’ Ty e
u::@le. ‘t'po-&f::-‘m ~

- \\'.
-
[l

4 ‘/',/,! {‘ fﬂ

CS 760: Machine Learning
Optimization

Misha Khodak

University of Wisconsin-Madison

24 September 2025

Outline

*Optimization problems in machine learning

*Gradient descent
*idea, algorithm, convexity, convergence, nonconvexity

*Drawbacks and other optimizers
* stochastic gradient descent, alternative optimizers

Outline

*Optimization problems in machine learning

Optimization in ML
in supervised learning, we
*have a training dataset of (x(i),y(i)) pairsfori=1,..,n

esearch a hypothesis space H for a function h that

- predicts well, i.e. A(xY) = y® on most of the training data

* satisfies other constraints, e.g. simplicity so as not to overfit

Optimization in ML

often searching the hypothesis
space is an optimization problem:

edecision trees
min _depth(h)

h(x®)=y®
vie[n]\\
predicts

, is simple
*parametric models well /

n
grelliRr}i Z lOSS(hg (x(i)), y(i)) + penalty(0)
g

Optimization in ML

)] sometimes
often searching the hypothesis optimization is

space is an optimization problem: (NP) hard and

heuristic

edecision trees .
sometimes we

have a closed-

' depth(h
min _depth(h) form solution

h(x®)=y®
Vie[n]

This lecture:
sometimes
there is an
efficient

min z lOSS(hg (x(i)), y(i)) + penalty(0) optimization
t

*parametric models

algorithm to

=1 ared squared get the solution

error £,-norm

Outline

*Gradient descent
*idea, algorithm, convexity, convergence, nonconvexity

Iterative Methods: Gradient Descent

\What if there’s no closed-form solution?

*Use an iterative approach to gradually
get closer to the solution.

*Gradient descent:
e Suppose we’re computing min g(@)

» Start at some () 0

* Iteratively compute 9t+1 = 0, — an(Ht)

* Stop after some # of steps \
learning

rate/step size

Gradient Descent: lllustration

*Goal: steps get closer to minimizer

*Some notes:
* Step size can be fixed or varying

* Under certain conditions, will converge
to global minimum

level sets
Wikipedia

Gradient Descent: Efficiency

*Back to our linear regression problem

1
*Want to find minf(fe) = min —HXQ — y”%

0 0 N
 What’s our gradient? Vf(fg) — l(XTXx0— QXTy)
T

*So, plugging in , we get

1
(975_|_1 — 6)75 — Oé—(QXTX(gt — QXTy)
(g

Linear Regression: Normal Equations vs GD

*Why do this for a setting with a closed-form solution?
*Consider its computational cost:

)= (X'X)"t X"y

|]
dxd dxn nxl
* Cost: (i) invert matrix, ©(d3). (ii) multiplication, ©(d?n).
* Total: O(d*n+ d3). Recall: by standard methods,

inverting an m x m matrix is ©(m?3).

Multiplyinga m x p withap x g
matrix is ©(mpq)

Linear Regression: Normal Equations vs GD

Now let’s compare to the cost of gradient descent

*Normal Equations § = (XTX)_lXTy
* Total Cost: O(d’n+ d3).

e Gradient Descent: t iterations

1
(975_|_1 — (915 — Oé—(QXTX(gt — ZXTy)
T

* Cost: O(dn) at each step.
* Total Cost: O(dnt).

If we do “few” steps t, then GD is cheaper: t<max{d, d?/n}

Gradient Descent: Convergence

*Even if GD is cheaper, what does it give us?

|Let’s analyze it. We'll need some assumptions
e convex and differentiable objective
* has L-Lipschitz-continuous gradients

*Under these assumptions, we have the following guarantee:

*if we run T steps of GD with fixed step size a < 1/L starting at x,
then the T'th iterate x; satisfies

fler) —f(x¥) <

|12g — x*15
2T«

minimizer

Gradient Descent Analysis : Convexity

A function f with convex domain X is called convex if for all
T1,Z2 inthe domainandall A € [0, 1] we have

fOz1+ (1= Nz2) < Af(@1) + (1= A) f(22)

\ J \ J
| |

Convex combination Line segment joining f(x,) and f(x,)
1y

Gradient Descent Analysis : Convexity

* An equivalent definition:

*Function sits above its tangents

Gradient Descent Analysis : Lipschitzness

*A function has L-Lipschitz gradients if

IVf(z1) = Vf(x2)ll2 < Lfjx1 — x2||2
*Equivalentto V*f(z) < LI
*Recall: A < B meansthat B — A is positive semidefinite

*Recall some more: C is positive semidefinite if z! C'z > ()

Gradient Descent: Convergence Proof p. 1

*We'll use our two assumptions.
*|et’s start with a Taylor expansion:

f(y) = f(z) + V() (y —2) +1/2(y —2)" Vf(2)(y — 2)

*Next, our gradient Lipschitz condition means V° f(z) < LI

— f(y) < f(x)+Vf(z) (y—x)+1/2L]y — x|

J \ J
| |

Linear Approximation Remainder: at most a quadratic

Gradient Descent: Convergence Proof p. 2

*Let’s plug in our GD relationship Yy < Ty11 = T — Cva(ili‘t)

— f(y) < f(x)+Vf(z) (y—x)+1/2L|y — x|

*Start with some algebra

Flerin) < flae) + V(@) (@ — o) + 1/2L w40 — o
= f(zy) — V(z)TaV f(z:) + 1/2L)aV f(z1)]|2
— f(2s) — ||V f(@)||2 + 1/2La2 |V f(z1)|2
= f(z) — a(l — 1/2La)||V f(z4) |3

Gradient Descent: Convergence Proof p. 3

*So, we now have

f(zee1) < flae) = 1/2a[[V f(24)]3

\ J
|

Positive except at minimum (where it’s 0)

*Promising! Our estimates are getting better.

*Still need how big these gradient magnitudes are

Gradient Descent: Convergence Proof p. 4

flza) > fz1) + V(z1) (22 — 21)
*Haven’t used convexity yet, so let’s:

flxe) < f(a®) + V(z)' (2 — z*)

Combine with [(z,41) < (1) — 1/2a][V ()3
f(xee1) < f(27) Jlr Vf(xe)" (xp —a") — o/2||V f(24) |3
flxep1) — f(2™) < %(QQVf(fEt)T(% — ") — ? ||V f(z)]15)

Ib = all3 = llall3 —2a™b +1IblI5 = 2a"b—llallz = IblI3 — IIb — all3

|

f(ze+1) — f(27) = o ([l - '3 = llze — aV fze) — 27|13

Tangent

Gradient Descent: Convergence Proof p. 5

*Now, simplify

|z — 2*[)2 = lze — aV f (@) — 2"|2)

N
f(xer1) — f(@7) < %(

\ J
|

This part is just x,,,

k 1 k k
f(@i41) — fl2") < %(th — 2|5 = |lze41 — []3)

Gradient Descent: Convergence Proof p. 6

*So, we have something familiar...

1

f@es1) = f(27) < %(th — 23 = [[zen — 2|3)
\ Y J
T —1 T —1 1 Can telescope!
f(@e41) Z o (e ="z =z — 27[[2)
1T —1 1
f(xie1) = f(27) < o=(llzo — 2"z = oz — 2"3)
t=0

Gradient Descent: Convergence Proof p. 7

*Now we have

1T'—1

1
> f(@e1) = fz*) < 5, Ulo = z*||3 = [ler — 27[3)
t=0

*Can ignore the rightmost term (we’re
just making the RHS same or bigger)

1T—1 1
D f(@en) = f(z*) < 5 Ulo = z*[2)
t=0 ‘

J \ J
| |

Value gap for all steps Initial guess gap to minimizer

Gradient Descent: Convergence Proof p. 7

*Continue,

" Flern) — £@) < o (lzo — 2°[3)

A

*But, recall that each iterate has a smaller value, i.e.,

f(@ep) < floe) —1/20|V f(24) |3

ZfQZ'T Sz—: f(xeg1)
t=0

°So

Gradient Descent: Convergence Proof p. 8

1T'—1 1T'—1
*Almost there! We have Z flxr) < Z flxeiq)
t=0 t=0

*Divide by T, | T-1
= flar) = f(@7) = — >) = f(z)
t=0

«Combine with ~ 1 . 1 19
Z f@ee1) — f(@7) < —([lwo — 27(3)
=0

2T oy Done!

Gradient Descent: Convergence Proof Recap

*Note: used all conditions in one or more places in the proof.

*|If you don’t use an assumption, either your result is stronger than
you thought or (more likely) you are making a mistake

*Other assumptions that lead to varying proofs/rates:
* Strong convexity
* Non-convexity
* Non-differentiability 55

2.5
1.5

0.5

25 =2 15 -1 w05 0 05 1 15 2 25

Gradient Descent as a heuristic

*If a function is non-convex, gradient descent
* can still be applied so long as it is differentiable

*is only guaranteed to reach a stationary point, not
necessarily a global minimum

. Wikipedi
*Nevertheless, neural networks are commonly fit e

using (extensions of) gradient descent:
* objectives are non-convex AND non-smooth

e often get parameters that are optimal (low training loss)
AND generalize well (high test accuracy)

*required decades hacking and experimentation

*should be viewed as a poorly understood heuristic like
information gain for decision trees

Q: True or False: gradient descent is always a more efficient way of
computing linear regression than the normal equations.

Q: True or False: gradient descent is always a more efficient way of
computing linear regression than the normal equations.

False: depending on the number of data points,
feature dimension, and number of steps taken,
gradient descent can be more expensive.

Outline

*Drawbacks and other optimizers
* stochastic gradient descent, alternative optimizers

Gradient Descent: Drawbacks

*Why would we use anything but GD?

*Let’s go back to ERM. arg min — {(h (i), (2)
et’s go back to heHnZ y)

*For GD, need to compute Vf(h(ﬂl’(i), y(i))

* Each step: n gradient computations
*ImageNet: 10° samples... so for 100 iterations, 10 gradients

Solution: Stochastic Gradient Descent

*Simple modification to GD.
eLet’s use some notation: ERM:

argmm—Z@ (9), y)

Note: this is what we’re optimizing over!
x’s are fixed samples.

8% ik . .
6D O =0 — - ng(f(et;x(z)),y(z))

Solution: Stochastic Gradient Descent

*Simple modification to GD:

em_et——Zw (6y; 2D, 5)

1—=1

*SGD: Orin = 0r — aNVL(f(Oy; :E(a)), y(a))

*Here a is selected uniformly from 1,...,n (“stochastic” bit)
* Note: no sum!
* In expectation, same gradient as GD.

* In practice we often update using minibatches of data to
take advantage of (GPU) parallelism

Other drawbacks of gradient descent

Behaves poorly on many important
functions:

*e.g. LASSO is convex but non-
differentiable, so we use coordinate
descent or proximal methods

Gradient Descent Trajectory

Optimum

*on poorly conditioned problems, | 5
GD struggles to make progress |
down narrow valleys. Alternatives:

* momentum methods
e second-order methods (Newton)

e approximate second-order methods
(includes widely used deep net
optimizers such as Adam)

Source: Goh. Why Momentum Really Works. Distill 2017.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Ryan Tibshirani

	Slide 1: CS 760: Machine Learning Optimization
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Optimization in ML
	Slide 5: Optimization in ML
	Slide 6: Optimization in ML
	Slide 7: Outline
	Slide 8: Iterative Methods: Gradient Descent
	Slide 9: Gradient Descent: Illustration
	Slide 10: Gradient Descent: Efficiency
	Slide 11: Linear Regression: Normal Equations vs GD
	Slide 12: Linear Regression: Normal Equations vs GD
	Slide 13: Gradient Descent: Convergence
	Slide 14: Gradient Descent Analysis : Convexity
	Slide 15: Gradient Descent Analysis : Convexity
	Slide 16: Gradient Descent Analysis : Lipschitzness
	Slide 17: Gradient Descent: Convergence Proof p. 1
	Slide 18: Gradient Descent: Convergence Proof p. 2
	Slide 19: Gradient Descent: Convergence Proof p. 3
	Slide 20: Gradient Descent: Convergence Proof p. 4
	Slide 21: Gradient Descent: Convergence Proof p. 5
	Slide 22: Gradient Descent: Convergence Proof p. 6
	Slide 23: Gradient Descent: Convergence Proof p. 7
	Slide 24: Gradient Descent: Convergence Proof p. 7
	Slide 25: Gradient Descent: Convergence Proof p. 8
	Slide 26: Gradient Descent: Convergence Proof Recap
	Slide 27: Gradient Descent as a heuristic
	Slide 28: Break & quiz
	Slide 29: Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.
	Slide 30: Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.
	Slide 31: Outline
	Slide 32: Gradient Descent: Drawbacks
	Slide 33: Solution: Stochastic Gradient Descent
	Slide 34: Solution: Stochastic Gradient Descent
	Slide 35: Other drawbacks of gradient descent
	Slide 36: Thanks Everyone!

