

CS 760: Machine Learning Optimization

Misha Khodak

University of Wisconsin-Madison

24 September 2025

Outline

- **Optimization problems in machine learning**
- **Gradient descent**
 - idea, algorithm, convexity, convergence, nonconvexity
- **Drawbacks and other optimizers**
 - stochastic gradient descent, alternative optimizers

Outline

- **Optimization problems in machine learning**
- **Gradient descent**
 - idea, algorithm, convexity, convergence, nonconvexity
- **Drawbacks and other optimizers**
 - stochastic gradient descent, alternative optimizers

Optimization in ML

in supervised learning, we

- have a training dataset of $(x^{(i)}, y^{(i)})$ pairs for $i = 1, \dots, n$
- search a hypothesis space H for a function h that
 - predicts well, i.e. $h(x^{(i)}) = y^{(i)}$ on most of the training data
 - satisfies other constraints, e.g. simplicity so as not to overfit

Optimization in ML

often **searching the hypothesis space** is an **optimization problem**:

- decision trees

$$\min_{\substack{h(x^{(i)})=y^{(i)} \\ \forall i \in [n]}} \text{depth}(h)$$

• parametric models

predicts well is simple

$$\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \text{loss}(h_\theta(x^{(i)}), y^{(i)}) + \text{penalty}(\theta)$$

Optimization in ML

often **searching the hypothesis space** is an **optimization problem**:

- decision trees

$$\min_{h(x^{(i)})=y^{(i)}} \text{depth}(h) \quad \forall i \in [n]$$

- parametric models

$$\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \text{loss}(h_{\theta}(x^{(i)}), y^{(i)}) + \text{penalty}(\theta)$$

↑
squared
error

↑
squared
 ℓ_2 -norm

h_θ is a neural net

linear / Ridge regression

$$\widehat{\theta} = (X^T X + \lambda I_d)^{-1} X^T y$$

sometimes optimization is (NP) hard and we must use a heuristic

sometimes we have a closed-form solution

This lecture:
sometimes there is an **efficient optimization algorithm** to get the solution

Outline

- Optimization problems in machine learning
- **Gradient descent**
 - idea, algorithm, convexity, convergence, nonconvexity
- Drawbacks and other optimizers
 - stochastic gradient descent, alternative optimizers

Iterative Methods: Gradient Descent

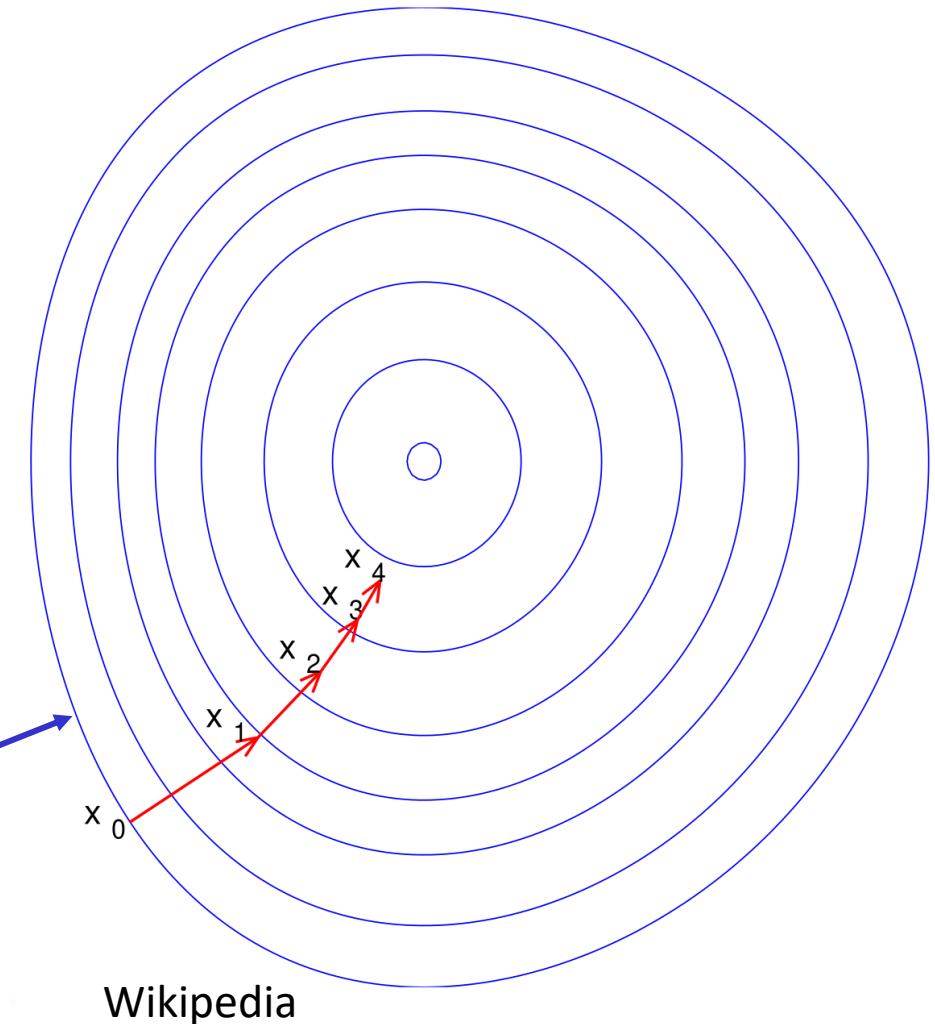
- What if there's no closed-form solution?
- Use an iterative approach to gradually get closer to the solution.
- Gradient descent:
 - Suppose we're computing $\min_{\theta} g(\theta)$
 - Start at some θ_0
 - Iteratively compute $\theta_{t+1} = \theta_t - \alpha \nabla g(\theta_t)$
 - Stop after some # of steps

learning
rate/step size

Gradient Descent: Illustration

- **Goal:** steps get closer to minimizer
- Some notes:
 - Step size can be fixed or varying
 - Under certain conditions, will converge to global minimum

level sets



Gradient Descent: Efficiency

- Back to our linear regression problem
- Want to find $\min_{\theta} \ell(f_{\theta}) = \min_{\theta} \frac{1}{n} \|X\theta - y\|_2^2$
 - What's our gradient? $\nabla \ell(f_{\theta}) = \frac{1}{n} (2X^T X\theta - 2X^T y)$
 - So, plugging in , we get

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{n} (2X^T X\theta_t - 2X^T y)$$

Linear Regression: Normal Equations vs GD

- Why do this for a setting with a closed-form solution?
- Consider its computational cost:

$$\theta = (X^T X)^{-1} X^T y$$

$d \times d$ $d \times n$ $n \times 1$

- Cost: (i) invert matrix, $\Theta(d^3)$. (ii) multiplication, $\Theta(d^2n)$.
- Total: $\Theta(d^2n + d^3)$.

Recall: by standard methods,
inverting an $m \times m$ matrix is $\Theta(m^3)$.

Multiplying a $m \times p$ with a $p \times q$
matrix is $\Theta(mpq)$

Linear Regression: Normal Equations vs GD

Now let's compare to the cost of gradient descent

- Normal Equations $\theta = (X^T X)^{-1} X^T y$
 - **Total Cost:** $\Theta(d^2n + d^3)$.

- Gradient Descent: t iterations

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{n} (2X^T X \theta_t - 2X^T y)$$

- Cost: $\Theta(dn)$ at each step.
- **Total Cost:** $\Theta(dnt)$.

If we do “few” steps t , then **GD is cheaper**: $t < \max\{d, d^2/n\}$

Gradient Descent: Convergence

- Even if GD is cheaper, what does it give us?
- Let's analyze it. We'll need some **assumptions**
 - convex and differentiable objective
 - has L -Lipschitz-continuous gradients
- Under these assumptions, we have the following guarantee:
 - if we run T steps of GD with fixed step size $\alpha \leq 1/L$ starting at x_0 , then the T th iterate x_T satisfies

$$f(x_T) - f(x^*) \leq \frac{\|x_0 - x^*\|_2^2}{2T\alpha}$$

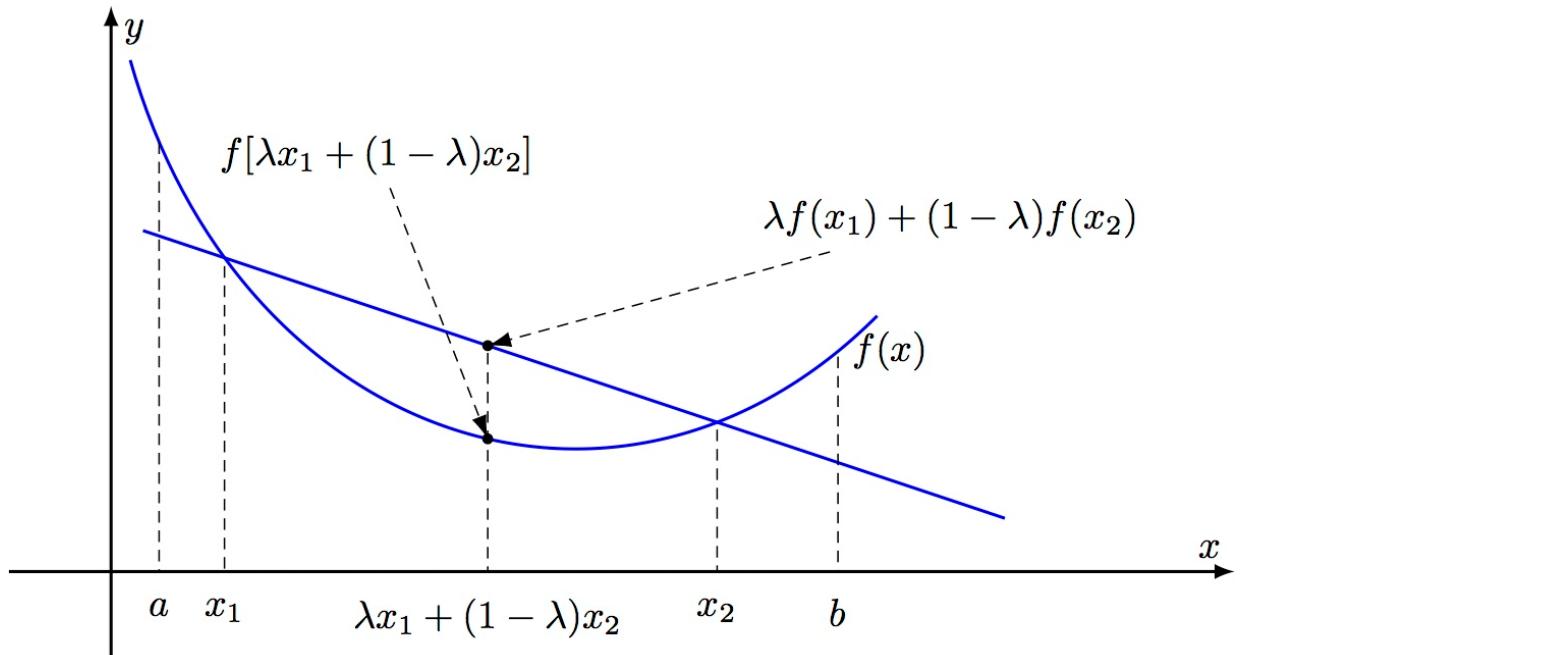
minimizer

Gradient Descent Analysis : Convexity

A function f with convex domain X is called convex if for all x_1, x_2 in the domain and all $\lambda \in [0, 1]$ we have

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

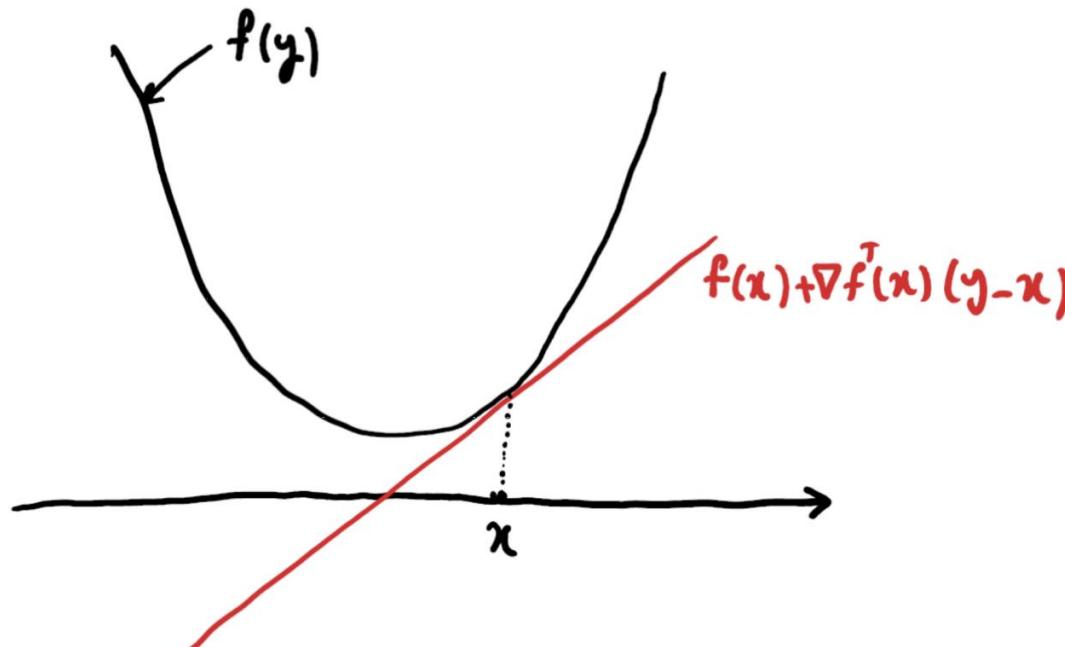
Convex combination **Line segment** joining $f(x_1)$ and $f(x_2)$



Gradient Descent Analysis : Convexity

- An equivalent definition:

$$f(x_2) \geq f(x_1) + \nabla f(x_1)^T (x_2 - x_1)$$



- Function sits above its tangents

Gradient Descent Analysis : Lipschitzness

- A function has L -Lipschitz gradients if

$$\|\nabla f(x_1) - \nabla f(x_2)\|_2 \leq L\|x_1 - x_2\|_2$$

- Equivalent to $\nabla^2 f(x) \preceq LI$
- Recall: $A \preceq B$ means that $B - A$ is positive semidefinite
- Recall some more: C is positive semidefinite if $x^T C x \geq 0$

Gradient Descent: Convergence Proof p. 1

- We'll use our **two assumptions**.
- Let's start with a Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^T(y - x) + 1/2(y - x)^T \nabla^2 f(z)(y - x)$$

- Next, our gradient Lipschitz condition means $\nabla^2 f(x) \preceq L I$

$$\Rightarrow f(y) \leq f(x) + \nabla f(x)^T(y - x) + 1/2L\|y - x\|^2$$

Linear Approximation

Remainder: at most a quadratic

Gradient Descent: Convergence Proof p. 2

- Let's plug in our GD relationship $y \leftarrow x_{t+1} = x_t - \alpha \nabla f(x_t)$

$$\Rightarrow f(y) \leq f(x) + \nabla f(x)^T (y - x) + 1/2L \|y - x\|^2$$

- Start with some algebra

$$\begin{aligned} f(x_{t+1}) &\leq f(x_t) + \nabla f(x_t)^T (x_{t+1} - x_t) + 1/2L \|x_{t+1} - x_t\|_2^2 \\ &= f(x_t) - \nabla f(x_t)^T \alpha \nabla f(x_t) + 1/2L \|\alpha \nabla f(x_t)\|_2^2 \\ &= f(x_t) - \alpha \|\nabla f(x_t)\|_2^2 + 1/2L \alpha^2 \|\nabla f(x_t)\|_2^2 \\ &= f(x_t) - \alpha(1 - 1/2L\alpha) \|\nabla f(x_t)\|_2^2 \end{aligned}$$

Gradient Descent: Convergence Proof p. 3

- So, we now have

$$f(x_{t+1}) \leq f(x_t) - 1/2\alpha \|\nabla f(x_t)\|_2^2$$

Positive except at minimum (where it's 0)

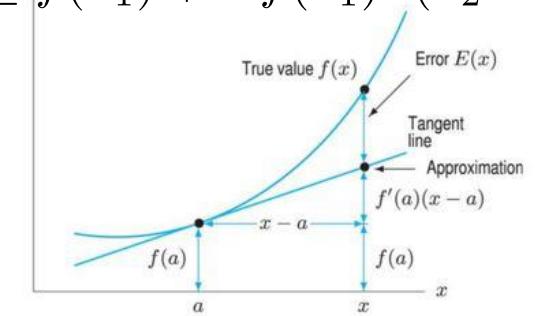
- Promising! Our estimates are getting better.
- Still need how big these gradient magnitudes are

Gradient Descent: Convergence Proof p. 4

$$f(x_2) \geq f(x_1) + \nabla f(x_1)^T (x_2 - x_1)$$

- Haven't used convexity yet, so let's:

$$f(x_t) \leq f(x^*) + \nabla f(x_t)^T (x_t - x^*)$$



- Combine with $f(x_{t+1}) \leq f(x_t) - 1/2\alpha \|\nabla f(x_t)\|_2^2$

$$f(x_{t+1}) \leq f(x^*) + \nabla f(x_t)^T (x_t - x^*) - \alpha/2 \|\nabla f(x_t)\|_2^2$$

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (2\alpha \nabla f(x_t)^T (x_t - x^*) - \alpha^2 \|\nabla f(x_t)\|_2^2)$$

$$\|b - a\|_2^2 = \|a\|_2^2 - 2a^\top b + \|b\|_2^2 \Rightarrow 2a^\top b - \|a\|_2^2 = \|b\|_2^2 - \|b - a\|_2^2$$

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_t - \alpha \nabla f(x_t) - x^*\|_2^2)$$

Gradient Descent: Convergence Proof p. 5

- Now, simplify

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_t - \alpha \nabla f(x_t) - x^*\|_2^2)$$

This part is just x_{t+1}

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

Gradient Descent: Convergence Proof p. 6

- So, we have something familiar...

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \sum_{t=0}^{T-1} \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

Can telescope!

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2 - \|x_T - x^*\|_2^2)$$

Gradient Descent: Convergence Proof p. 7

- Now we have

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2 - \|x_T - x^*\|_2^2)$$

- Can ignore the rightmost term (we're just making the RHS same or bigger)

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2)$$

Value gap for all steps

Initial guess gap to minimizer

Gradient Descent: Convergence Proof p. 7

- Continue,

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2)$$

- But, recall that each iterate has a smaller value, i.e.,

$$f(x_{t+1}) \leq f(x_t) - 1/2\alpha \|\nabla f(x_t)\|_2^2$$

- So

$$\sum_{t=0}^{T-1} f(x_T) \leq \sum_{t=0}^{T-1} f(x_{t+1})$$

Gradient Descent: Convergence Proof p. 8

- Almost there! We have

$$\sum_{t=0}^{T-1} f(x_T) \leq \sum_{t=0}^{T-1} f(x_{t+1})$$

- Divide by T,

$$\Rightarrow f(x_T) - f(x^*) \leq \frac{1}{T} \sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*)$$

- Combine with

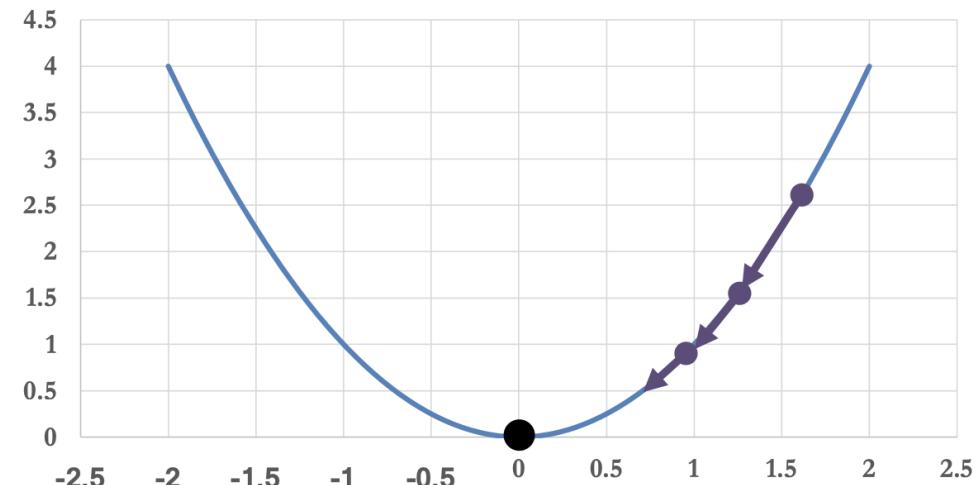
$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2)$$

$$\Rightarrow f(x_T) - f(x^*) \leq \frac{\|x_0 - x^*\|_2^2}{2T\alpha}$$

Done!

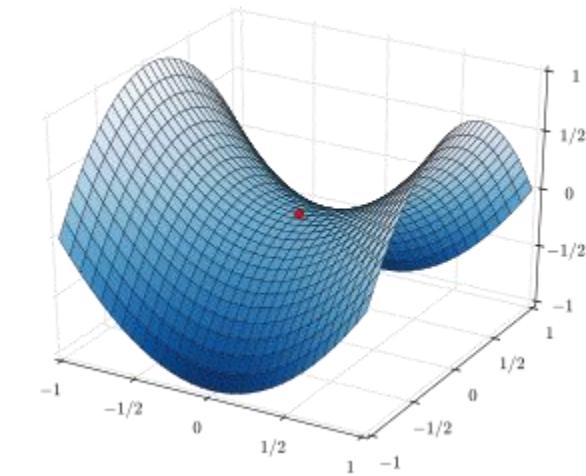
Gradient Descent: Convergence Proof Recap

- **Note:** used all conditions in one or more places in the proof.
 - If you don't use an assumption, either your result is stronger than you thought or (more likely) you are making a mistake
- Other assumptions that lead to varying proofs/rates:
 - **Strong convexity**
 - **Non-convexity**
 - **Non-differentiability**



Gradient Descent as a heuristic

- If a function is non-convex, gradient descent
 - can still be applied so long as it is differentiable
 - is only guaranteed to reach a **stationary point**, not necessarily a global minimum
- Nevertheless, neural networks are commonly fit using (extensions of) gradient descent:
 - objectives are non-convex AND non-smooth
 - often get parameters that **are optimal** (low training loss) AND **generalize well** (high test accuracy)
 - required decades hacking and experimentation
 - should be viewed as a poorly understood heuristic like information gain for decision trees



Wikipedia

Break & quiz

Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.

Q: True or False: gradient descent is always a more efficient way of computing linear regression than the normal equations.

False: depending on the number of data points, feature dimension, and number of steps taken, gradient descent can be more expensive.

Outline

- Optimization problems in machine learning
- Gradient descent
 - idea, algorithm, convexity, convergence, nonconvexity
- **Drawbacks and other optimizers**
 - stochastic gradient descent, alternative optimizers

Gradient Descent: Drawbacks

- Why would we use anything but GD?
- Let's go back to ERM.
$$\arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}, y^{(i)})$$
- For GD, need to compute $\nabla \ell(h(x^{(i)}, y^{(i)})$
 - Each step: n gradient computations
 - ImageNet: 10^6 samples... so for 100 iterations, **10⁸ gradients**

Solution: Stochastic Gradient Descent

- Simple modification to GD.
- Let's use some notation: ERM:

$$\arg \min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(f(\theta; x^{(i)}), y^{(i)})$$

Note: this is what we're optimizing over!
x's are fixed samples.

- GD:
$$\theta_{t+1} = \theta_t - \frac{\alpha}{n} \sum_{i=1}^n \nabla \ell(f(\theta_t; x^{(i)}), y^{(i)})$$

Solution: Stochastic Gradient Descent

- Simple modification to GD:

$$\theta_{t+1} = \theta_t - \frac{\alpha}{n} \sum_{i=1}^n \nabla \ell(f(\theta_t; x^{(i)}), y^{(i)})$$

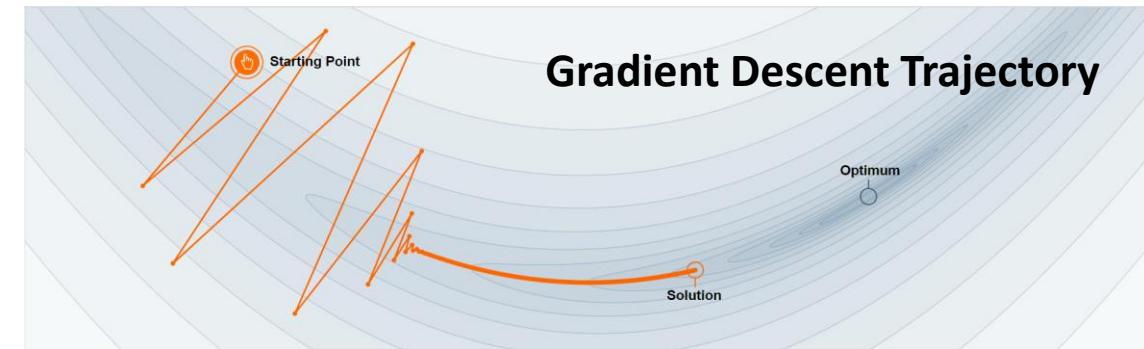
- SGD: $\theta_{t+1} = \theta_t - \alpha \nabla \ell(f(\theta_t; x^{(a)}), y^{(a)})$

- Here a is selected uniformly from $1, \dots, n$ (“**stochastic**” bit)
- Note: **no sum!**
- In expectation, same gradient as GD.
- In practice we often update using **minibatches** of data to take advantage of (GPU) parallelism

Other drawbacks of gradient descent

Behaves poorly on many important functions:

- e.g. LASSO is convex but non-differentiable, so we use coordinate descent or proximal methods
- on poorly conditioned problems, GD struggles to make progress down narrow valleys. Alternatives:
 - momentum methods
 - second-order methods (Newton)
 - approximate second-order methods (includes widely used deep net optimizers such as Adam)



Source: Goh. *Why Momentum Really Works*. Distill 2017.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Ryan Tibshirani