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Announcements

Enrollment:
• Finalized next week. Please keep checking your status.

Office hours:
• By appointment. Email me at khodak@wisc.edu.

Outline:
• Today: ML basics
• Tuesday: (relevant) topics in advanced ML
• Thursday: scientific computing basics

mailto:khodak@wisc.edu
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• features, parametric modeling, estimation, optimization

• Unsupervised learning
• dimensionality reduction

• Neural networks
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Supervised Learning

• Can I eat this?

• Safe or poisonous?
• Never seen it before

• How to decide?



Supervised Learning: Training Instances

• I know about other mushrooms:

• Training set of examples/instances/labeled data

safe

poisonous



Supervised Learning: Formal Setup

Problem setting
• Set of possible instances 

• Unknown target function

• Set of models (a.k.a. hypotheses):

• Training set of instances for unknown target function, 

safe safepoisonous



Supervised Learning: Formal Setup

Problem setting
• Set of possible instances 

• Unknown target function

• Set of models (a.k.a. hypotheses):

• Training set of instances for unknown target function, 

Goal: model h that best approximates f



Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

• Examples:
• Input space: feature vectors

• Output space: 
• Binary classification

• Continuous

safe poisonous



• Need a way to represent instance information (no need to use 

raw image):

• For each instance, store features as a vector. 

• Next: What kinds of features can we have?

Input Space: Feature Vectors

safe



Input Space: Feature Types

• nominal (including Boolean)
• no ordering among values (e.g. color ∈ {red, blue, green})

• ordinal
• values of the feature are totally ordered (e.g. size  ∈ {small, medium, large})

• numeric (continuous)
height  ∈ [0, 100] inches

• hierarchical
• possible values are partially ordered in a hierarchy, e.g. shape

closed

polygon
continuou

s

trianglesquare circle ellipse



Output space: Classification vs. Regression

Choices of       have special names:

• Discrete: “classification”. The elements of       are classes
• Note: does not have to be binary

• Continuous: “regression”
• Example: linear regression

• There are other types…



Hypothesis class

We talked about              what about       ?

• Recall: hypothesis class / model space. 
• Theoretically, could be all maps from        to
• But - does not work! We’ll see why later.

• Pick specific class of models. E.g. linear models:



Hypothesis class: Linear Functions

• Example class of models: linear models

• How many linear functions are there?
• Can any function be fit by a linear model?

Parameters (weights) Features



Hypothesis class: Other Examples

Example classes of models: (deep) neural networks

Feedforward network

• Each layer: 
• linear transformation
• Non-linearity

• What are the parameters here?
Wikipedia



Supervised Learning: Training

Goal: model h that best approximates f

• One way: empirical risk minimization (ERM)

Model prediction

Loss function: how far is the
prediction from the label)?

Hypothesis Class



Supervised Learning: Predicting

Now that we have our learned model, we can use it for 
predictions.

safe or poisonous



Generalization

Fitting data isn’t the only task, we want to generalize

• Apply learned model to unseen data:
• For                            , 

• Can study theoretically or empirically
• For theory: need assumptions, e.g. training instances are iid



Supervised Learning: Review

Problem setting
• Set of possible instances 
• Unknown target function
• Set of models (a.k.a. hypotheses)

Get
• Training set of instances for unknown target function f,

Goal: model h that best approximates f

19



Parametric Learning

• A way to categorize learning techniques
• Parametric: hypotheses indexed by a parameter
• Learning:  find parameter yielding model that 

best approximates the target
• Ex: linear models, neural networks

• Nonparametric methods:
• Instance-based methods (k-NN)
• Decision trees



Hh 

20



Classification: Linear models

• How do we learn a linear separator between two classes?

Class 1

Class 0

𝑤



Linear Classification: Attempt 1

• Hyperplane: solutions to

• So… try to use such hyperplanes as separators? 
• Model:

• Predict: y=1 if                        , y=0 otherwise

• i.e. 

• Training objective:

difficult loss function to optimize!!

step function

ℓ 𝑓𝜃 =
1

𝑛
෍

𝑖=1

𝑚

1 step 𝑓𝜃 𝑥 𝑖 ≠ 𝑦(𝑖)



Linear Classification: Attempt 2

Let us instead think probabilistically and learn                    instead  

How?

• Specify the conditional distribution 

• Use maximum likelihood estimation (MLE) to get a nicer loss 

• Run gradient descent (or related optimization algorithm)

step function sigmoid function



Likelihood Function

• Captures the probability of seeing some data as a function 
of model parameters:

• If data is iid, we have

• Often more convenient to work with the log likelihood
• Both mathematically and for numerical stability
• Log is a monotonic + strictly increasing function



ML: Conditional Likelihood

Similar idea, but now using conditional probabilities:

If data is iid, we have

Apply this to linear classification to get logistic regression.



Logistic Regression: Conditional Distribution 

• Notation: 

• Conditional distribution 
model for logistic regression:

sigmoid

“soft” version of step 

function

𝑧 ← 𝜃𝑇𝑥



Logistic Regression: Loss

Conditional MLE: 

So:

Equivalently:



Logistic regression: Summary

• logistic regression = sigmoid conditional distribution + MLE

• More precisely:
• Give training data iid from some distribution D, 
• Train: 

• Test: output label probabilities 



Linear Regression: Setup

Training/learning: given 

Find                                                           that minimizes  

Loss function (how far are we)?

Hypothesis Class

Note: set x0 = 1



Linear regression: MLE

How did we get this objective?

Once again, conditional MLE:

• model: 𝑦 = 𝑓𝜃 𝑥 + 𝜀, 𝜀~𝑁(0, 𝜎2)

• likelihood:

∝ෑ

𝑗=1

𝑛

exp −
𝑓𝜃 𝑥(𝑗) − 𝑦(𝑗)

2

2𝜎2



Linear Regression: Notation

• Matrix notation: 
• set X to have jth row be 

• And y to be the vector 

• Can re-write the loss function as 



Linear Regression: Fitting

• Set gradient to 0 w.r.t. the weight,

(assume 𝑿𝑻𝑿 is invertible)



Evaluation: Metrics

• MSE/RMSE (mean-square error + root version)

• MAE (mean average error)

• R-squared

• Usually, compute on training data… (but should 
do cross validation!)



High-dimensional linear regression

Data matrix 𝑋 is 𝑛 × 𝑑
• number of data points 𝑛

• number of features 𝑑

If 𝑛 > 𝑑 and X has full column rank then 𝑋⊤𝑋 is invertible

But what if 𝒅 ≫ 𝒏 ?



Solution: Regularization

Same setup, new loss (Ridge regression):

Conveniently, still has a closed form solution

Goals: 

• solves the problem of 𝑋⊤𝑋 not being invertible
• results in a 𝜃 with small norm, often less likely to overfit

regularization 

parameter



Alternative regularization: LASSO

• Another type of regularization:

• unlike the ℓ2-norm, regularizing by the ℓ1-norm is 
known to encourage a sparse 𝜃
• theoretical understanding of this phenomenon exists 

under assumptions on 𝑋 and 𝑦 (compressed sensing)
• useful for both regularization and feature selection

regularization 

parameter



Choosing the regularization strength 𝜆

For prediction: use cross-validation!

• split dataset into 𝑘 train-validation folds

• for each candidate 𝜆:
• compute average across folds 𝑖 = 1,… , 𝑘

of
• MSE (or other metric) of 𝜃𝜆,𝑖 on fold i’s 

validation data
• 𝜃𝜆,𝑖 minimizes Ridge/LASSO with 

parameter 𝜆 on fold i’s training data

• retrain on the full training data with the 
optimal candidate 𝜆

full training data

fold 1’s 

validation 

data fold 1’s training data

fold 2’s 

training 

data

fold 2’s 

validation 

data

fold 2’s 

training 

data

fold 3’s training data

fold 3’s 

validation 

data

full training data



• Let’s consider a different approach

• Need a little bit of terminology

• H is the hypothesis

• E is the evidence

Another Approach: Bayesian Inference

38



Bayesian Inference Definitions

Terminology:

Prior: estimate of the probability without evidence

Prior

39



Bayesian Inference Definitions

Terminology:

Likelihood: probability of evidence given a hypothesis.

• Compare to the way we defined the likelihood earlier

Likelihood

40



Bayesian Inference Definitions

Terminology:

Posterior: probability of hypothesis given evidence.

Posterior

41



MAP Definition

• Suppose we think of the parameters as random variables
• There is a prior 

• Then, can do learning as Bayesian inference
• “Evidence” is the data

• Maximum a posteriori probability (MAP) estimation

42



MAP vs ML

What’s the difference between ML and MAP?

the prior!

43



Probabilistic interpretation

the ordinary least squares (OLS) estimator 𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦
estimator is the MLE of a Gaussian probabilistic model:

• 𝑦(𝑖) ∼ 𝑁(𝜃⊤𝑥(𝑖), 𝜎2)

• assume variance 𝜎2 is known

Ridge regression and LASSO are MAP estimators of the same 
probabilistic model with different priors for 𝜃

• Ridge regression: 𝜃 ∼ 𝑁(0𝑑 , 𝜏
2𝐼𝑑)

• LASSO: 𝜃 ∼ Laplace(0𝑑 , 𝜏)

• in both cases 𝜏 depends on 𝜎2 and 𝜆



Iterative Methods: Gradient Descent

What if there’s no closed-form solution to the objective?
Use an iterative approach to gradually get closer to the solution.

Gradient descent:
• Suppose we’re computing 
• Start at some

• Iteratively compute

• Stop after some # of steps
learning rate / 

step size



Gradient Descent: Illustration

• Goal: steps get closer to minimizer

• Some notes:
• Step size can be fixed or varying

• Under certain conditions, will 
converge to global minimum

Wikipedia
level sets



Gradient Descent: Convergence

Gradient descent is guaranteed to converge under a variety 
of assumptions on the objective (e.g. smoothness, convexity)

These hold for the regression models we’ve seen so far

They do NOT hold for deep nets



Gradient Descent as a heuristic

If a function is non-convex, gradient descent 
• can still be applied so long as it is differentiable
• is only guaranteed to reach a stationary point, not 

necessarily a global minimum

Nevertheless, neural networks are commonly fit using 
(extensions of) gradient descent:
• objectives are non-convex AND non-smooth
• often get parameters that are optimal (low training 

loss) AND generalize well (high test accuracy)
• required decades hacking and experimentation
• should be viewed as a poorly understood heuristic

Wikipedia



Gradient Descent: Drawbacks

• Why would we use anything but GD?

• Let’s go back to ERM.

• For GD, need to compute

• Each step: n gradient computations
• ImageNet: 106 samples… so for 100 iterations, 108 gradients



Solution: Stochastic Gradient Descent

Simple modification to GD:

SGD:

• Here a is selected uniformly from 1,…,n (“stochastic” bit)   
• Note: no sum!
• In expectation, same gradient as GD.
• In practice we often update using minibatches of data to 

take advantage of (GPU) parallelism



Other drawbacks of gradient descent

Behaves poorly on many important 
functions:
• e.g. LASSO is convex but non-

differentiable, so we use 
coordinate descent or proximal 
methods

• on poorly conditioned problems, 
GD struggles to make progress 
down narrow valleys.

• alternatives:
• momentum methods
• second-order methods (Newton)
• approximate second-order 

methods (includes widely used 
deep net optimizers such as Adam)

Gradient Descent Trajectory

Momentum Trajectory

Source: Goh. Why Momentum Really Works. Distill 2017.
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Unsupervised Learning: Setup

• Given instances 

• Goal: discover interesting regularities/structures/patterns 
that characterize the instances. For example:

• clustering

• dimensionality reduction

• generative models

• …



Principal Components Analysis

Unsupervised technique for extracting variance structure 
from high dimensional datasets

• also reduces dimensionality

PCA: orthogonal projection / transformation of the data 

• Into a (possibly lower dimensional) subspace 

• Goal: maximize variance of the projected data



PCA Intuition

The dimension of the ambient space (ie, Rd) might be 
much higher than the intrinsic data dimension

In case where data lies on or near a low d-dimensional 
linear subspace, axes of this subspace are an effective 
representation of the data.



PCA: Principal Components

Principal Components (PCs) are 
orthogonal directions that capture 
most of the variance in the data.

• First PC – direction of greatest 
variability in data.

• Projection of data points along first 
PC discriminates data most along 
any one direction 



PCA: Principal Components and Projection

How does dimensionality reduction work? 
From d dimensions to r dimensions: 

• get orthogonal vectors (PCs) 𝑣1, … , 𝑣𝑟 ∈ ℝ𝑑

that maximize variability (equivalently 
minimize reconstruction error)

• then project data onto PCs

Victor Powell



PCA First Step

First component,

Same as getting



PCA Recursion

Once we have k-1 components, next?

Then do the same thing

deflation



PCA Interpretations

The v’s are eigenvectors of XXT (Gram matrix)

XXT (proportional to) sample covariance matrix

• when data is 0 mean!

• i.e. PCA is the eigendecomposition of 
sample covariance

• nested subspaces span(v1), span(v1,v2),…,



PCA Interpretations: First Component

Two specific ways to think about the first component

Maximum variance direction 

• What we saw so far

Minimum reconstruction error

• A direction so that projection yields minimum MSE in 
reconstruction 



So                               

• means that v (the first PC) is an eigenvector of XXT

• eigenvalue 𝜆 denotes the amount of variability captured 
along that dimension

• PCs are just the eigenvectors…
• How to find them? Eigendecomposition

• Don’t need to keep all eigenvectors
• Just the ones for largest eigenvalues x1

x2

PCA Covariance Matrix Interpretation
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Neural Networks: Basics

So far we’ve seen simple parametric models: 𝑓𝜃 𝑥 = 𝜃⊤𝑥

A neural network is just a more complicated one:

𝑓𝑊1,…,𝑊𝐿,𝜃 𝑥 = 𝜃⊤𝜎 𝑊𝐿𝜎 𝑊𝐿−1𝜎 ⋯𝑊2𝜎 𝑊1𝑥

• 𝜎 is an elementwise nonlinearity (e.g. 𝜎 𝑥 𝑖 = max{𝑥𝑖 , 0})

• this is a feedforward network or multi-layer perceptron (MLP)

• each matrix multiply followed by nonlinearity is called a layer

• ℎ𝑙 = 𝜎 𝑊𝑙𝜎 𝑊𝑙−1𝜎 ⋯𝑊2𝜎 𝑊1𝑥 is called an activation 

or hidden representation



Neural Network Components 

… …

…
… …

…

Hidden variables ℎ1 ℎ2Input 𝑥 = ℎ0

First layer

ℎ𝐿

𝑦 = ℎ𝐿+1

Output layer

An 𝐿 + 1 -layer network 

65



Hidden Layers

• Neuron takes weighted linear combination of the previous 
representation layer
• Outputs one value for the next layer

…
…

ℎ𝑖 ℎ𝑖+1

66



Hidden Layers

• Outputs 𝑎 = 𝑟 𝑤𝑇𝑥 + 𝑏

• Typical activation function 𝑟
• threshold h 𝑧 = 1{𝑧≥0}
• ReLU ReLU 𝑧 = 𝑧 ⋅ 𝑡 𝑧 = max{0, 𝑧}
• sigmoid 𝜎 𝑧 = 1/ 1 + exp(−𝑧)
• hyperbolic tangent tanh 𝑧 = 2𝜎 2𝑧 − 1

• Why not linear activation functions?
• Model would be linear.

𝑎𝑥
𝑟(⋅)

67



Output Layer: Examples

• Regression: 𝑦 = 𝑤𝑇ℎ + 𝑏
• Linear units: no nonlinearity

• Multi-dimensional regression: 𝑦 = 𝑊𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

68



Output Layer: Examples

• Binary classification: 𝑦 = 𝜎(𝑤𝑇ℎ + 𝑏)
• Corresponds to using logistic regression on ℎ

• Multiclass classification: 
• 𝑦 = softmax 𝑧 where 𝑧 = 𝑊𝑇ℎ + 𝑏

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

𝑧

69



Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

• Example: 2 scalar weights

figure from Cho & Chow, Neurocomputing 1999

70



Training Neural Networks with SGD

Algorithm:

• Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

• Initialize weights
• Until stopping criterion is met:

• For each training point (𝑥 𝑖 , 𝑦 𝑖 ) do

• Compute prediction: ො𝑦(𝑖) = 𝑓𝑤(𝑥
𝑖 )

• Compute loss: 𝐿(𝑖) = 𝐿(ො𝑦 𝑖 , 𝑦 𝑖 )

• Compute gradient: ∇𝑤𝐿
𝑖 = 𝜕𝑤1

𝐿 𝑖 , 𝜕𝑤2
𝐿 𝑖 , … , 𝜕𝑤𝑚

𝐿 𝑖 ⊤

• Update weights: 𝑤 ← 𝑤 − 𝛼∇𝑤𝐿
𝑖

forward pass

backward 

pass

71SGD step

e.g. negative log-likelihood (NLL) loss
𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − (1 − 𝑦) log(1 − ො𝑦)



Training Neural Networks with minibatch SGD

Algorithm:
• Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

• Initialize weights
• Until stopping criterion is met:

• Sample a batch of 𝒃 training points 𝑖1, … , 𝑖𝑏

• Compute predictions:    ො𝑦 𝑖1 , … , ො𝑦 𝑖𝑏 = 𝑓𝑤 𝑥 𝑖1 , … , 𝑓𝑤 𝑥 𝑖𝑏

• Compute avg. loss:    𝐿(𝑖1,…,𝑖𝑏) = 1

𝑏
σ𝑗=1
𝑏 𝐿(ො𝑦 𝑖𝑗 , 𝑦 𝑖𝑗 )

• Compute gradient:    ∇𝑤𝐿
𝑖1,…,𝑖𝑏 = 𝜕𝑤1

𝐿 𝑖1,…,𝑖𝑏 , … , 𝜕𝑤𝑚
𝐿 𝑖1,…,𝑖𝑏

⊤

• Update weights:    𝑤 ← 𝑤 − 𝛼∇𝑤𝐿
𝑖1,…,𝑖𝑏

72



Training Neural Networks: Chain Rule

Will need to compute terms like:

• But, L is a composition of:
• Loss with output y
• Output itself a composition of softmax with outer layer
• Outer layer a combination of outputs from previous layer
• Outputs from prev. layer a composition of activations and linear 

functions…

Need the chain rule!

• Suppose

• Then,  



Backpropagation

• To compute gradient w.r.t 
specific weights we 
propagate loss information 
back through the network

• Today we do this by 
automatic differentiation 
(autodiff) for arbitrarily 
complex computation 
graphs

• Go backwards from top to 
bottom, recursively 
computing gradients

74
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Review: Multi-layer perceptrons (MLPs)

So far we’ve been using 
MLP networks, which 
consist of compositions 
of fully-connected layers, 
so named because every 
input unit is connected to 
every output unit

ℎ𝑙+1 = 𝜎(𝑊ℎ𝑙 + 𝑏)



What if we have images as our inputs?

36M floats in a RGB 

image!



What if we have images as our inputs?

Output 

Hidden layer 

Input 

100 neurons

~ 36M input elements x 100 = ~3.6B parameters!



Convolutions to the rescue

Convolution layers

• can process images with varying numbers of pixels

• have a parameter count that doesn’t increase with image 
resolution, unlike 𝑂 𝑤ℎ or more for fully connected layers

• have computational complexity ෨𝑂(𝑤 + ℎ) rather than 
𝑂 𝑤ℎ or worse for fully connected layers

• are translation equivariant, i.e. extract the same feature 
from a translation of the image



2-D Convolutions

Example:

Vincent Dumoulin



Convolution Operation

neuralnetworksanddeeplearning.com

•All the units used the same set of weights (kernel)

•The units detect the same “feature” but at different locations



Kernels: Examples

Edge 

Detectio

n

Sharpen

Gaussia

n Blur

(Wikipedia)



Convolution Layers

• Notation:
• X: nh x nw input matrix
• W: kh x kw kernel matrix 
• b : bias (a scalar)

• As usual W, b are learnable parameters



Convolutional Neural Networks

Convolutional networks: neural networks that use convolution
in place of general matrix multiplication in at least one layer

• default approach for image tasks

• still used even in modern Transformer alternatives



CNNs: Advantages

• Fully connected layer: m x n edges and parameters

• Convolutional layer: ≤ m x k edges, k parameters



Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:



Convolutional Layers: Channels

How to integrate multiple channels?

• Have a kernel for each channel 𝑖, 
then sum results over 𝑐𝑖 channels



Convolutional Layers: Channels

We can also have multiple output channels 𝑐𝑜
• have a kernel for each of 𝑐𝑖 × 𝑐𝑜 pairs 𝑖, 𝑜 of 

input channel 𝑖 and output channel 𝑜

• output channel 𝑜 gets the sum over 𝑖 = 1,… , 𝑐𝑖
over the applications of the kernels 𝑖, 𝑜



CNN Tasks

• Traditional tasks: handwritten digit recognition

• Dates back to the ‘70s and ‘80s
• Low-resolution images, 10 classes



CNN Tasks

• Traditional tasks: handwritten digit recognition

• Classic dataset: MNIST

• Properties:
• 10 classes
• 28 x 28 images
• Centered and scaled 
• 50,000 training data 
• 10,000 test data 



How to make neural networks deep

Adding too many layers leads to optimization issues:

• Vanishing gradients

• Unstable training

He et al: “Deep Residual Learning for Image Recognition”



Residual Connections

Idea: instead of transforming the input, 
learn a correction of the identity

x

f(x) f(x)

x

+f(x) + x

residual 

connection



ResNet Architecture

Residual or skip connections help 
make learning easier

• Vastly better performance

• No additional parameters! 

• Records on many benchmarks

• Have been used in many other 
models, including Transformers

He et al: “Deep Residual Learning for Image Recognition”



First step: building a simple pipeline
• Set up data, model training, 

evaluation loop

• Use a fixed seed
• Don’t want to get different values 

each time

• Overfit on one batch
• Goal: see that we can get zero loss, 

catch any bugs

• Check training loss: goes down?

Tips & Tricks: Initial Pipeline



Shuffle the training data

• In training ,usually don’t select random examples, but 
rather go through the dataset for each epoch

• Shuffle to avoid relationships between consecutive points

Pay attention to your data

Tips & Tricks: Data



Simple ways:

• Constant

• Divide by a factor ever certain number of 
epochs (annealing)

• Look at validation loss and reduce on plateau

Also simple: use an optimizer like Adam that 
internally tracks learning rates

• In fact, per parameter step-size

Lots of variations available

Tips & Tricks: Learning Rate Schedule



Best thing to do: get more data!
• Not always possible or cheap, but 

start here.

Augmentation
• But make sure you understand the 

transformations

Use other strategies: dropout, 
weight decay, early stopping
• Check each strategy one-at-a-time

Tips & Tricks: Regularizing

Nanonets



Checkpoint your models

• Save weights regularly

Log information from 
training process 

• At least keep track of 
train / test losses, time 
elapsed, current training 
settings. Log regularly

Tips & Tricks: Monitoring & Logging

NeptuneAI



Log information from training process 

• Use software packages

• Also have built-in visualization

• Example: TensorBoard, WandB

Tips & Tricks: Monitoring & Logging

pytorch.org



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie
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