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Logistics

Announcements:

*HW 1 will be out right after class
* available as hw1l.zip on Canvas
e due October 1%t on Gradescope

*Roadmap after today:
* Regression & optimization (2 lectures)
e Unsupervised learning (2 lectures)
* Neural networks (5 lectures)
* Midterm (in class)



Outline

*Parametric modeling
*Comparison with non-parametric models
*Generative vs. discriminative modeling

*Logistic regression
*Maximum likelihood estimation
*Setup

*Naive Bayes
*Bayesian modeling, MAP vs. MLE

* Motivation / training / inference / smoothing
*Examples (Bernoulli, Multiclass, Gaussian)



Outline

*Parametric modeling
*Comparison with non-parametric models
*Generative vs. discriminative modeling



Supervised Learning: Review

Problem setting Y

* Set of possible instances
* Unknown target function f X =)

 Set of models (a.k.a. hypotheses) H = {h‘h X — y}

Get
* Training set of instances for unknown target function f,

(2, y), (), y@),.. (2, y™)

Goal: model h that best approximates f



Parametric Learning

* A way to categorize learning techniques
* Parametric: hypotheses indexed by a parameter

e Learning: find parameter yielding model that
best approximates the target

* Ex: linear models, neural networks

*Nonparametric methods:
* Instance-based methods (KNN)
* Decision trees



Discriminative Models

*ldea: hypothesis h directly predicts the label (given features)
*y = h(x) or p(y[x) = h(x)

*Includes everything we’ve covered so far

*k-NN

e decision trees

e linear models i—=0



Generative Models

*Hypothesis h specifies a generative story for how the data
was created

*h(x,y) = p(x,y) or h(x) = p(x) < Note: supervised or
unsupervised

*Select a hypothesis via ML (or MAP)
*Ex: roll a die. Weights for each side define data generation

* Observe training data to learn hypothesis




Discriminative vs Generative

* Can define both for supervised/unsupervised learning
* k-means (discriminative-like) vs mixture-of-Gaussians (generative)

* \When should we use one over the other?

* Not always obvious

* Discriminative models: § /N &
* Often easier to optimize W_, Ol il
» Targets exact performance measure — ‘ o ,,'

* Generative models: A 2 e
* Handling missing data Generative Discriminative

* Generation via sampling
LearnOpenCV

* Typical examples:
* Discriminative: linear regression, logistic regression, SVM, many neural
networks (not all!)
* Generative: Naive Bayes, Bayesian Networks, ...



Outline

*Logistic regression
* Maximum likelihood estimation
*Setup



Classification: Linear models

*How do we learn a linear separator between two classes?

o Class 0




Linear Classification: Attempt 1

*Hyperplane: solutions to ol r = ¢
* note: d-1 dimensional

*So... try to use such hyperplanes as separators?
*Model: fo(z) = 0z

step function

*Predict: y=1 if HT;U > (), y=0 otherwise

‘ie. Yy = step(fo(x)) fo

_ .. difficult loss function to optimize!!
* Training objective:



Linear Classification: Attempt 2

*Let us instead think probabilistically and learn Py(y|x) instead

*How?
* Specify the conditional distribution P@ (y\x)
* Use maximum likelihood estimation (MLE) to get a nicer loss
* Run gradient descent (or related optimization algorithm)

step function sigmoid function
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Linear Classification: Attempt 2

*Let us instead think probabilistically and learn Py(y|x) instead

*How?
* Specify the conditional distribution Pg (y\:v)
* Use maximum likelihood estimation (MMLE) to get a nicer loss
* Run gradient descent (or related optimization algorithm)

step function sigmoid function

[ |
|1 1

/el

I - 0




Likelihood Function

e Captures the probability of seeing some data as a function of
model parameters:

L(0; X) = Py(X)
- If data is iid, we have L£(60; X) = Hpg (x;)
J
*Often more convenient to work with the log likelihood

* Both mathematically and for numerical stability
* Log is a monotonic + strictly increasing function



Maximum Likelihood Estimation

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(6; X)
*Example: suppose we have n samples from a Bernoulli

distribution _
PQ(XQU){Q r=1
1—0 xx=0

then n

k: #samples with x=1



Maximum Likelihood: Example

\Want to maximize likelihood w.r.t. ©

L(0; X) = ﬁP(X =z;,) =01 -6)"F

Differentiate (use product rule) and set to 0. Get
P (1 —0)" "k —nb) =0

Practice: how about maximum log-likelihood?

log L(O8; X) = klogf + (n — k)log(1 — 6)
/f k n—k

gradient=0 = 5—520

A k
0 ==
n

*So: ML estimate is

S
|
|



ML: Conditional Likelihood

*Similar idea, but now using conditional probabilities:
L(0;Y,X) = po(Y|X)

e |If data is iid, we have

L(6;Y, X) Hpg (y]x;)

* Now we can apply this to linear cIaSS|f|cat|on to get logistic regression.



Logistic Regression: Conditional Distribution
B 1 ~ exp(#)
14 exp(—2) 14 exp(2)

7z« 0Tx

*Notation: 0 (2)

T

sigmoid

sigmoid

“soft” version of step function

*Conditional distribution model
for logistic regression:

1
Py(y = 1z) = U(HTCC) 7 + exp(—60Tz)




Logistic Regression: Loss

*Conditional MLE:
log likelihood(é’\x(i), y(i)) = log P@(y(i) \az(i))
>0 ] & .
o) = i 2 e Py )

Or
1 - 1 '
min —— Z loga(é’Tx(Z)) — — Z log(1 —U(HTx(Z>))
n

0 n < .
y(’b)zl y(z):O



Logistic regression: Summary

*|ogistic regression = sigmoid conditional distribution + MLE

* More precisely:
* Give training data iid from some distribution D,

* Train: . . 1 ik ; ;
min £(fp) = min —— ;log Py(y |z

* Test: output label probabilities

1
Po(y = 1|z) = 0(0" 2) = 1 + exp(—0Tx)




Logistic Regression: Comparisons

1 — . .
Recall the first attempt:  £(fy) = — > 1 {Step(fg(x(z>)) £ y(z)}
1=1

difficult loss function to optimize!!

Another option: use the squared loss (fg (x(i)) — y(i))z

1 — . . 4
Ufo) = = D (fo(a) =y [
j=1 S o 2*e
LT
9 oégO

this is just regular linear regression, but
it works poorly for classification @

—4 2 0 2 4 6 8 —4 20 2 4 6 8

Bishop, Pattern Recognition and Machine Learning



Logistic Regression: Beyond Binary

\We started with this conditional distribution:

Py(y =1|z) = o(6' z) =

1

1

exp(—071x)

*Now let us try to extend it to multi-class classification,

y € {1, ..., k}.

* Can no longer just use one HTQj
* But we can try multiple...



Logistic Regression: Beyond Binary

elet’sset, foryin1,2,...,k
exp((0°)" x)

Pyly = 1|lx) =
=) SF_ exp((09)T )

*Note: we have several weight vectors now (one per class).
*To train, same as before (just more weight vectors).

1 N
TR o P O e
min n; og Py(y'"]x'")



Cross-Entropy Loss

*Define gV as the one-hot vector for the ith datapoint’s label.

g\ = Py = j|x®)

*Next, let’s let p¥) = Py (y|z(")) be our prediction distribution
(over y)

*Our loss terms can be written / Note: only 1 term non-zero.

logply e = - 3" ¢ logply = 1)

=1 ]
Y

Looks like the entropy, but ...

*This is the “cross-entropy” H(q(i) | p(i))




Cross-Entropy Loss

*This is the “cross-entropy”

H(qg",p") =E  [log p'"]

*What are we doing when we minimize the cross-entropy?

*Recall KL divergence,

D(q""||p'") = E i) [log p™")] — E i) [log ¢
\ ] | J
| |

. . . . Cross-entropy Entropy H(q(")
* Matching distributions! (fixed)




Softmax

*\We wrote

exp((6")" x)

P — |lx) =
=) SF_ exp((69)7)

*This operation is called softmax.
e Converts a vector into a probability vector (note normalization).

*If one component in the vector a is dominant, softmax(a) is close
to the one-hot vector picking out that maximum component
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Q1: Calculate the softmax of (1, 2, 3, 4, 5):
1. (0, 0.145, 0.229, 0.290, 0.336)

2. (0.012,0.032, 0.086, 0.234, 0.636) <(—

3. (0.636, 0.234, 0.086, 0.032, 0.012)

exp(a;)

softmax(a); = S oxp(a@)
j j



Q2: True or false

Logistic regression is a discriminative
model because we obtain Py (y]|x).

False! We also obtain this from
a generative model. Logistic
regression is discriminative
pecause it does not learn the
joint distribution over (x,y).




Outline

*Naive Bayes
*Bayesian modeling, MAP vs. MLE
* Motivation / training / inference / smoothing
*Examples (Bernoulli, Multiclass, Gaussian)



Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)
*Example: suppose we have n samples from a Bernoulli
distribution 9 =1
PQ(X = LU) = {
1—60 =0

Then, n



Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

*Example: exponential distribution

pdf of Exponential(\): f(z) = Ae™?*

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(¥} V|

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



Review: Maximum Likelihood

*Example: exponential distribution

e First write down log-likelihood of sample.

N .
=) _log f(z'") (")
— Zlog Aexp(—Az(V)) (2)

Z ) + — Az 3)

— A Z ¥ (4)



Review: Maximum Likelihood

*Example: exponential distribution

e Compute first derivative, set to zero, solve for A.

N
e\ d Z.
%) = -~ Nlog(}) — Az (1)
1=1
N
N )
== - V=0 (2)
- 1=1
N
— )\MLE (3)




Another Approach: Bayesian Inference

*Let’s consider a different approach
*Need a little bit of terminology

P(E|H)P(H)
P(E)

P(H|E) =

* His the hypothesis
£ is the evidence




Bayesian Inference Definitions

*Terminology:

E‘H)P(H) < Prior
P(E)

p|E) =

*Prior: estimate of the probability without evidence



Bayesian Inference Definitions

*Terminology:

Likelihood

-~
P(E|H)P(H)

P(HIE) = ——p

Likelihood: probability of evidence given a
hypothesis.
Compare to the way we defined the likelihood earlier



Bayesian Inference Definitions

*Terminology:

E|H)P(H)
P(E)

p(|E) = 2
1

Posterior

*Posterior: probability of hypothesis given evidence.



MAP Definition

*Suppose we think of the parameters as random variables
*There is a prior P(Q)

*Then, can do learning as Bayesian inference

* “Evidence” is the data P(X‘Q)P(@)

POIY) = =55

* Maximum a posteriori probability (MAP) estimation

MAP _ (4)
0 arg mgxgp(w 0)p(6)



MAP vs ML

\What’s the difference between ML and MAP?

MLE _ (i)
0 arg max 71:[1 p(z'"|0)

MAP _ (3)
0 arg max | | p(a'"[0)p(6)

i=1
*the prior!



Outline

*Naive Bayes
*Bayesian modeling, MAP vs. MLE
* Motivation / training / inference / smoothing
*Examples (Bernoulli, Multiclass, Gaussian)



*The Economist

Application: Parody Detection

*The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

@) timekecper (PR B

Sep 5th 2016 | MADRID | Europe

BACK in June, after Spain’s second indecisive election in six months, the general
expectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People’s Party (PP) did not win back the absolute
maijority it had lost in December, it remained easily the largest party, with 137 of the 350

RSy Vi Y | SN . PR GGy SRRy | PRy | QDY [Py | Sy RPSPUQUp I PRI ! SRty RpRpEpRpe - ¢ RORGppyny 5oy

* ELECTION 2016 * MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop
Y

NEWS IN BRIEF
August 23, 2016

VOL 52 ISSUE 33
Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as

Al L1 R B B - TR, R, | " 2. 1o ey R Sy L 2
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Model 0: Not-Naive Model

Generative story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the
parody distribution

3. If tails, sample a document ID (X) from the
regular distribution

P(X,Y) = P(X|Y)P(Y)



Model 0: Not-Naive Model

Generative story:
1. Flip a weighted coin (Y)

2. If heads, roll the yellow many sided die to sample a
document vector (X) from the parody distribution

3. If tails, roll the blue many sided die to sample a document
vector (X) from the regular distribution

P(X17°°°7XK7Y) :P(XlaaXKD/)P(Y)



Model 0: Not-Naive Model

Flip weighted coin

If HEADS, roll
yellow die
Y Xp Xy X3 Xk
0 110 | 1 1
1 o|1]o0 1
1 111 | 1 1
0 o| o0 | 1 1
0 11 0| 1 0
1 110 | 1 0

If TAILS, roll
blue die

46



Model 0: Main Problem

How many terms are we modeling?
*Say features are binary: Xz - {O, 1} e.g. isword iin the document?

P(X177XK|Y)

2k choices of feature vector, each gets its own probability...
* Exponentially big table (e.g. in vocabulary size)



Naive Bayes: Core Assumption

How do we fix this problem?
*Conditional independence of features:

P(X17°°°7XK7Y) :P(XlaaXK‘Y)P(Y)

= (H P(Xky)) P(Y)

k=1

* What do we gain? With binary features, get 2 entries per feature
* So, number of probabilities
P 2F 5 2k



Naive Bayes: Overall Model

Support of P(X,|Y) depends on the application

Model: Product of class prior and the event model

P(X,Y) = P(Y) ] P(XalY)
k=1

Training: Find the class-conditional MLE parameters:
* For prior P(Y), we find the MLE using the data.

* Foreach P(X,|Y) we condition on the data with the
corresponding class.

Prediction: Find the class that maximizes the posterior

y = argmax p(y|x)
Yy




Naive Bayes: Smoothing

*Training: empirically estimate the probabilities
* Could we just use counts to obtain the probabilities?

P(X, = ilY) = #times X = iinclassY ¢
e = HE) S #examples of classY N

e But what if c. = 0? Then P(Xi = i|Y) = 0, which will make
predictions using the event model zero (= P(Y) [ [, P(Xx = i|Y)).

C; + a - Smoothing
parameter
N + am

* Solution: smooth! P (X |Y) =



Naive Bayes: Predicting

* With conditional probabilities, how to predict?

y = argmax p(y|x) (posterior)

Y
= argmax P(x|y)p(y) (by Bayes’ rule)
y p(x)

= argmax p(x|y)p(y)
Yy



Naive Bayes Example 1: Bernoulli

Support: Binary vectors of length K
x € {0,1}%

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(6;y) Vk € {1,..., K}

Model: Do, e(m y) Do, 9(1‘1 ,,,,, LK, y)




Training Bernoulli Naive Bayes

Recall: train (by MLE) is to find class-conditional parameters
*To find P(Y): use all the data

*For P(X.| Y=y): use the data for that class

E:iilﬂ(yCU =1)
N

SV Iy® =0Aal? =1)
Zf;\; H(y(i) — O)
YL I =1aa) =1)

ng: CI(y® =1)
Vk e {l,...,K}

O =

Or.0 =




Naive Bayes Example 2: Multinomial

Integer vector (word IDs)

X = |r1,22,...,2)]| Wherez,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y") ~ Bernoulli(¢)
forj e {1,..., M;}:

:I;g.?’) ~ Multinomial(0 ), 1)

Model:
Pg.0(x,Yy) Hpek (zk|y)

= (¢)Y(1 —¢)'~¥) H Oy x,
j=1



Naive Bayes Example 3: Gaussian

Support: X € RK

Model: Product of prior and the event model

p(wvy) :p(ﬂfl,-..,CCK,y)

Gaussian Naive Bayes assumes that p(xx|y) is given by
a Normal distribution.



Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes' rule to calculate the posterior probability.

1. True, True

2. True, False
3. False, True
4. False, False




Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes' rule to calculate the posterior probability.

1. True, True{u—

2 rue’ False (A) Just as we learnt in the lecture.

3 False True (B) We use Bayes rule to decompose posterior
) ’ probability into prior probability and

4 False False conditional probability given each class, so
- J

that we can compute it using the estimated
parameters.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Tengyang Xie o
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