
CS 760: Machine Learning
Optimization

Misha Khodak

University of Wisconsin-Madison

24 September 2025

Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers
• stochastic gradient descent, alternative optimizers

Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers
• stochastic gradient descent, alternative optimizers

Optimization in ML

in supervised learning, we

•have a training dataset of 𝑥 𝑖 , 𝑦(𝑖) pairs for 𝑖 = 1, … , 𝑛

•search a hypothesis space 𝐻 for a function ℎ that

•predicts well, i.e. ℎ 𝑥 𝑖 = 𝑦(𝑖) on most of the training data

• satisfies other constraints, e.g. simplicity so as not to overfit

Optimization in ML

often searching the hypothesis
space is an optimization problem:

•decision trees

min
ℎ 𝑥(𝑖) =𝑦(𝑖)

∀𝑖∈[𝑛]

𝑑𝑒𝑝𝑡ℎ(ℎ)

•parametric models

min
𝜃∈ℝ𝑑

෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝜃)

predicts
well

is simple

Optimization in ML

often searching the hypothesis
space is an optimization problem:

•decision trees

min
ℎ 𝑥(𝑖) =𝑦(𝑖)

∀𝑖∈[𝑛]

𝑑𝑒𝑝𝑡ℎ(ℎ)

•parametric models

min
𝜃∈ℝ𝑑

෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝜃)

sometimes
optimization is
(NP) hard and
we must use a
heuristic

sometimes we
have a closed-
form solution

This lecture:
sometimes
there is an
efficient
optimization
algorithm to
get the solutionsquared

error
squared
ℓ2-norm

Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers
• stochastic gradient descent, alternative optimizers

Iterative Methods: Gradient Descent

•What if there’s no closed-form solution?
•Use an iterative approach to gradually
get closer to the solution.

•Gradient descent:
•Suppose we’re computing
•Start at some

• Iteratively compute

•Stop after some # of steps
learning

rate/step size

Gradient Descent: Illustration

•Goal: steps get closer to minimizer

•Some notes:
•Step size can be fixed or varying

•Under certain conditions, will converge
to global minimum

Wikipedia
level sets

Gradient Descent: Efficiency

•Back to our linear regression problem

•Want to find

•What’s our gradient?

•So, plugging in , we get

Linear Regression: Normal Equations vs GD

•Why do this for a setting with a closed-form solution?

•Consider its computational cost:

•Cost: (i) invert matrix, Θ(d3). (ii) multiplication, Θ(d2n).
•Total: Θ(d2n+ d3).

n x 1d x nd x d

Recall: by standard methods,
inverting an m x m matrix is Θ(m3).

Multiplying a m x p with a p x q
matrix is Θ(mpq)

Linear Regression: Normal Equations vs GD

Now let’s compare to the cost of gradient descent

•Normal Equations
•Total Cost: Θ(d2n+ d3).

•Gradient Descent: t iterations

•Cost: Θ(dn) at each step.
•Total Cost: Θ(dnt).

If we do “few” steps t, then GD is cheaper: t<max{d, d2/n}

Gradient Descent: Convergence

•Even if GD is cheaper, what does it give us?

•Let’s analyze it. We’ll need some assumptions
• convex and differentiable objective
• has 𝐿-Lipschitz-continuous gradients

•Under these assumptions, we have the following guarantee:
• if we run 𝑇 steps of GD with fixed step size 𝛼 ≤ 1/𝐿 starting at 𝑥0,

then the 𝑇th iterate 𝑥𝑇 satisfies

minimizer

𝑓 𝑥𝑇 − 𝑓 𝑥∗ ≤
| 𝑥0 − 𝑥∗ |2

2

2𝑇𝛼

Gradient Descent Analysis : Convexity

A function 𝑓 with convex domain 𝑋 is called convex if for all
 in the domain and all we have

Convex combination Line segment joining f(x1) and f(x2)

Gradient Descent Analysis : Convexity

•An equivalent definition:

•Function sits above its tangents

Gradient Descent Analysis : Lipschitzness

•A function has 𝐿-Lipschitz gradients if

•Equivalent to

•Recall: means that is positive semidefinite

•Recall some more: 𝐶 is positive semidefinite if

Gradient Descent: Convergence Proof p. 1

•We’ll use our two assumptions.

•Let’s start with a Taylor expansion:

•Next, our gradient Lipschitz condition means

Linear Approximation Remainder: at most a quadratic

Gradient Descent: Convergence Proof p. 2

•Let’s plug in our GD relationship

•Start with some algebra

Gradient Descent: Convergence Proof p. 3

•So, we now have

•Promising! Our estimates are getting better.

•Still need how big these gradient magnitudes are

Positive except at minimum (where it’s 0)

Gradient Descent: Convergence Proof p. 4

•Haven’t used convexity yet, so let’s:

•Combine with

𝑏 − 𝑎 2
2 = 𝑎 2

2 − 2𝑎⊤𝑏 + 𝑏 2
2 ⇒ 2𝑎⊤𝑏 − 𝑎 2

2 = 𝑏 2
2 − 𝑏 − 𝑎 2

2

Gradient Descent: Convergence Proof p. 5

•Now, simplify

This part is just xt+1

Gradient Descent: Convergence Proof p. 6

•So, we have something familiar…

Can telescope!

Gradient Descent: Convergence Proof p. 7

•Now we have

•Can ignore the rightmost term (we’re
just making the RHS same or bigger)

Initial guess gap to minimizer Value gap for all steps

•Continue,

•But, recall that each iterate has a smaller value, i.e.,

•So

Gradient Descent: Convergence Proof p. 7

•Almost there! We have

•Divide by T,

•Combine with

Gradient Descent: Convergence Proof p. 8

Done!

Gradient Descent: Convergence Proof Recap

•Note: used all conditions in one or more places in the proof.
• If you don’t use an assumption, either your result is stronger than

you thought or (more likely) you are making a mistake

•Other assumptions that lead to varying proofs/rates:
•Strong convexity
•Non-convexity
•Non-differentiability

Gradient Descent as a heuristic

•If a function is non-convex, gradient descent
• can still be applied so long as it is differentiable
• is only guaranteed to reach a stationary point, not

necessarily a global minimum

•Nevertheless, neural networks are commonly fit
using (extensions of) gradient descent:
•objectives are non-convex AND non-smooth
•often get parameters that are optimal (low training loss)

AND generalize well (high test accuracy)
• required decades hacking and experimentation
• should be viewed as a poorly understood heuristic like

information gain for decision trees

Wikipedia

Break & quiz

Q: True or False: gradient descent is always a more efficient way of
computing linear regression than the normal equations.

Q: True or False: gradient descent is always a more efficient way of
computing linear regression than the normal equations.

False: depending on the number of data points,
feature dimension, and number of steps taken,
gradient descent can be more expensive.

Outline

•Optimization problems in machine learning

•Gradient descent
• idea, algorithm, convexity, convergence, nonconvexity

•Drawbacks and other optimizers
• stochastic gradient descent, alternative optimizers

Gradient Descent: Drawbacks

•Why would we use anything but GD?

•Let’s go back to ERM.

•For GD, need to compute

•Each step: n gradient computations
• ImageNet: 106 samples… so for 100 iterations, 108 gradients

Solution: Stochastic Gradient Descent

•Simple modification to GD.

•Let’s use some notation: ERM:

•GD:

Note: this is what we’re optimizing over!
x’s are fixed samples.

Solution: Stochastic Gradient Descent

•Simple modification to GD:

•SGD:

•Here a is selected uniformly from 1,…,n (“stochastic” bit)
•Note: no sum!
• In expectation, same gradient as GD.
• In practice we often update using minibatches of data to

take advantage of (GPU) parallelism

Other drawbacks of gradient descent

Behaves poorly on many important
functions:
•e.g. LASSO is convex but non-

differentiable, so we use coordinate
descent or proximal methods

•on poorly conditioned problems,
GD struggles to make progress
down narrow valleys. Alternatives:
•momentum methods
• second-order methods (Newton)
• approximate second-order methods

(includes widely used deep net
optimizers such as Adam)

Gradient Descent Trajectory

Momentum Trajectory

Source: Goh. Why Momentum Really Works. Distill 2017.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Ryan Tibshirani

	Slide 1: CS 760: Machine Learning Optimization
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Optimization in ML
	Slide 5: Optimization in ML
	Slide 6: Optimization in ML
	Slide 7: Outline
	Slide 8: Iterative Methods: Gradient Descent
	Slide 9: Gradient Descent: Illustration
	Slide 10: Gradient Descent: Efficiency
	Slide 11: Linear Regression: Normal Equations vs GD
	Slide 12: Linear Regression: Normal Equations vs GD
	Slide 13: Gradient Descent: Convergence
	Slide 14: Gradient Descent Analysis : Convexity
	Slide 15: Gradient Descent Analysis : Convexity
	Slide 16: Gradient Descent Analysis : Lipschitzness
	Slide 17: Gradient Descent: Convergence Proof p. 1
	Slide 18: Gradient Descent: Convergence Proof p. 2
	Slide 19: Gradient Descent: Convergence Proof p. 3
	Slide 20: Gradient Descent: Convergence Proof p. 4
	Slide 21: Gradient Descent: Convergence Proof p. 5
	Slide 22: Gradient Descent: Convergence Proof p. 6
	Slide 23: Gradient Descent: Convergence Proof p. 7
	Slide 24: Gradient Descent: Convergence Proof p. 7
	Slide 25: Gradient Descent: Convergence Proof p. 8
	Slide 26: Gradient Descent: Convergence Proof Recap
	Slide 27: Gradient Descent as a heuristic
	Slide 28: Break & quiz
	Slide 29: Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.
	Slide 30: Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.
	Slide 31: Outline
	Slide 32: Gradient Descent: Drawbacks
	Slide 33: Solution: Stochastic Gradient Descent
	Slide 34: Solution: Stochastic Gradient Descent
	Slide 35: Other drawbacks of gradient descent
	Slide 36: Thanks Everyone!

