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Logistics

•Announcements: 

•HW 1 will be out right after class
• available as hw1.zip on Canvas
• due October 1st on Gradescope

•Roadmap after today:
• Regression & optimization (2 lectures)
• Unsupervised learning (2 lectures)
• Neural networks (5 lectures)
• Midterm (in class)
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Outline

•Parametric modeling
•Comparison with non-parametric models
•Generative vs. discriminative modeling

•Logistic regression
•Maximum likelihood estimation
•Setup

•Naïve Bayes
•Bayesian modeling, MAP vs. MLE
•Motivation / training / inference / smoothing
•Examples (Bernoulli, Multiclass, Gaussian)
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Supervised Learning: Review

Problem setting
• Set of possible instances 
• Unknown target function
• Set of models (a.k.a. hypotheses)

Get
• Training set of instances for unknown target function f,

Goal: model h that best approximates f
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Parametric Learning

•A way to categorize learning techniques
• Parametric: hypotheses indexed by a parameter
• Learning:  find parameter yielding model that 

best approximates the target
• Ex: linear models, neural networks

•Nonparametric methods:
• Instance-based methods (KNN)
• Decision trees



Hh 
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Discriminative Models

•Idea: hypothesis h directly predicts the label (given features)
• y = h(x) or p(y|x) = h(x)

•Includes everything we’ve covered so far

• k-NN

• decision trees

• linear models
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Generative Models

•Hypothesis h specifies a generative story for how the data 
was created
• h(x,y) = p(x,y) or h(x) = p(x)

•Select a hypothesis via ML (or MAP)
• Ex: roll a die. Weights for each side define data generation
• Observe training data to learn hypothesis 

Note: supervised or 
unsupervised
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Discriminative vs Generative

•Can define both for supervised/unsupervised learning
• k-means (discriminative-like) vs mixture-of-Gaussians (generative)

•When should we use one over the other?
• Not always obvious
• Discriminative models:

• Often easier to optimize
• Targets exact performance measure

• Generative models:
• Handling missing data
• Generation via sampling

•Typical examples:
• Discriminative: linear regression, logistic regression, SVM, many neural 

networks (not all!)
• Generative: Naïve Bayes, Bayesian Networks, …

LearnOpenCV

9



Outline

•Parametric modeling
•Comparison with non-parametric models
•Generative vs. discriminative modeling

•Logistic regression
•Maximum likelihood estimation
•Setup

•Naïve Bayes
•Bayesian modeling, MAP vs. MLE
•Motivation / training / inference / smoothing
•Examples (Bernoulli, Multiclass, Gaussian)

10



Classification: Linear models

•How do we learn a linear separator between two classes?

Class 1

Class 0

𝑤



Linear Classification: Attempt 1

•Hyperplane: solutions to
•  note: d-1 dimensional -- d (degree of freedom) – 1 (constraint)

•So… try to use such hyperplanes as separators? 
• Model:

• Predict: y=1 if                        , y=0 otherwise

• i.e. 

• Training objective:
difficult loss function to optimize!!

step function



Linear Classification: Attempt 2

•Let us instead think probabilistically and learn                    instead  

•How?
• Specify the conditional distribution 
• Use maximum likelihood estimation (MLE) to get a nicer loss 
• Run gradient descent (or related optimization algorithm)

step function sigmoid function
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Likelihood Function

•Captures the probability of seeing some data as a function of 
model parameters:

• If data is iid, we have

•Often more convenient to work with the log likelihood
• Both mathematically and for numerical stability
• Log is a monotonic + strictly increasing function



Maximum Likelihood Estimation

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli 
distribution

  then

k: #samples with x=1



Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ

•Differentiate (use product rule) and set to 0. Get

•So: ML estimate is 
Practice: how about maximum log-likelihood?

log ℒ 𝜃; 𝑋 = 𝑘log𝜃 + 𝑛 − 𝑘 log 1 − 𝜃

gradient = 0     ⇒
𝑘

𝜃
−

𝑛−𝑘

1−𝜃
= 0

෠𝜃 =
k

𝑛
 



ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities:

• If data is iid, we have

• Now we can apply this to linear classification to get logistic regression.



Logistic Regression: Conditional Distribution 

•Notation: 

•Conditional distribution model 
for logistic regression:

sigmoid

“soft” version of step function

𝑧 ← 𝜃𝑇𝑥



Logistic Regression: Loss

•Conditional MLE: 

•So

Or 



Logistic regression: Summary

•logistic regression = sigmoid conditional distribution + MLE

•More precisely:
• Give training data iid from some distribution D, 
• Train: 

• Test: output label probabilities 



Logistic Regression: Comparisons

Recall the first attempt:

Another option: use the squared loss 𝑓𝜃 𝑥 𝑖 − 𝑦 𝑖 2

difficult loss function to optimize!!

Bishop, Pattern Recognition and Machine Learning

this is just regular linear regression, but 
it works poorly for classification 



Logistic Regression: Beyond Binary

•We started with this conditional distribution:

•Now let us try to extend it to multi-class classification, 
𝑦 ∈ {1, … , 𝑘}. 

• Can no longer just use one 
• But we can try multiple…



Logistic Regression: Beyond Binary

•Let’s set, for y in 1,2,…,k

•Note: we have several weight vectors now (one per class).

•To train, same as before (just more weight vectors).



Cross-Entropy Loss
•Define 𝑞(𝑖) as the one-hot vector for the 𝑖th datapoint’s label.

•Next, let’s let                                      be our prediction distribution 
(over 𝑦)

•Our loss terms can be written

•This is the “cross-entropy” 

Note: only 1 term non-zero.

Looks like the entropy, but …

𝑞𝑗
(𝑖)

=  𝑃 𝑦 =  𝑗 𝑥(𝑖))



Cross-Entropy Loss

•This is the “cross-entropy”

•What are we doing when we minimize the cross-entropy?

•Recall KL divergence,

•Matching distributions!
Cross-entropy Entropy H(q(i))

(fixed)



Softmax

•We wrote

•This operation is called softmax.
• Converts a vector into a probability vector (note normalization).
• If one component in the vector a is dominant, softmax(a) is close 

to the one-hot vector picking out that maximum component



Quiz



Q1: Calculate the softmax of (1, 2, 3, 4, 5):

1. (0, 0.145, 0.229, 0.290, 0.336)

2. (0.012, 0.032, 0.086, 0.234, 0.636)

3. (0.636, 0.234, 0.086, 0.032, 0.012)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎 𝑖 =
exp(𝑎𝑖)

σ𝑗 exp(𝑎𝑗) 



Q2: True or false

Logistic regression is a discriminative 
model because we obtain 𝑃𝜃(𝑦|𝑥).

False! We also obtain this from 
a generative model. Logistic 
regression is discriminative 
because it does not learn the 
joint distribution over (x,y).
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Review: Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli 
distribution

Then, 
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Review: Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: exponential distribution
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Review: Maximum Likelihood

•Example: exponential distribution
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Review: Maximum Likelihood

•Example: exponential distribution
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•Let’s consider a different approach

•Need a little bit of terminology

• H is the hypothesis

• E is the evidence

Another Approach: Bayesian Inference
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Bayesian Inference Definitions

•Terminology:

•Prior: estimate of the probability without evidence

Prior
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Bayesian Inference Definitions

•Terminology:

•Likelihood: probability of evidence given a 
hypothesis.
•Compare to the way we defined the likelihood earlier

Likelihood
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Bayesian Inference Definitions

•Terminology:

•Posterior: probability of hypothesis given evidence.

Posterior
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MAP Definition

•Suppose we think of the parameters as random variables
• There is a prior 

•Then, can do learning as Bayesian inference
• “Evidence” is the data

• Maximum a posteriori probability (MAP) estimation
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MAP vs ML

•What’s the difference between ML and MAP?

•the prior!
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Application: Parody Detection

•The Economist •The Onion
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Model 0: Not-Naïve Model

Generative story:

1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the 
parody distribution

3. If tails, sample a document ID (X) from the 
regular distribution

44



Model 0: Not-Naïve Model

Generative story:

1. Flip a weighted coin (Y)

2. If heads, roll the yellow many sided die to sample a 
document vector (X) from the parody distribution

3. If tails, roll the blue many sided die to sample a document 
vector (X) from the regular distribution
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Model 0: Not-Naïve Model

46

If HEADS, roll 
yellow die

Flip weighted coin

If TAILS, roll 
blue die

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each side of the die 
is labeled with a 

document vector 
(e.g. [1,0,1,…,1])



Model 0: Main Problem

How many terms are we modeling?

•Say features are binary:

•2k choices of feature vector, each gets its own probability…
• Exponentially big table (e.g. in vocabulary size) 

47

e.g. is word i in the document?



How do we fix this problem?

•Conditional independence of features:

• What do we gain? With binary features, get 2 entries per feature
• So, number of probabilities 

Naïve Bayes: Core Assumption
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Naïve Bayes: Overall Model

Support of P(Xk|Y) depends on the application

Training: Find the class-conditional MLE parameters:
• For prior P(Y), we find the MLE using the data. 
• For each P(Xk|Y) we condition on the data with the 

corresponding class.
 Prediction: Find the class that maximizes the posterior

Model: Product of class prior and the event model
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Naïve Bayes: Smoothing

•Training: empirically estimate the probabilities
• Could we just use counts to obtain the probabilities? 

𝑃 𝑋𝑘 = 𝑖 𝑌 =
#times 𝑋𝑘 = 𝑖 in class 𝑌

#examples of class 𝑌
=

𝑐𝑖

𝑁

• But what if ci = 0? Then P Xk = i Y = 0, which will make 
predictions using the event model zero (= 𝑃(𝑌) ς𝑘 P Xk = i Y ).

• Solution: smooth!
Smoothing 
parameter

50

෠𝑃 𝑋𝑘 𝑌 =
𝑐𝑖 + 𝛼

𝑁 + 𝛼𝑚



Naïve Bayes: Predicting

•With conditional probabilities, how to predict?
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Naïve Bayes Example 1: Bernoulli

Support: Binary vectors of length K

Generative Story:

Model:
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Training Bernoulli Naïve Bayes

Recall: train (by MLE) is to find class-conditional parameters

•To find P(Y): use all the data

•For P(Xi|Y=y): use the data for that class
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Naïve Bayes Example 2: Multinomial
Integer vector (word IDs)

Generative Story:

Model:
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Naïve Bayes Example 3: Gaussian

Model: Product of prior and the event model

Support: 
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1. True, True

2. True, False

3. False, True

4. False, False

Q2-1: Are these statements true or false?
(A) Naïve Bayes assumes conditional independence of features to 
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.



Q2-1: Are these statements true or false?
(A) Naïve Bayes assumes conditional independence of features to 
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.

1. True, True

2. True, False

3. False, True

4. False, False

(A) Just as we learnt in the lecture.
(B) We use Bayes rule to decompose posterior 

probability into prior probability and 
conditional probability given each class, so 
that we can compute it using the estimated 
parameters.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Tengyang Xie 58
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