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Announcements

•Logistics: 
•HW1 due Wednesday before class
•HW2 out the same day

•Class roadmap:
•Two lectures on unsupervised learning
•Then five on neural networks
•Then midterm



Unsupervised Learning

•Goal: find patterns & structures that help (us OR a machine) 
better understand data.

•No labels; usually won’t be making predictions

•Sometimes model a distribution, but not always

Mulvey and  Gingold
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Clustering

Several types:

Partitional
- Centroid
- Graph-theoretic
- Spectral

Hierarchical
- Agglomerative
- Divisive

Bayesian
- Decision-based
- Nonparametric



K-Means Clustering

k-means is a type of partitional centroid-based clustering

Algorithm:

1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

k-means clustering

2. Find closest center for each point



K-Means Clustering: Algorithm

k-means clustering

3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

k-means clustering

Repeat Steps 2 & 3 until convergence



K-means clustering (Lloyd’s) algorithm

Input: # clusters 𝑘, points  𝑥1, … , 𝑥𝑛

Step 1: select 𝑘 cluster centers  𝑐1, … , 𝑐𝑘

Step 2: for each point  𝑥 ∈ {𝑥1, … , 𝑥𝑛}  determine its nearest cluster center: 

𝑖𝑥 = argmin𝑖 𝑥 − 𝑐𝑖 2

Step 3: update cluster centers as the centroids:

𝑐𝑖 =
σ𝑥:𝑖𝑥=𝑖 𝑥

|{𝑥 ∶  𝑖𝑥 = 𝑖}|

Repeat step 2 and 3 until the cluster centers no longer change



Questions on k-means

• What is k-means trying to optimize?

• Will k-means stop (converge)?

• Will it find a global or local optimum?

• How many clusters should we use?

• How to pick starting cluster centers?

෍

𝑥∈{𝑥1,…,𝑥𝑛}

𝑥 − 𝑐𝑖𝑥

2

Chris De Sa



How to pick starting cluster centers?

• Randomly choosing starting centers can lead to poor performance.
• A smarter strategy: k-means ++   (Arthur & Vassilivitski ‘07)

• has an 𝑂 log 𝑘 -approximation guarantee in expectation
• commonly used in practice



Break & Quiz



Break & Quiz

Q: True or False: finding an initialization that beats 
kmeans++ and optimizes the k-means objective exactly 
is a great open research direction for ML researchers.



Break & Quiz

Q: True or False: finding an initialization that beats 
kmeans++ and optimizes the k-means objective exactly 
is a great open research direction for ML researchers.

False: optimizing the k-means objective is NP-Hard. 
Leave it to theoretical CS.
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Mixture Models

•Let us get back to modeling densities in unsupervised 
learning.

•Have dataset: 

•One type of model: mixtures
•A function of a latent variable z
•Model:



Mixture Models: Gaussians

•Many different types of mixtures, but let us focus 
on Gaussians. 

•What does this mean?

•Latent variable z has some multinomial distribution,

•Then, let us make x be Gaussian conditioned on z

Mean Covariance Matrix 



Gaussian Mixture Models: Likelihood

•How should we learn the parameters?

•Could try our usual way: maximum likelihood
• Log likelihood:

•Turns out to be hard to solve… inner sum leads to problems!



GMMs: Supervised Setting

•What if we knew the z’s?
• “Supervised” setting…

•First, empirically estimate the multinomial parameters:

•Next the Gaussian components: Average of x’s 
where z = j 



GMMs: Back to Latent Setting

•But, we don’t get to see the z’s!

•What could we do instead?

•Recall our k-means approach: we don’t know the centers, 
but we pretend we do, perform a clustering, re-center, iterate



GMMs: Expectation Maximization

•EM :an algorithm for dealing with latent variable problems

•Iterative, alternating between two steps:
•E-step: estimate latent variable (probabilities) based on current model
•M-step: update the parameters of 
•Note similarity to k-means clustering.

Jake VanderPlas



GMM EM: E-Step

•Let us write down the formulas.

•E-step: fix parameters, compute posterior:

•These w’s are “soft” assignments of the z terms, i.e. 
probabilities over the values z could take. Concretely:



GMM EM: M-Step

•Let’s write down the formulas.

•M-step: fix w, update parameters:
Soft version of our counting 
estimator for the supervised case.

Soft version of our 
empirical mean and 
covariances.



EM through the lens of maximum likelihood estimation

•  Why is EM a sensible idea?

•  Let us write out the log likelihood for our problem

•  Letting                                   be any distribution over 



EM through the lens of maximum likelihood estimation

•Letting                                   be any distribution over

•  By an application of Jensen’s inequality: 
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓 𝑋  for concave 𝑓



EM through the lens of maximum likelihood estimation

•We have a lower bound on the log likelihood:

•  If this lower bound is tight, by maximizing the lower bound, 
we can hope to do well in maximizing the likelihood.

•  A good choice is       (guarantees 
likelihood increases every step)



General EM Algorithm

On round t of EM:

•E-Step (Expectation): Update          for all i and j (This effectively 
computes the lower bound)

•M-step: Maximize lower bound with respect to parameters 

Do at home: Show that this corresponds to the GMM update equations



Break & Quiz



Q: State if the following sentences are true or false.

A. In a Gaussian mixture model, the log likelihood is concave in the 
parameters.

B. We can maximize the likelihood of a mixture model using gradient 
descent.

C. EM is always guaranteed to find a global maximum

Ans: A: false,    B: true,     C: false
We use EM over GD because it is more efficient than GD.



Q: Which of the following  sentences are true.

A. GMMs are generative models

B. When you learn a GMM, you are estimating 
the density of the data.

C. GMMs can be used for clustering.

Ans: All are true
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Credit: Wikipedia

Hierarchical Clustering

Basic idea: build a “hierarchy”

•Want: arrangements from specific to general 

•One advantage: no need for k, number of clusters.

•Input: points.

•Output: a hierarchy (a binary tree)



HC: Agglomerative vs Divisive

Two ways to go:

•Agglomerative: bottom up. 
•Start: each point a cluster. 
•Progressively merge clusters 

•Divisive: top down
•Start: all points in one cluster. 
•Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Get pair of clusters that are closest and merge
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HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

First define a distance between points                     . Then, 
define distance between clusters.

•Single-linkage

•Complete-linkage

•Average-linkage



We’ll merge using single-linkage
•1-dimensional vectors.

•Initial: all points are clusters

Single-linkage Example

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25

C1



Single-linkage Example

1 2 4 5 7.25

C1 C2



Single-linkage Example

C3

1 2 4 5 7.25

C1 C2



Single-linkage Example

1 2 4 5 7.25

C3

C1 C2

C4



We’ll merge using complete-linkage
•1-dimensional vectors.

•Initial: all points are clusters

Complete-linkage Example

1 2 4 5 7.25



Beginning is the same…

Complete-linkage Example

1 2 4 5 7.25

C1 C2



Now different from single linkage:

Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3



Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3

C4



Break & Quiz



Break & Quiz

Q: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is

•A. 2

•B. log2 n

•C. n/2

•D. n-1
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Graph/proximity based clustering

•Recall: graph G = (V,E) has vertex set V, edge set E.
•Edges can be weighted or unweighted
•Encode similarity

•Treat each data point as a node in a graph.

•Edges based on similarity of data points

•e.g. for Euclidean vectors:

•But they don’t need to be in Euclidean space!



Graph-Based Clustering

Want: partition V into k groups
•    Implies a graph “cut”

• One idea: minimize the weight of 
the cut



Partition-Based Clustering

How do we compute these?

• Hard problem → heuristics
– Greedy algorithm

– “Spectral” approaches

• Spectral clustering approach:
– Adjacency matrix 



Partition-Based Clustering

• Spectral clustering approach:
– Adjacency matrix 

– Degree matrix



Spectral Clustering

• Spectral clustering approach:
– 1. Compute Laplacian L = D – A

(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

• Spectral clustering approach:

1. Compute Laplacian L = D – A
• 1a (optional): compute normalized Laplacian:

       L = I – D-1/2AD-1/2,   or  L = I – D-1A

2. Compute k smallest eigenvectors u1, …, uk of L
• Why? Connected to graph cuts via the Fiedler vector

3. Set U to be the n x k matrix with u1, …, uk as 
columns. Take the n rows formed as points

4. Run k-means on the representations 



Spectral Clustering

Credit: William Fleshman



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthy Kandasamy, Tengyang Xie
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