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Linear Classification

•Let’s think probabilistically and learn

•How?
•Specify the conditional distribution 
•Use MLE to derive a loss 
•Run gradient descent (or related optimization algorithm)

• Leads to logistic regression



Likelihood Function

•Captures the probability of seeing some data as a function of 
model parameters:

• If data is iid, we have

•Often more convenient to work with the log likelihood
• Log is a monotonic + strictly increasing function



Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli 
distribution

Then, 



Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ

•Differentiate (use product rule) and set to 0. Get

•So: ML estimate is 



ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities:

• If data is iid, we have

•Now we can apply this to linear classification: yields 
logistic regression.



Logistic Regression: Conditional Distribution 

•Notation: 

•Conditional Distribution: 

Sigmoid



Logistic Regression: Loss

•Conditional MLE: 

•So: 

Or, 



Logistic Regression: Sigmoid Properties

•Bounded: 

•Symmetric:

•Gradient: 



Logistic regression: Summary

•Logistic regression = sigmoid conditional distribution + MLE

•More precisely:
•Give training data iid from some distribution D, 
•Train: 

•Test: output label probabilities 



Logistic Regression: Comparisons

•Recall the first attempt:

•Difficult to optimize!!

•Another way: run least squares, ignore that y is 0 or 1:

step function



Logistic Regression: Comparisons

•Downside: not robust to “outliers”

Figure: Pattern Recognition and Machine Learning, Bishop



Logistic Regression: Beyond Binary

•We started with this conditional distribution:

•Now let’s try to extend it. 
•Can no longer just use one 
•But we can try multiple…



Logistic Regression: Beyond Binary

•Let’s set, for y in 1,2,…,k

•Note: we have several weight vectors now (1 per class).

•To train, same as before (just more weight vectors).



Cross-Entropy Loss

•Let’s define q(i) as the one-hot vector for the ith datapoint.

•Next, let’s let                                      be our prediction

•Our loss terms can be written

•This is the “cross-entropy” 

Note: only 1 term non-zero.

Should look familiar…



Cross-Entropy Loss

•This is the “cross-entropy”

•What are we doing when we minimize the cross-entropy?

•Recall KL divergence,

•Matching distributions!
Cross-entropy Entropy H(q(i))

    (fixed)



Softmax

•We wrote

•This operation is called softmax.
•Converts a vector into a probability vector (note normalization).
• If one component in the vector a is dominant, softmax(a) is close to 

one-hot vector



Break & quiz
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Q: Why can we work with the log-likelihood rather than the likelihood?

The logarithm is a monotonically increasing function and so any parameter 𝜃 
that maximizes the log-likelihood also maximizes the likelihood.

Q: Why do we want to work with the log-likelihood rather than the likelihood? 
Give two reasons

1. easier to work with mathematically because it converts products to sums
2. easier to optimize numerically
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Linear Regression: Setup

•Training/learning: given 

•Find                                                           that minimizes  

Loss function (how far are we)?

Hypothesis Class

Note: set x0 = 1



Linear Regression: Notation

•Matrix notation: set X to have jth row be 

•And y to be the vector 

•Can re-write the loss function as 



Linear Regression: Fitting

•Set gradient to 0 w.r.t. the weight,

(assume 𝑿𝑻𝑿 is invertible)



Linear Regression: Minimizer

•Let’s study this solution algebraically

•If 𝑋 is invertible, just solve 𝑋𝜃 = 𝑦 and get 𝜃 = 𝑋−1𝑦

•But typically 𝑋 is a tall matrix

𝑋

𝜃
=

𝑦

𝑋𝑇𝑋 𝜃

=

𝑋𝑇𝑦

Normal equation: θ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦



Evaluation: Metrics

•MSE/RMSE (mean-square error + root version)

•MAE (mean average error)

•R-squared (more on this next)

•Usually, compute on training data… (but should 
do cross validation!)



R-squared

•Several ways to define it, one way:

•Intuition: how much of the variance in y is predictable by x

Empirical mean of labels
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High-dimensional linear regression

Data matrix 𝑋 is 𝑛 × 𝑑
•number of data points 𝑛

•number of features 𝑑

If 𝑛 > 𝑑 and X has full column rank then 𝑋⊤𝑋 is invertible

But what if 𝒅 ≫ 𝒏 ?
•e.g. a training set of 𝑛 =1K documents, each represented as a 

bag-of-words vector (𝑋[𝑗,𝑖] = # 𝑡𝑖𝑚𝑒𝑠 𝑤𝑜𝑟𝑑 𝑖 𝑖𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗) 
with vocabulary size 𝑑 =10K

•now 𝑋⊤𝑋 will not be invertible



Solution: Regularization

•Same setup, new loss (Ridge regression):

•Conveniently, still has a closed form solution

•Goals: 
• solves the problem of 𝑋⊤𝑋 not being invertible
• results in a 𝜃 with small norm, which is often less likely to overfit

regularization 
parameter



Alternative regularization: LASSO

•Another type of regularization:

•unlike the ℓ2-norm, regularizing by the ℓ1-norm 
is known to encourage a sparse 𝜃
• theoretical understanding of this phenomenon exists 

under assumptions on 𝑋 and 𝑦 (compressed sensing)
• useful for both regularization and feature selection

regularization 
parameter



Choosing the regularization strength 𝜆

For prediction: use cross-validation!

• split dataset into 𝑘 train-validation folds

• for each candidate 𝜆:
• compute average across folds 𝑖 = 1, … , 𝑘 of

• MSE (or other metric) of 𝜃𝜆,𝑖 on fold i’s 
validation data

• 𝜃𝜆,𝑖 minimizes Ridge/LASSO with parameter 
𝜆 on fold i’s training data

• retrain on the full training data with the 
optimal candidate 𝜆

full training data

fold 1’s 
validation 

data fold 1’s training data

fold 2’s 
training 

data

fold 2’s 
validation 

data

fold 2’s 
training 

data

fold 3’s training data

fold 3’s 
validation 

data

full training data



Other things you can do with regularization

•combine ℓ1 and ℓ2 regularization (Elastic Net)

•feature selection: determine which features of 
your model are important

•regularize classifiers like logistic regression 
(just add a norm penalty to the MLE objective)



Probabilistic interpretation

the ordinary least squares (OLS) estimator 𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 
estimator is the MLE of a Gaussian probabilistic model:

•𝑦(𝑖) ∼ 𝑁(𝜃⊤𝑥(𝑖), 𝜎2) 

•assume variance 𝜎2 is known

Ridge regression and LASSO are MAP estimators of the 
same probabilistic model with different priors for 𝜃

•Ridge regression: 𝜃 ∼ 𝑁(0𝑑 , 𝜏2𝐼𝑑) 

•LASSO: 𝜃 ∼ Laplace(0𝑑, 𝜏)

• in both cases 𝜏 depends on 𝜎2 and 𝜆



Regularized least squares in statistics

•LASSO / Elastic Net often used to pick 
out relevant and irrelevant features

•numerous tools to identify the “true” 
data model 𝜃
•AIC / BIC
• statistical tests
• LARS / regularization paths

•see today’s reading to learn about the 
two cultures of statistical modeling:
• data modeling (“98% of all statisticians”)
• algorithmic modeling (most of ML today)
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Q: Suppose you find that your linear regression model is under fitting the data. In such 
situation which of the following options would you consider?
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C. Use L1 regularization

D. Use L2 regularization



Q: Suppose you find that your linear regression model is under fitting the data. In such 
situation which of the following options would you consider?

1. A, B, C

2. A, B, D

3. A, B

4. A, B, C, D

In case of under fitting, you need to induce more 
variables in variable space or you can add some 
polynomial degree variables to make the model 
more complex to be able to fit the data better. No 
regularization methods should be used because 
regularization is used in case of overfitting.

A. Add more variables

B. Start introducing polynomial degree variables

C. Use L1 regularization

D. Use L2 regularization



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Alex Smola, Fred Sala, Tengyang Xie 
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