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Announcements

*Logistics:
*HW1 due Wednesday before class
*HW?2 out the same day

*Class roadmap:

*Two lectures on unsupervised learning
*Then five on neural networks

*Then midterm




Unsupervised Learning

*Goal: find patterns & structures that help (us OR a machine)
better understand data.

*No labels; usually won’t be making predictions
*Sometimes model a distribution, but not always
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Outline

* K-means clustering

* Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm

* Advanced clustering methods
*hierarchical, spectral clustering
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Clustering

Several types:

-

-

4 )

Partitional . . .
Centroid Hierarchical Bayesian
. - Agglomerative - Decision-based
- Graph-theoretic o :
- Divisive - Nonparametric
- Spectral
k-Means Clusters . Iris Species
++ %o o ++ %o
+4r * ° +,¢ * °
x 'i-:t-l-'+ O%OQ)O +1.|-rH ' X x%)ocbo
Ft 4 o ®) e x xO_ O
X e 28 @@cooo‘% Wy 4 x%x%o&‘?m%%
x% o9 06 © o "ggiﬁggﬂﬁ X ©
% o c?g o x XX o
(o] QS) [} o] " ?
g 8 oooo Cluster 1 + o OxIris setosa  +
* o Cluster2 X 1 ./ x Iris versicolor X
1_:1:__7_—_____ Cluster3Q ./ ____lIrisvirginica (@)




K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers
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K-Means Clustering: Algorithm

k-means clustering
2. Find closest center for each point
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K-Means Clustering: Algorithm

k-means clustering
3. Update cluster centers by computing centroids
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K-Means Clustering: Algorithm

k-means clustering
Repeat Steps 2 & 3 until convergence
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K-means clustering (LIloyd’s) algorithm

Input: # clusters k, points x4, ..., Xp,

Step 1: select k cluster centers ¢y, ..., C

Step 2: for each point x € {x4, ..., x,,} determine its nearest cluster center:
i = argmin;||x — ¢l

Step 3: update cluster centers as the centroids:
Zx:ix=i X

|{X Pl = l}l

Ci =

Repeat step 2 and 3 until the cluster centers no longer change



Questions on k-means
What is k-means trying to optimize? Z Hx _ CixHZ
Will k-means stop (converge)?
Will it find a global or local optimum?

How many clusters should we use?

How to pick starting cluster centers?

Chris De Sa



How to pick starting cluster centers?

 Randomly choosing starting centers can lead to poor performance.

A smarter strategy: k-means ++ (Arthur & Vassilivitski ‘07)

* has an O(log k)-approximation guarantee in expectation
e commonly used in practice

Choose ¢; randomly from X = {X3,...,X,}. Let C = {1 }.
For 1 =2,...,k:

(a) Compute D(X;) = min.¢ ||X; — cl|| for each X;.
(b) Choose a point X; from X with probability

DXy
P= S5 ()

(c) Call this randomly chosen point ¢;. Update C' +— C U {¢;}.






Break & Quiz

Q: True or False: finding an initialization that beats
kmeans++ and optimizes the k-means objective exactly
IS a great open research direction for ML researchers.



Break & Quiz

Q: True or False: finding an initialization that beats
kmeans++ and optimizes the k-means objective exactly
IS a great open research direction for ML researchers.

False: optimizing the k-means objective is NP-Hard.
Leave it to theoretical CS.
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Mixture Models

et us get back to modeling densities in unsupervised
earning.

*Have dataset: {(.’L'(l), 35'(2), — 7;1;'(?%)}

*One type of model: mixtures
* A function of a latent variable z

* Model:
p(x'V ]2 )p(z V)



Mixture Models: Gaussians

* Many different types of mixtures, but let us focus
on Gaussians.

*What does this mean? k
*Latent variable z has some multinomial distribution, > ¢ =1

2(1) ~ Multinomial(¢)

*Then, let us make x be Gaussian conditioned on z

v |z = j) ~ N(uj, 3;)

Mean Covariance Matrix



Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, u;, 23,

*Could try our usual way: maximum likelihood
* Log likelihood:

ENT> Zlog Z p(@D 2 1, 2)p(2; )

=1 z()—

* Turns out to be hard to solve... inner sum leads to problems!



GMMs: Supervised Setting

*What if we knew the z’s?
* “Supervised” setting...

*First, empirically estimate the multinomial parameters:
1 —
05 = 521{2() =J}
1=1

*Next the Gaussian components: Average of x’s

Z?zl 1{2'(”3) — j}aj(i) /wherez=j
Hj =

Z?:l 1{z() = j}
Yo Uz = 3@ — )@ — )"
S =)

¥, =



GMMs: Back to Latent Setting

*But, we don’t get to see the z’s!

*\What could we do instead?

*Recall our k-means approach: we don’t know the centers,
but we pretend we do, perform a clustering, re-center, iterate
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GMMs: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*lterative, alternating between two steps:

* E-step: estimate latent variable (probabilities) based on current model
* M-step: update the parameters of p(.’E‘Z)
* Note similarity to k-means clustering.

Jake VanderPlas
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GMM EM: E-Step

et us write down the formulas.
*E-step: fix parameters, compute posterior:

w'® = p(z0) = jl2®; ¢, 1, %)

*These w’s are “soft” assignments of the z termes, i.e.
probabilities over the values z could take. Concretely:

0l = (2 = g g x5y = — PEVNEY =3 X)p(z0 = 5 ¢)
: Sy pa®]20) = €1, D)p(2) = £; ¢)



GMM EM: M-Step

eLet’s write down the formulas.

. . .
M-step: fix w, update parameters: Soft version of our counting

1 | estimator for the supervised case.
e (%)
P = w;
n J
1=1

Soft version of our

2?21 w](-i)x(i) empirical mean and
fj = o () / covariances.
W

S wi (@@ — ) (2@ — )T
Z?ﬂ wg@




EM through the lens of maximum likelihood estimation

* Why is EM a sensible idea?
* Let us write out the log likelihood for our problem

= Zn: log po( Z log (Z po(@ J))

e Letting Q" = QY,...,QY] be any distribution over Z(

n | (2) () — 5
B i) po(z', 2" = j)
— ; log le o, ; B

Q;




EM through the lens of maximum likelihood estimation

e Letting Q¥ = Q1 ..., '] be any distribution over (%)
n k . (2) (1) — 5
pﬁ’(m 21 = .7)
— E log E Qg.z) _
— — (2)
1=1 ]—]_ QJ

. , . : E[X]) = E[f(X)] f
» By an application of Jensen’s inequality; /" = FU/ (0 fereonceve/

(2) () — 5
(i) po(x'V, 2V = j)
) > ZZQ log 5

1=1 9=1 Qj




EM through the lens of maximum likelihood estimation

*We have a lower bound on the log likelihood:

() (1) —
(i) po(x = J)
) > ZZQ log 5

1=1 _’} 1 QJ

* If this lower bound is tight, by maximizing the lower bound,
we can hope to do well in maximizing the likelihood.

* A good choice is Q;i) = pg(z("") = j\:r:(i)) (guarantees
likelihood increases every step)



General EM Algorithm

On round t of EM:

*E-Step (Expectation): Update Qg-i) for all i and j (This effectively
computes the lower bound)

QY « po, (2" = jlz¥)

* M-step: Maximize lower bound with respect to parameters Qt

n_k . (1) »(1) — ;
0;.1 < argmax >4 }4 Qg ) log ol B )
O Q;

Do at home: Show that this corresponds to the GMM update equations







Q: State if the following sentences are true or false.

A. In a Gaussian mixture model, the log likelihood is concave in the
parameters.

B. We can maximize the likelihood of a mixture model using gradient
descent.

C. EM is always guaranteed to find a global maximum

= Zlogpg Zlog Zpe 2 = j)
i—1

Ans: A: false, B:true, C:false
We use EM over GD because it is more efficient than GD.



Q: Which of the following sentences are true.
A. GMMs are generative models

B. When you learn a GMM, you are estimating
the density of the data.

C. GMMs can be used for clustering.

Ans: All are true
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Hierarchical Clustering

Basic idea: build a “hierarchy”
*Want: arrangements from specific to general

*One advantage: no need for k, number of clusters.

*Input: points. SEN\) \/ ) 4
*OQutput: a hierarchy (a binary tree) ‘

AAAAAAAA

Credit: Wikipedia



HC: Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.
e Start: each point a cluster.
* Progressively merge clusters

*Divisive: top down
e Start: all points in one cluster.
* Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge

e % 50



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

First define a distance between points d(x1, x3). Then,
define distance between clusters.

*Single-linkage d(A, B) = erfrllmeB d(x1,22)
L1 y L2
*Complete-linkage d(A, B) = IE&X Bd(xl,xg)
r1€ 7x2€
: 1
* Average-linkage d(A, B) = ¥iil] E : d(z1,z2)

X1 EA,ZI’)Q cB



Single-linkage Example

We'll merge using single-linkage
*1-dimensional vectors.
*|nitial: all points are clusters

7.25



Single-linkage Example

d(C1,14}) = d(2,4) = 2
d({4},{5}) = d(4,5) = 1

1 2 4 5 7.25



Single-linkage Example

d(Cy,Cy) = d(2,4) = 2
d(Cy, {7.25}) = d(5,7.25) = 2.25

AN

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25



Complete-linkage Example

We'll merge using complete-linkage
*1-dimensional vectors.
*|nitial: all points are clusters

7.25



Complete-linkage Example

Beginning is the same...

d(Cy,Cy) = d(1,5) = 4
d(Cy, {7.25}) = d(4,7.25) = 3.25

AN

1 2 4 5 7.25



Complete-linkage Example

Now different from single linkage:

1 2 4 5 7.25



Complete-linkage Example

1 2 4 5 7.25






Break & Quiz

Q: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

*A.2

*B. log, n
°C.n/2
°D. n-1



Break & Quiz

Q: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

*A.2

*B. log, n
°C.n/2
°D. n-1



Graph/proximity based clustering

*Recall: graph G = (V,E) has vertex set V, edge set E.
* Edges can be weighted or unweighted
* Encode similarity

*Treat each data point as a node in a graph.
*Edges based on similarity of data points
ee.g. for Euclidean vectors:

2
_a ;:I: ._:I;l .

*But they don’t need to be in Euclidean space!



Graph-Based Clustering

Want: partition V into k groups
Implies a graph “cut”

- One idea: minimize the weight of
the cut




Partition-Based Clustering

How do we compute these?

- Hard problem = heuristics
— Greedy algorithm
— “Spectral” approaches

* Spectral clustering approach: -
— Adjacency matrix

I
|
——_= O O O
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Partition-Based Clustering

e Spectral clustering approach:
— Adjacency matrix
— Degree matrix

2 0 0 0 O] I
0 2 0 0 0 0
D=0 0 1 0 0 A= 10
0 0 0 3 0 1
0000 2 1

o OO = O

_ O O = =

O = OO =




Spectral Clustering

e Spectral clustering approach:
— 1. Compute LaplacianL=D-A
(Important tool in graph theory)

2 0 0 0 0 0O 0 0 1 1 2
0 2 0 0 0 0O 0 1 1 0 0
L=10 0 1 0 O0,—-10 1 O O Of=10
0 0 0 3 0 I 1 0 0 1 —1
0 0 0 0 2 I 0 0 1 O —1
"\ ' T | ' I - ' ]

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

e Spectral clustering approach:

1. Compute LaplacianL=D-A

* 1a (optional): compute normalized Laplacian:
L=1-D*2ADY2, or L=1-D1A

2. Compute k smallest eigenvectors u,, ..., u, of L
* Why? Connected to graph cuts via the Fiedler vector

3. Set Uto be the n x k matrix with u,, ..., u, as
columns. Take the n rows formed as points

4. Run k-means on the representations



Spectral Clustering

K-Means Circles Spectral Circles

Credit: William Fleshman



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthy Kandasamy, Tengyang Xie
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