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Announcements

*Logistics:
*HW?2 out after today’s lecture

*Class roadmap:
*Neural networks starting next week
*Then midterm; considering doing a review class that Monday



Outline

*Clustering Review
*k-means, hierarchical, spectral clustering

*GMMs Review
* Gaussian Mixtures, EM algorithm

*Principal Components Analysis
* Definition, Algorithm, Interpretations, Analysis, Applications



Outline

*Clustering Review
*k-means, hierarchical, spectral clustering



K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers
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K-Means Clustering: Algorithm

k-means clustering
2. Find closest center for each point
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K-Means Clustering: Algorithm

k-means clustering
3. Update cluster centers by computing centroids
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K-Means Clustering: Algorithm

k-means clustering
Repeat Steps 2 & 3 until convergence
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Questions on k-means
What is k-means trying to optimize? Z Hx _ CixHZ
Will k-means stop (converge)?
Will it find a global or local optimum?

How many clusters should we use?

How to pick starting cluster centers?

Chris De Sa



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge
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HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

First define a distance between points d(x1, x3). Then,
define distance between clusters.

*Single-linkage d(A, B) = erfrllmeB d(x1,22)
L1 y L2
*Complete-linkage d(A, B) = IE&X Bd(xl,xg)
r1€ 7x2€
: 1
* Average-linkage d(A, B) = ¥iil] E : d(z1,z2)

X1 EA,ZI’)Q cB






Break & Quiz

Q: You have seven 2-dimensional points. You run 3-means on it, with
initial clusters

C1 =1(2,2),(4,4),(6,6)}, C2 = {(0,4), (4,0)}, U5 = {(5,5), (9,9)}

Cluster centroids at the next iteration are?

*A.C;: (4,4),C,:(2,2), Cs: (7,7)
*B. C,: (6,6), C,: (4,4), C5: (9,9)
*C.C;:(2,2),C,:(0,0), C5: (5,5)
*D. C;: (2,6), C,: (0,4), C5: (5,9)



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with
initial clusters

C1 =1(2,2),(4,4),(6,6)}, C2 = {(0,4), (4,0)}, U5 = {(5,5), (9,9)}

Cluster centroids at the next iteration are?

*A. C,: (4,4), C,: (2,2), C,: (7,7)
*B. C,: (6,6), C,: (4,4), C,: (9,9)
*C.C,: (2,2), C,: (0,0), C,: (5,5)
*D. C,: (2,6), C,: (0,4), C: (5,9)



Outline

*GMMs Review
* Gaussian Mixtures, EM algorithm



Mixture Models

e Have dataset:

(2@, 2@, g

*One type of model: mixtures
* A function of a latent variable z

* Model: . . .
p(x'V ]2 )p(z V)



Mixture Models: Gaussians

* Many different types of mixtures, but let us focus
on Gaussians.

*What does this mean? k
*Latent variable z has some multinomial distribution, > ¢ =1

2(1) ~ Multinomial(¢)

*Then, let us make x be Gaussian conditioned on z

v |z = j) ~ N(uj, 3;)

Mean Covariance Matrix



Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, u;, 23,

*Could try our usual way: maximum likelihood
* Log likelihood:

ENT> Zlog Z p(@D 2 1, 2)p(2; )

=1 z()—

* Turns out to be hard to solve... inner sum leads to problems!



GMMs: Supervised Setting

*What if we knew the z’s?
* “Supervised” setting...

*First, empirically estimate the multinomial parameters:
1 —
05 = 521{2() =J}
1=1

*Next the Gaussian components: Average of x’s

Z?zl 1{2'(”3) — j}aj(i) /wherez=j
Hj =

Z?:l 1{z() = j}
Yo Uz = 3@ — )@ — )"
S =)

¥, =



GMMs: Back to Latent Setting

*But, we don’t get to see the z’s!

*\What could we do instead?

*Recall our k-means approach: we don’t know the centers,
but we pretend we do, perform a clustering, re-center, iterate
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GMMs: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*lterative, alternating between two steps:

* E-step: estimate latent variable (probabilities) based on current model
* M-step: update the parameters of p(.’E‘Z)
* Note similarity to k-means clustering.
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GMM EM: E-Step

et us write down the formulas.
*E-step: fix parameters, compute posterior:

w'® = p(z0) = jl2®; ¢, 1, %)

*These w’s are “soft” assignments of the z termes, i.e.
probabilities over the values z could take. Concretely:

0l = (2 = g g x5y = — PEVNEY =3 X)p(z0 = 5 ¢)
: Sy pa®]20) = €1, D)p(2) = £; ¢)



GMM EM: M-Step

eLet’s write down the formulas.

. . .
M-step: fix w, update parameters: Soft version of our counting

1 | estimator for the supervised case.
e (%)
P = w;
n J
1=1

Soft version of our

2?21 w](-i)x(i) empirical mean and
fj = o () / covariances.
W

S wi (@@ — ) (2@ — )T
Z?ﬂ wg@







Q: True or False: the M step of EM
directly optimizes the log-likelihood

Answer: sort of. Directly we’re maximizing a lower bound, but it
can be shown that improving it improves the likelihood.

n

k - (1) () — 5
R U i polL*",z"" =]
L(0) > Z Qg)log ( B )



Outline

*Principal Components Analysis
* Definition, Algorithm, Interpretations, Analysis, Applications



High-Dimensional Data

High-dimensions = lots of features
We've seen this repeatedly, but some examples:

 Document classification

* Features per document = thousands of words/unigrams,
millions of bigrams, contextual information

*Surveys - Netflix

480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? 7 1 3 ?
George 7 7 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 7 2 4 2




Dealing with Dimensionality

*PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

eSome uses:
* VVisualization

* More efficient use of resources (e.g., time, memory,
communication)

* Noise removal (improving data quality)

* Further processing by machine learning algorithms
(representation transfer)

original data space

PCA



Principal Components Analysis

*Unsupervised technique for extracting variance structure
from high dimensional datasets
* also reduces dimensionality

*PCA: orthogonal projection / transformation of the data

*Into a (possibly lower dimensional) subspace

* Goal: maximize variance of the projected data



PCA Intuition

*The dimension of the ambient space (ie, RY) might be much
higher than the intrinsic data dimension

.

* Question: Can we transform the features so that we only need to
preserve one latent feature?
*Or afew?




PCA Intuition

*Some more visualizations

D
1 d

2
1

*In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective
representation of the data.



PCA: Principal Components

*Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

* First PC — direction of greatest variability in data.

* Projection of data points along first PC discriminates data most
along any one direction




PCA: Principal Components and Projection

*How does dimensionality reduction work? From d
dimensions to r dimensions:

*Get orthogonal V1, V9,...,U, € Rd

* Maximizing variability
* Equivalent to minimizing reconstruction error

*Then project data onto PCs - d-dimensional

Victor Powell



PCA Approach Overview

*\Want directions/components (unit vectors) so that
*Projecting data maximizes variance

*Specifically, for centered data
n

D {wiv) = [ Xvl?

1=1

*Do this recursively 4
*Get orthogonal directions ¥1,02,...,U, € R



PCA First Step

*First component,
n

v; = arg max Y (v,x;)°
lvll=1 <=

*Same as getting

v1 = arg max || Xv||”
|v]l=1



PCA Recursion

*Once we have k-1 components, next?

k—1
Xk = X — Z XU@'U;-F
i=1
deflation

*Then do the same thing

v, = arg max || Xwl|?
Jvl|=1



PCA Interpretations

*The v’s are eigenvectors of XX” (Gram matrix)
*We’'ll see why in a second

* XX (proportional to) sample covariance matrix
*When data is O mean!
*i.e. PCA is the eigendecomposition of sample covariance

*Nested subspaces span(vl), span(v1,v2),...,




PCA Interpretations: First Component

*Two specific ways to think about the first component

 Maximum variance direction

 What we saw so far
T

Z(VTXZ')Q = v XXy
i=1

* Minimum reconstruction error

* A direction so that projection yields minimum MSE in
reconstruction



PCA Interpretations: Equivalence

mn
*Interpretation 1. § :(VTXZ.)Q — viIxXXTy
Maximum variance direction i—1
T
*Interpretation 2. Z |1x; — (VTX')VH2
.« . . ( 1
Minimum reconstruction error P

*Why are these equivalent?

e Use Pythagorean theorem.
* Maximizing blue segment is the same as minimizing the green



PCA Gram Matrix Interpretation

e Recall our first PC, maximized variance:

mélx vIiIXXTy st. viv=1

*Constrained optimization (Lagrangian + KKT conditions)

Lagrangian: maxy v XX'v — \vlv

0/0v=0 XX!-AX)v=0 = (XX)yv =\




PCA Covariance Matrix Interpretation

*SOo = (XX )v = \v

* means that v (the first PC) is an eigenvector of XX'

* eigenvalue A denotes the amount of variability captured along that
dimension

*PCs are just the eigenvectors...
* How to find them? Eigendecomposition 78
X2 L-g 4
*Don’t need to keep all eigenvectors /

* Just the ones for largest eigenvalues X1



PCA Dimensionality Reduction

*In high-dimensional problems, data sometimes lies near a
linear subspace, as noise introduces small variability

*Only keep data projections onto principal components with
large eigenvalues

*Can ignore the components of smaller significance.

25 A

20 -

similar to picking the number of clusters, can
/ look for a “knee” in the explained variance

RN
(6]
1

Variance (%)

RN
o
1

)]
1

) [

PC1 PC2 PC3 P PC5 Ccé PC7 PC8 PC9 PC10

o



Applications of PCA

*\/isualization

*More efficient use of resources (e.g. time,
memory, communication)

*Noise removal (improving data quality)

*Further processing by machine learning
algorithms (representation transfer)



Application: Image Compression

eStart with image; divide into 12x12 patches
*i.e. 144-D vector

* Original image:




Application: Image Compression

*Project to 6D:

A
e LA

Compressed Original



Applications of PCA

*\/isualization

* More efficient use of resources (e.g. time,
memory, communication)

*Noise removal (improving data quality)

* Further processing by machine learning
algorithms (representation transfer)



PCA representations for supervised learning

*In Homework 2, you will see how PCA can be used
to obtain low-dimensional representations of words
* Also known as word embeddings / word vectors

* Can be applied on downstream supervised tasks like
document classification

* Many more powerful text embedding methods
have been introduced
* GloVe / word2vec for individual words
* BERT / later LLMs embed the entire document






Q: Are these statements true or false?

(A) The principal component with the largest eigenvalue maximizes the
reconstruction error.

(B) The dimension of original data representation is always higher than the
dimension of transformed representation of PCA.

1. True, True

2. True, False
3. False, True
4. False, False




Q2-2: Are these statements true or false?

(A) The principal component with the largest eigenvalue maximizes the
reconstruction error.

(B) The dimension of original data representation is always higher than the
dimension of transformed representation of PCA.

1. True, True

(A) The principal component with the largest eigenvalue

2. True, False | est eigenvalue
captures the maximum amount of variability which is
equivalent to minimum reconstruction error.

3. False, True

(B) If the matrix XX is full-rank, they can be of the
4 False FalsF same dimension.
" y



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Kirthy Kandasamy
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