
CS 760: Machine Learning
Optimization

Misha Khodak

University of Wisconsin-Madison

24 September 2025



Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers 
• stochastic gradient descent, alternative optimizers



Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers 
• stochastic gradient descent, alternative optimizers



Optimization in ML

in supervised learning, we 

•have a training dataset of 𝑥 𝑖 , 𝑦(𝑖) pairs for 𝑖 = 1, … , 𝑛

•search a hypothesis space 𝐻 for a function ℎ that 

•predicts well, i.e. ℎ 𝑥 𝑖 = 𝑦(𝑖) on most of the training data

• satisfies other constraints, e.g. simplicity so as not to overfit



Optimization in ML

often searching the hypothesis 
space is an optimization problem:

•decision trees 

min
ℎ 𝑥(𝑖) =𝑦(𝑖)

∀𝑖∈[𝑛]

𝑑𝑒𝑝𝑡ℎ(ℎ)

•parametric models

min
𝜃∈ℝ𝑑

෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝜃)
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sometimes 
optimization is 
(NP) hard and 
we must use a 
heuristic

sometimes we 
have a closed-
form solution

This lecture: 
sometimes 
there is an 
efficient 
optimization 
algorithm to 
get the solutionsquared 

error
squared 
ℓ2-norm
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Iterative Methods: Gradient Descent

•What if there’s no closed-form solution?
•Use an iterative approach to gradually 
get closer to the solution.

•Gradient descent:
•Suppose we’re computing 
•Start at some

• Iteratively compute

•Stop after some # of steps
learning 

rate/step size



Gradient Descent: Illustration

•Goal: steps get closer to minimizer

•Some notes:
•Step size can be fixed or varying

•Under certain conditions, will converge 
to global minimum

Wikipedia
level sets



Gradient Descent: Efficiency

•Back to our linear regression problem 

•Want to find 

•What’s our gradient?

•So, plugging in , we get  



Linear Regression: Normal Equations vs GD

•Why do this for a setting with a closed-form solution?

•Consider its computational cost:

•Cost: (i) invert matrix, Θ(d3). (ii) multiplication, Θ(d2n).
•Total: Θ(d2n+ d3).

n x 1d x nd x d

Recall: by standard methods, 
inverting an m x m matrix is Θ(m3). 

Multiplying a m x p with a p x q 
matrix is Θ(mpq)   



Linear Regression: Normal Equations vs GD

Now let’s compare to the cost of gradient descent

•Normal Equations
•Total Cost: Θ(d2n+ d3).

•Gradient Descent: t iterations

•Cost: Θ(dn) at each step.
•Total Cost: Θ(dnt).

If we do “few” steps t, then GD is cheaper: t<max{d, d2/n}



Gradient Descent: Convergence

•Even if GD is cheaper, what does it give us?

•Let’s analyze it. We’ll need some assumptions
• convex and differentiable objective 
•  has 𝐿-Lipschitz-continuous gradients

•Under these assumptions, we have the following guarantee:
• if we run 𝑇 steps of GD with fixed step size 𝛼 ≤ 1/𝐿 starting at 𝑥0, 

then the 𝑇th iterate 𝑥𝑇 satisfies

minimizer

𝑓 𝑥𝑇 − 𝑓 𝑥∗ ≤
| 𝑥0 − 𝑥∗ |2

2

2𝑇𝛼



Gradient Descent Analysis : Convexity

A function 𝑓 with convex domain 𝑋 is called convex if for all 
  in the domain and all   we have 

Convex combination Line segment joining f(x1) and f(x2)



Gradient Descent Analysis : Convexity

•An equivalent definition:

•Function sits above its tangents



Gradient Descent Analysis : Lipschitzness

•A function has 𝐿-Lipschitz gradients if 

•Equivalent to 

•Recall:                 means that                is positive semidefinite 

•Recall some more:  𝐶 is positive semidefinite if



Gradient Descent: Convergence Proof p. 1

•We’ll use our two assumptions. 

•Let’s start with a Taylor expansion:

•Next, our gradient Lipschitz condition means 

Linear Approximation Remainder: at most a quadratic



Gradient Descent: Convergence Proof p. 2

•Let’s plug in our GD relationship

•Start with some algebra



Gradient Descent: Convergence Proof p. 3

•So, we now have

•Promising! Our estimates are getting better.

•Still need how big these gradient magnitudes are

Positive except at minimum (where it’s 0)



Gradient Descent: Convergence Proof p. 4

•Haven’t used convexity yet, so let’s:

•Combine with 

𝑏 − 𝑎 2
2 = 𝑎 2

2 − 2𝑎⊤𝑏 + 𝑏 2
2  ⇒  2𝑎⊤𝑏 − 𝑎 2

2 = 𝑏 2
2 − 𝑏 − 𝑎 2

2



Gradient Descent: Convergence Proof p. 5

•Now, simplify 

This part is just xt+1



Gradient Descent: Convergence Proof p. 6

•So, we have something familiar…

Can telescope!



Gradient Descent: Convergence Proof p. 7

•Now we have 

•Can ignore the rightmost term (we’re 
just making the RHS same or bigger)

Initial guess gap to minimizer Value gap for all steps



•Continue,

•But, recall that each iterate has a smaller value, i.e.,

•So  

Gradient Descent: Convergence Proof p. 7



•Almost there! We have

•Divide by T,

•Combine with  

Gradient Descent: Convergence Proof p. 8

Done!



Gradient Descent: Convergence Proof Recap

•Note: used all conditions in one or more places in the proof.
• If you don’t use an assumption, either your result is stronger than 

you thought or (more likely) you are making a mistake

•Other assumptions that lead to varying proofs/rates:
•Strong convexity
•Non-convexity
•Non-differentiability



Gradient Descent as a heuristic

•If a function is non-convex, gradient descent 
• can still be applied so long as it is differentiable
• is only guaranteed to reach a stationary point, not 

necessarily a global minimum

•Nevertheless, neural networks are commonly fit 
using (extensions of) gradient descent:
•objectives are non-convex AND non-smooth
•often get parameters that are optimal (low training loss) 

AND generalize well (high test accuracy)
• required decades hacking and experimentation
• should be viewed as a poorly understood heuristic like 

information gain for decision trees

Wikipedia



Break & quiz



Q: True or False: gradient descent is always a more efficient way of 
computing linear regression than the normal equations.



Q: True or False: gradient descent is always a more efficient way of 
computing linear regression than the normal equations.

False: depending on the number of data points, 
feature dimension, and number of steps taken, 
gradient descent can be more expensive. 
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Gradient Descent: Drawbacks

•Why would we use anything but GD?

•Let’s go back to ERM.

•For GD, need to compute

•Each step: n gradient computations
• ImageNet: 106 samples… so for 100 iterations, 108 gradients



Solution: Stochastic Gradient Descent

•Simple modification to GD.

•Let’s use some notation: ERM:

•GD:   

Note: this is what we’re optimizing over! 
x’s are fixed samples.



Solution: Stochastic Gradient Descent

•Simple modification to GD:

•SGD:

•Here a is selected uniformly from 1,…,n (“stochastic” bit)   
•Note: no sum!
• In expectation, same gradient as GD.
• In practice we often update using minibatches of data to 

take advantage of (GPU) parallelism



Other drawbacks of gradient descent

Behaves poorly on many important 
functions:
•e.g. LASSO is convex but non-

differentiable, so we use coordinate 
descent or proximal methods

•on poorly conditioned problems, 
GD struggles to make progress 
down narrow valleys. Alternatives:
•momentum methods
• second-order methods (Newton)
• approximate second-order methods 

(includes widely used deep net 
optimizers such as Adam)

Gradient Descent Trajectory

Momentum Trajectory

Source: Goh. Why Momentum Really Works. Distill 2017.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Ryan Tibshirani
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