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Linear Classification

*Let’s think probabilistically and learn Py (y|x)

*How?
* Specify the conditional distribution P@ (y|x)
* Use MLE to derive a loss
* Run gradient descent (or related optimization algorithm)

sig(t)

’—sig(t):#‘ 1.0
* Leads to logistic regression f_

0.2




Likelihood Function

e Captures the probability of seeing some data as a function of
model parameters:

L(0; X) = Py(X)
* |f data is iid, we have L(@;X) — Hpe(ajj)
J

*Often more convenient to work with the log likelihood
* Log is a monotonic + strictly increasing function



Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)
*Example: suppose we have n samples from a Bernoulli
distribution 9 =1
PQ(X = LU) = {
1—60 =0

Then, n



Maximum Likelihood: Example

\Want to maximize likelihood w.r.t. ©

L(0; X) = ﬁP(X =z;,) =01 -6)"F

Differentiate (use product rule) and set to 0. Get
"1 —-0)""""1(h—nh) =0
h

*S0o: ML estimate is é —
n



ML: Conditional Likelihood

*Similar idea, but now using conditional probabilities:
L(0;Y,X) = po(Y|X)

e |If data is iid, we have

L(6;Y, X) Hpg (y]x;)

* Now we can apply this to linear cIaSS|f|cat|on. yields
logistic regression.



Logistic Regression: Conditional Distribution
B 1 ~ exp(#)
 14exp(—z) 1+exp(z)

*Notation: 0 (2)

I

Sigmoid

e Conditional Distribution:

1
Py(y = 1|z) = (8" z) = 1 + exp(—60Tz)



Logistic Regression: Loss

*Conditional MLE:
log likelihood(é’\x(i), y(i)) = log P@(y(i) \az(i))

*So: . . 1 — (D)1 ()
min £(fp) = min —— ;bgPe(y )

Or,
1 - 1 '
min — — Z loga(HTx@) - Z log(1 —O'(HTQS(Z)))

0 n < .
y(’b)zl y(z):O



Logistic Regression: Sigmoid Properties
1

*Bounded: — c (0.1
7 (2) 1+ exp(—2) (0,1)
*Symmetric:
— 1
L= o(z) = P2 — o(—2)

T 1+ exp(—z) exp(z)+1

*Gradient:

"(2) = exp(—2) =o0(2)(1 — (o(z
() = oD ()1 - (o(2)




Logistic regression: Summary

Logistic regression = sigmoid conditional distribution + MLE

* More precisely:
* Give training data iid from some distribution D,

* Train: . . 1 ik ; ;
min £(fp) = min —— ;log Py(y |z

* Test: output label probabilities

1
Po(y = 1|z) = 0(0" 2) = 1 + exp(—0Tx)




step function

Logistic Regression: Comparisons

*Recall the first attempt:

((fo) = — 3" Ustep(fo(x®) £ y?)
1=1

|0

*Difficult to optimize!!
* Another way: run least squares, ignore that y is O or 1:

n

(o) =+ S (folaD) — y)?

j=1



Logistic Regression: Comparisons

Downside: not robust to “outliers”
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

Figure: Pattern Recognition and Machine Learning, Bishop



Logistic Regression: Beyond Binary

\We started with this conditional distribution:

Py(y =1lz) = o(6' 2) = 1

1 4+ exp(—0Tx)

*Now let’s try to extend it.
e Can no longer just use one 6’T£13
* But we can try multiple...



Logistic Regression: Beyond Binary

eLet’s set, foryin1,2,...,k
exp((0°)" x)

Pyly = 1|lx) =
=) SF_ exp((09)T )

*Note: we have several weight vectors now (1 per class).
*To train, same as before (just more weight vectors).

1 N
TR o P O e
min n; og Py(y'"]x'")



Cross-Entropy Loss

*Let’s define g! as the one-hot vector for the ith datapoint.
*Next, let’s let p'*) = Py(y|z(") be our prediction

Note: only 1 term non-zero.

Our loss terms can be written /

logply e = - 3" ¢ logply = 1)
1=1

\ J
|

Should look familiar...

*This is the “cross-entropy” H(q(i) 7 p(i))




Cross-Entropy Loss

*This is the “cross-entropy”

H(qg",p") =E  [log p'"]

*What are we doing when we minimize the cross-entropy?

*Recall KL divergence,

D(q""||p'") = E i) [log p™")] — E i) [log ¢
\ ] | J
| |

. . . . Cross-entropy Entropy H(q(")
* Matching distributions! (fixed)




Softmax

*\We wrote

exp((6")" x)

P — |lx) =
=) SF_ exp((69)7)

*This operation is called softmax.
e Converts a vector into a probability vector (note normalization).

*If one component in the vector a is dominant, softmax(a) is close to
one-hot vector






Q: Why can we work with the log-likelihood rather than the likelihood?

Q: Why do we want to work with the log-likelihood rather than the likelihood?
Give two reasons



Q: Why can we work with the log-likelihood rather than the likelihood?

The logarithm is a monotonically increasing function and so any parameter 6
that maximizes the log-likelihood also maximizes the likelihood.
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Q: Why can we work with the log-likelihood rather than the likelihood?

The logarithm is a monotonically increasing function and so any parameter 6
that maximizes the log-likelihood also maximizes the likelihood.

Q: Why do we want to work with the log-likelihood rather than the likelihood?
Give two reasons

1. easier to work with mathematically because it converts products to sums
2. easier to optimize numerically
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Linear Regression: Setup

*Training/learning: given
{(zM),y M), (2@, y@)), .., (2™, ™)}

oFind fo(z) = 6" 2z =>"._,0;x; that minimizes

T Note: set x, = 1

1 — . .
Hypothesis Class é(f@) — % Z(f@(x(J)) _ y(J))Q

g=1

P —
<

— Loss function (how far are we)?



Linear Regression: Notation

*Matrix notation: set X to have jth row be (m(j) )T

* And y to be the vector [y(l), O 7y(n)]T

*Can re-write the loss function as

() = — (o) — y)? = X0~y

j=1



Linear Regression: Fitting

*Set gradient to 0 w.r.t. the weight,

Ve(fs) = V|1 X0 |3 = 0

— V[(X0—y)" (X0 —y)] =0

— V[0 X' X0 200 X y+y' y] =0
— 2X1 X6 —-2X1y =0

— 0= (X"X) "' X"y (assumex7Xisinvertible)




Linear Regression: Minimizer

*|et’s study this solution algebraically

*If X is invertible, just solve X8 = yandget8 = X1y
*But typically X is a tall matrix

XTx 0 Xy

I I Normal equatlon. B=X"X)"1xTy




Evaluation: Metrics

*MSE/RMSE (mean-square error + root version)
* MAE (mean average error)
*R-squared (more on this next)

e Usually, compute on training data... (but should
do cross validation!)



R-squared

*Several ways to define it, one way:

Zj(y(j) — fo(z())2

>,y — )’
\

Empirical mean of labels

R’ =1

*Intuition: how much of the variance in y is predictable by x
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High-dimensional linear regression

Data matrix X isn X d
* number of data points n
 number of features d

If n > d and X has full column rank then X" X is invertible

But whatifd > n?

*e.g. a training set of n =1K documents, each represented as a
bag-of-words vector (X} ;; = # times word i is in document j)

with vocabulary size d =10K
enow X ' X will not be invertible



Solution: Regularization

*Same setup, new loss (Ridge regression):

(o) =+ 3 (fo(a) —y @) + (&
j=1

regularization

* Conveniently, still has a closed form solution
parameter

0= (X"X+ ) 'X"y

* Goals:
* solves the problem of X T X not being invertible
results in a 8 with small norm, which is often less likely to overfit



Alternative regularization: LASSO

* Another type of regularization:
1 | |
((fo) ==> (fo(x)) —y)* + A|6]I,
n -
J=1 \

regularization

. o parameter
* unlike the £,-norm, regularizing by the £{-norm

is known to encourage a sparse 6

* theoretical understanding of this phenomenon exists
under assumptions on X and y (compressed sensing)

 useful for both regularization and feature selection



Choosing the regularization strength A

For prediction: use cross-validation! _

fold 1’s
*split dataset into k train-validation folds validation .
e fold 1’s training data
e for each candidate A:
e compute average across foldsi = 1, ..., k of tf°'.d 2 fold 2's fold 2's
raining validation training
* MSE (or other metric) of 8, ; on fold i’s data data data
validation data
* 8, ; minimizes Ridge/LASSO with parameter fold 3's
i’s traini lidati
A on fold i’s training data fold 3's training data va (Ijaatz;on

* retrain on the full training data with the



Other things you can do with regularization

ecombine 1 and ¥, regularization (Elastic Net)

efeature selection: determine which features of
yvour model are important

*regularize classifiers like logistic regression
(just add a norm penalty to the MLE objective)



Probabilistic interpretation

the ordinary least squares (OLS) estimator 8 = (XTX)~1xTy
estimator is the MLE of a Gaussian probabilistic model:

oy(i) ~ N(QTx(i)’ 0'2)
eassume variance g? is known

Ridge regression and LASSO are MAP estimators of the
same probabilistic model with different priors for 6

*Ridge regression: 8 ~ N(04, 7%1;)
*LASSO: 8 ~ Laplace(0g4, 7)
*in both cases T depends on g% and A



Regularized least squares in statistics

* LASSO / Elastic Net often used to pick
out relevant and irrelevant features

* numerous tools to identify the “true”
data model 6
* AIC / BIC

2001, Vol. 16, No. 3, 199-231

* statistical tests Statistical Modeling: The Two Cultures
* LARS / regularization paths Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to

reach conclusions from data. One assumes that the data are generated

°® V4 : by a given stochastic data model. The other uses algorithmic models and
S e e to ay S re a I n g to e a r n a O ut t e treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-

S S < ° ment has led to irrelevant theory, questionable conclusions, and has kept

tWO C u t u re s 0 Stat I St I Ca m 0 e I n g ° statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed

rapidly in fields outside statistics. It can be used both on large complex

® d ata m Od e I i n g ( (l9 8% Of a I I Stat i St i C i a n S” ) data sets and as a more accurate and informative alternative to data

modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence

e algorithmic modeling (most of ML today)






Q: Suppose you find that your linear regression model is under fitting the data. In such
situation which of the following options would you consider?

A.  Add more variables
B. Start introducing polynomial degree variables
c. Use L1 regularization

p. Use L2 reqgularization

1. A, B,C
2. A,B,D
3. AB

2. AB,C,D



Q: Suppose you find that your linear regression model is under fitting the data. In such
situation which of the following options would you consider?

A.  Add more variables
B. Start introducing polynomial degree variables
c. Use L1 regularization

p. Use L2 reqgularization

In case of under fitting, you need to induce more
variables in variable space or you can add some

L ABC polynomial degree variables to make the model
2. A,B,D more complex to be able to fit the data better. No
. A B _ regularization methods should be used because

’ regularization is used in case of overfitting.

2. AB,C,D



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Alex Smola, Fred Sala, Tengyang Xie
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