Q2-3: Which of the following is NOT true?

1. Class proportions are maintained same in the 
stratified sampling. 

2. In leave-one-out cross validation, the number of 
partition equals to the number of instances.

3. In cross validation, we are evaluating the 
performance of an individual learned hypothesis.



Q2-3: Which of the following is NOT true?

In cross validation, we 
are evaluating a 
learning method as 
opposed to a specific 
individual learned 
hypothesis.

1. Class proportions are maintained same in the 
stratified sampling. 

2. In leave-one-out cross validation, the number of 
partition equals to the number of instances.

3. In cross validation, we are evaluating the 
performance of an individual learned hypothesis.



Outline

• Wrapping up decision trees
• Review, Variations, information gain, regression
• Evaluation in decision trees: overfitting, pruning, 
variations

• Evaluation: Generalization
• Train/test split, random sampling, cross validation

• Evaluation: Metrics
• Confusion matrices, ROC curves, precision/recall



Beyond Accuracy: Confusion Matrices

•How can we understand what types of mistakes a learned 
model makes?

predicted class

actual class

task: activity recognition from video



Confusion Matrices: 2-Class Version

accuracy =     
TP + TN

TP+FP+FN+TN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

error =1-accuracy =     
FP + FN

TP+FP+FN+TN



Accuracy: Sufficient?

Accuracy may not be useful measure in cases where
•  There is a large class skew

•  Is 98% accuracy good when 97% of the instances are negative?

•  There are differential misclassification costs – say, getting a 
positive wrong costs more than getting a negative wrong
•  Consider a medical domain in which a false positive results in an 

extraneous test but a false negative results in a failure to treat a 
disease



Other Metrics

true positive rate (recall)  =   
TP

actual  pos
  =   

TP

TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

false positive rate  =   
FP

actual  neg
  =   

FP

TN+ FP



Suppose a classifier returns label 
probabilities rather than a label. 
How do you decide the label?

i.e. suppose a classifier returns Pr(Y|x) instead of Y.
• not optimal to simply take the maximum probability if 

cost of FP and FN differ
• one solution: choose threshold c and output Y=True if 

Pr(Y=True|x) ≥ c else Y=False
• but how do you compare methods across thresholds?



Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an 
instance being positive is varied

ideal point

1.0

1.0False positive rate

Tr
u

e 
p

o
si

ti
ve

 r
at

e

Alg 1

Alg 2

expected curve for 
random guessing

• increasing the threshold c 
moves down along the curve

• different methods can work 
better at different points



ROC Curves: Plotting

1.0

1.0

Tr
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e 
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ti
ve

 r
at

e

False positive rate

Ex 9 .99   +

Ex 7 .98   +

Ex 1 .72    -

Ex 2 .70   +

Ex 6 .65   +

Ex 10 .51    -

Ex 3 .39    -

Ex 5 .24   +

Ex 4 .11    -

Ex 8 .01    -

TPR= 2/5, FPR= 0/5

TPR= 4/5, FPR= 1/5

TPR= 5/5, FPR= 3/5

TPR= 5/5, FPR= 5/5

instance
confidence
positive

correct
class



ROC Curves: Misclassification Cost

•The best operating point depends on relative cost of FN and 
FP misclassifications

best operating point when
FN costs 10× FP

best operating point when
cost of misclassifying positives and 
negatives is equal

best operating point when
FP costs 10× FN



Other Metrics: Precision

recall (TP rate)  =   
TP

actual  pos
  =   

TP

TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

precision (positive predictive value)  =   
TP

predicted  pos
  =   

TP

TP+FP



Other Metrics: Precision/Recall Curve

•A precision/recall curve (TP-rate): threshold on the 
confidence of an instance being positive is varied

default precision
determined by the
fraction of instances
that are positive

1.0

1.0recall (TPR)

p
re

ci
si

o
n

ideal point

Kawaler et al., Proc. of AMIA Annual Symposium, 2012 

predicting patient risk for VTE



Both

• Allow predictive performance to be assessed at various levels of confidence

• Assume binary classification tasks

• Sometimes summarized by calculating area under the curve

ROC curves

• Insensitive to changes in class distribution (ROC curve does not change if the 
proportion of positive and negative instances in the test set are varied)

• Can identify optimal classification thresholds for tasks with differential 
misclassification costs

Precision/recall curves

• Show the fraction of predictions that are false positives

• Well suited for tasks with lots of negative instances

ROC vs. PR curves



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie
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