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Announcements

Enrollment:
* Finalized next week. Please keep checking your status.

Office hours:
* By appointment. Email me at khodak@wisc.edu.

Outline:

* Today: ML basics

* Tuesday: (relevant) topics in advanced ML
* Thursday: scientific computing basics



mailto:khodak@wisc.edu

Outline

* Supervised learning
 features, parametric modeling, estimation, optimization

* Unsupervised learning
e dimensionality reduction

* Neural networks
* MLPs, CNNs, training



Outline

* Supervised learning
 features, parametric modeling, estimation, optimization



Supervised Learning

e Can | eat this?

 Safe or poisonous?
* Never seen it before

e How to decide?




Supervised Learning: Training Instances

poisonous

* Training set of examples/instances/labeled data



Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f X =)

* Set of models (a.k.a. hypotheses): H = {h|h X — y}

* Training set of instances for unknown target function,

)@@, y@),. (@, )

poisonous




Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f X =)

* Set of models (a.k.a. hypotheses): H = {h|h X — y}

* Training set of instances for unknown target function,

(a2, y W), (@@, y@),... (@), y ™)

Goal: model h that best approximates f



Supervised Learning: Objects

Three types of sets
* Input space, output space, hypothesis class
X, YV, H
* Examples:

* Input space: feature vectors X C RA

* Output space:

* Binary classification y — {— 1, + 1}
* Continuous y CR

safe

poisonous



Input Space: Feature Vectors

* Need a way to represent instance information (no need to use

raw image):. " &
& &
l?’,Q Q’(’? / -(’?‘7

Q Q S

& i S

o & safe

x =(bell, fibrous, gray, false, foul,l )

* For each instance, store features as a vector.

* Next: What kinds of features can we have?



Input Space: Feature Types

* nominal (including Boolean)
* no ordering among values (e.g. color € {red, blue, green})

*ordinal
* values of the feature are totally ordered (e.g. size € {small, medium, large})

* numeric (continuous) closed
height € [0, 100] inches polygon COTHIHOT
/\
ohierarchica/ square  triangle circle ellipse

* possible values are partially ordered in a hierarchy, e.g. shape



Output space: Classification vs. Regression

Choices of )/ have special names:

* Discrete: “classification”. The elements ofy are classes
* Note: does not have to be binary gees

anemone_fish 92.48% African_elephant 89.94% forklift 98.95%
- . ’ Y/

* Continuous: “regression”
* Example: linear regression

* There are other types...




Hypothesis class

We talked about X', )) what aboutH ?

* Recall: hypothesis class / model space.
* Theoretically, could be all maps from X’ to )/

* But - does not work! We'll see why later.

* Pick specific class of models. E.g. linear models: - - %~

h@(a’}) — 90 -+ 9133‘1 -+ 9232'2 + ...+ Hdﬂi'd



Hypothesis class: Linear Functions

* Example class of models: linear models

h@(ﬂ?) — 90 -+ 9125‘1 -+ 92332 + ...+ Hd.ilfd

Parameters (weights) Features

* How many linear functions are there?
e Can any function be fit by a linear model?



Hypothesis class: Other Examples

Example classes of models: (deep) neural networks

f¥(@) = o(Wy 57 (x)))

Feedforward network

* Each layer:
e [inear transformation
* Non-linearity

Wikipedia

* What are the parameters here?



Supervised Learning: Training

Goal: model h that best approximates f

* One way: empirical risk mlnlmlzatlon (ERIVI)

f—argmm—ZK (D))

hEM 1
\

Model prediction

Hypothesis Class
Loss function: how far is the

prediction from the label)?



Supervised Learning: Predicting

Now that we have our learned model, we can use it for

predictions.

x = (bell, fibrous, brown, false, foul,...)
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Generalization

Fitting data isn’t the only task, we want to generalize
* Apply learned model to unseen data:

*For (:I},y) ~ D,

A

p|l(f(x),y)

* Can study theoretically or empirically
* For theory: need assumptions, e.g. training instances are iid




Supervised Learning: Review

Problem setting X

- Set of possible instances f X =)
- Unknown target function '

. Set of models (a.k.a. hypotheses) H — {h‘h X — y}

Get
. Training set of instances for unknown target function f,

(2, y), (), y@),.. (2, y™)

Goal: model h that best approximates f



Parametric Learning

. A way to categorize learning techniques
Parametric: hypotheses indexed by a parameter

Learning: find parameter yielding model that
best approximates the target

Ex: linear models, neural networks

Nonparametric methods:
Instance-based methods (k-NN)
Decision trees

20



Classification: Linear models

. How do we learn a linear separator between two classes?

O Class 0




Linear Classification: Attempt 1
. Hyperplane: solutions to 1 = ¢

. So... try to use such hyperplanes as separators?
. Model: f@ (CE) — HTQ;‘ step function

- Predict: y=1if 6’ng > (), y=0 otherwise

. ie. y = step(fo(z))

- Training objective:

|0

difficult loss function to optimize!!

t(fo) = %Z 1|step (fo(x®)) = y @]



Linear Classification: Attempt 2

Let us instead think probabilistically and learn Py (y|x) instead

How?

. Specify the conditional distribution Fp (y\x)

. Use maximum likelihood estimation (MLE) to get a nicer loss
. Run gradient descent (or related optimization algorithm)

step function sigmoid function

i
1 1

S

G - 0




Likelihood Function

. Captures the probability of seeing some data as a function
of model parameters:

L(6; X) = Py(X)
- If data is iid, we have ﬁ(@;X) = Hpg(il?j)
J

. Often more convenient to work with the log likelihood
. Both mathematically and for numerical stability
. Log is a monotonic + strictly increasing function



ML: Conditional Likelihood

Similar idea, but now using conditional probabilities:

L(68;Y, X) = pp(Y[X)

If data is iid, we have

L(6;Y, X) Hpg (y]x;)

Apply this to linear classification to get logistic regression.



Logistic Regression: Conditional Distribution

1

. Notation: o(z) =

T

sigmoid

1

“soft” version of step

function

. Conditional distribution

exp(z)

z « 0Tx

exp(—z) 1

exp(z)

sigmoid

model for logistic regression:

Py(y = 1|z) = o(0" z) = 1 + exp(—0* )

1




Logistic Regression: Loss

Conditional MLE:
log likelihood(é’\x(i), y(i)) = log P@(y(i) \az(i))

So: 1 ik . .
° — MmN — — (%) | 1.(%)
min £( fp) = min - ;bg Py (y*]z™)
Equivalently:

1 - 1 '
min — — Z loga(HTx@) — — Z log(1 —O'(HTQS(Z)))
n

0 n =< .
y(’b)zl y(z):O



Logistic regression: Summary

. logistic regression = sigmoid conditional distribution + MLE

. More precisely:
. Give training data iid from some distribution D,

. Train: . . 1 ik ; ;
min £(fp) = min —— ;log Py(y |z

. Test: output label probabilities

1
Py(y = 1]z) = U(HTx) — 7 + exp(—07T 1)



Linear Regression: Setup

Training/learning: given

{(zW),yW) (2@ y@)), o (2™ y(m))}

Find fo(z) =012 =>._,6;2; that minimizes

T Note: set x, = 1
n
1

Hypothesis Class  /( fy) = — Z(fg(w(j)) _ y(j))Z
n =1 = ~ _/

Loss function (how far are we)?




Linear regression: VILE

How did we get this objective?
1 | |
/ I )y — 4(9))2
(fo) - E (fo(z)) —yY/)

g=1
Once again, conditional MLE:
. model: y = fp(x) + &, e~N(0,0%)

. likelihood: ,
- MY — v
OCHeXp( (fo(x) yf))

202

j=1



Linear Regression: Notation

- Matrix notation: |
. set X to have jth row be (gj(J) )T

- And y to be the vector [y(l), Ce ,y(n)]T

. Can re-write the loss function as

() = — S (o) — y)? = 21 X0~y

j=1



Linear Regression: Fitting

. Set gradient to 0 w.r.t. the weight,

Ve(fs) = V|1 X0 |3 = 0

— V[(X0—y)" (X0 —y)] =0

— V[0 X' X0 200 X y+y' y] =0
— 2X1 X6 —-2X1y =0

— 0= (X"X) "Xy (assume "X is invertible)




Evaluation: Metrics

. MSE/RMSE (mean-square error + root version)
. MAE (mean average error)
. R-squared

. Usually, compute on training data... (but should
do cross validation!)



High-dimensional linear regression

Data matrix X isn X d
- number of data points n
. number of features d

If n > d and X has full column rank then X "X is invertible

But whatifd > n?



Solution: Regularization

Same setup, new loss (Ridge regression):
1] — . .
((fo) = - > (fo(@)) = y)% + A|16]13
j=1 AN

_ , . regularization
Conveniently, still has a closed form solution parameter

0= (X"X+ ) 'X"y

Goals:
. solves the problem of X "X not being invertible
. results in a 8 with small norm, often less likely to overfit



Alternative regularization: LASSO

. Another type of regularization:

(fo) = — 3 (fola®) —y@) + Al

j=1 AN

regularization
unlike the £,-norm, regularizing by the £;-norm is parameter
known to encourage a sparse 6

- theoretical understanding of this phenomenon exists
under assumptions on X and y (compressed sensing)

useful for both regularization and feature selection



Choosing the regularization strength A

For prediction: use cross-validation! _

fold 1's
split dataset into k train-validation folds validation o
data fold 1’s training data
for each candidate A:
compute average across foldsi =1, ..., k fold2's  fold2's  fold 2’s
of training validation training
. . dat dat dat
MSE (or other metric) of 6, ; on fold i’s e o 2
validation data
A, ; minimizes Ridge/LASSO with fold 3's
parameter A on fold i’s training data fold 3's training data Va'('jiet‘zon

retrain on the full training data with the



Another Approach: Bayesian Inference

. Let’s consider a different approach
. Need a little bit of terminology

P(E|H)P(H)

P(HIE) = =5

. His the hypothesis
. Eis the evidence




Bayesian Inference Definitions

Terminology:

E\H)P(H) < Prior
P(E)

p|E) =

Prior: estimate of the probability without evidence



Bayesian Inference Definitions

Terminology:

P(H|E) =

Likelihood: probability of evidence given a hypothesis.
. Compare to the way we defined the likelihood earlier



Bayesian Inference Definitions

Terminology:

E|H)P(H)
P(E)

p(|E) = 2
1

Posterior

Posterior: probability of hypothesis given evidence.



MAP Definition

. Suppose we think of the parameters as random variables
. Thereis a prior P(@)

. Then, can do learning as Bayesian inference

. “Evidence” is the data P(X‘H)P(e)

POIY) = =55

. Maximum a posteriori probability (MAP) estimation

MAP _ (4)
0 arg mgxgp(w 0)p(6)



MAP vs ML
What’s the difference between ML and MAP?

MLE _ (i)
0 arg max 71:[1 p(x*"6)

MAP _ (4)
0 arg max J—ll p(z*"10)p(6)
the prior!



Probabilistic interpretation

the ordinary least squares (OLS) estimator 8 = (X7 X)~1XTy
estimator is the MLE of a Gaussian probabilistic model:

. y(l) ~ N(HTx(i), 0'2)
. assume variance o2 is known

Ridge regression and LASSO are MAP estimators of the same
probabilistic model with different priors for 6

. Ridge regression: 8 ~ N(04, 7%1;)
. LASSO: 6 ~ Laplace(0,, 7)
. in both cases T depends on g% and 1



Iterative Methods: Gradient Descent

What if there’s no closed-form solution to the objective?
Use an iterative approach to gradually get closer to the solution.

Gradient descent:

. Suppose we’re computing min g(6)
v,

. Start at some 6

. Iteratively compute 60,1 = 6; — aVg(6;)

. Stop after some # of steps \

learning rate /
step size



Gradient Descent: lllustration

. Goal: steps get closer to minimizer

. Some notes:
. Step size can be fixed or varying

. Under certain conditions, will
converge to global minimum

/

level sets

Wikipedia



Gradient Descent: Convergence

Gradient descent is guaranteed to converge under a variety
of assumptions on the objective (e.g. smoothness, convexity)

These hold for the regression models we’ve seen so far

They do NOT hold for deep nets

4.5
4
3.5
3
2.5
2
1.5
1
0.5

0
25 =2 15 -1 -5 0 05 1 15 2 25



Gradient Descent as a heuristic

If a function is non-convex, gradient descent
. can still be applied so long as it is differentiable

. is only guaranteed to reach a stationary point, not
necessarily a global minimum

Wikipedia

Nevertheless, neural networks are commonly fit using
(extensions of) gradient descent:

. objectives are non-convex AND non-smooth

. often get parameters that are optimal (low training
loss) AND generalize well (high test accuracy)

. required decades hacking and experimentation
. should be viewed as a poorly understood heuristic



Gradient Descent: Drawbacks

. Why would we use anything but GD?

- Let'sgo backto ERM.  argmin — Z g (’L)
hE?—L n

. For GD, need to compute Vé(h(x(i), y(i))

. Each step: n gradient computations
. ImageNet: 10° samples... so for 100 iterations, 108 gradients



Solution: Stochastic Gradient Descent

Simple modification to GD:

Qv ik : :
Or+1 = 0 — - Z VE(f(0:; x(@))w(%))

1=1
SGD: Ori1 = 0, — aVL(f(Oy; 2'Y), yl¥)

. Here ais selected uniformly from 1,...,n (“stochastic” bit)
. Note: no sum!
. In expectation, same gradient as GD.

. In practice we often update using minibatches of data to
take advantage of (GPU) parallelism



Other drawbacks of gradient descent

Behaves poorly on many important
functions:

e.g. LASSO is convex but non-
ditferentiable, so we use
coordinate descent or proximal

m et h O d S starfag Point Gradient Descent Trajectory
on poorly conditioned problems, —
GD struggles to make progress | 5

down narrow valleys.

alternatives:
+ momentum methods Startin Polnt Momentum Trajectory
second-order methods (Newton)

approximate second-order |
methods (includes widelyused o o
deep net optimizers such as Adam)

Source: Goh. Why Momentum Really Works. Distill 2017.



Outline

* Unsupervised learning
* dimensionality reduction



Unsupervised Learning: Setup

-Given instances  {x(1) 2(2) . ()1

* Goal: discover interesting regularities/structures/patterns
that characterize the instances. For example:
e clustering
e dimensionality reduction
e generative models



Principal Components Analysis

Unsupervised technique for extracting variance structure
from high dimensional datasets

. also reduces dimensionality

PCA: orthogonal projection / transformation of the data
. Into a (possibly lower dimensional) subspace
. Goal: maximize variance of the projected data

Nyt



PCA Intuition

The dimension of the ambient space (ie, RY) might be
much higher than the intrinsic data dimension

D=2
ld=1

In case where data lies on or near a low d-dimensional
linear subspace, axes of this subspace are an effective
representation of the data.



PCA: Principal Components

Principal Components (PCs) are
orthogonal directions that capture
most of the variance in the data.

. First PC —direction of greatest
variability in data.

. Projection of data points along first
PC discriminates data most along

any one direction



PCA: Principal Components and Projection

How does dimensionality reduction work?
From d dimensions to r dimensions:

. get orthogonal vectors (PCs) vy, ..., v, € R?
that maximize variability (equivalently
minimize reconstruction error)

> B

. then project data onto PCs :i
i ‘f_.
w '\\

Victor Powell



PCA First Step

First component, .

v; = arg max Y (v,x;)°
lvll=1 <=

Same as getting

v1 = arg max || Xv||”
Jvll=1



PCA Recursion

Once we have k-1 components, next?
k—1
Xk = X — Z XU@'U;-F
i=1
deflation

Then do the same thing

v, = arg max || Xwl|?
Jvl|=1



PCA Interpretations

The V's are eigenvectors of XX’ (Gram matrix)

XX (proportional to) sample covariance matrix
. when data is O mean!

. i.e. PCA is the eigendecomposition of
sample covariance

. nested subspaces span(vl), span(v1,v2),...,



PCA Interpretations: First Component

Two specific ways to think about the first component
Maximum variance direction

. What we saw so far ik
Z(VTX?;)Q = v XXy
i—1

Minimum reconstruction error
. A direction so that projection vields minimum MSE in

reconstruction
Z |x; — (v x;)v|?



PCA Covariance Matrix Interpretation

So = ‘(XXT)V = \v
. means that v (the first PC) is an eigenvector of XX’

. eigenvalue A denotes the amount of variability captured
along that dimension

. PCs are just the eigenvectors...
- How to find them? Eigendecomposition

X2 -;;3

. Don’t need to keep all eigenvectors /

. Just the ones for largest eigenvalues xi



Outline

 Neural networks
* MLPs, CNNs



Neural Networks: Basics

So far we’ve seen simple parametric models: fg(x) = 0"x

A neural network is just a more complicated one:
000 = 07 (Wyo (W oy (- Wao (W)

. 0 is an elementwise nonlinearity (e.g. o(x); = max{x;,0})
. this is a feedforward network or multi-layer perceptron (MLP)
. each matrix multiply followed by nonlinearity is called a layer

. hl=g¢ (Wla (Wl_la(--- Wza(Wlx)))) is called an activation
or hidden representation



Neural Network Components

An (L + 1)-layer network

First layer

Input x = h® Hidden variables h'

h2

Output layer




Hidden Layers

Neuron takes weighted linear combination of the previous
representation layer
. Outputs one value for the next layer

hi hi+1



Hidden Layers

. Outputs a = r(w'x + b) -

. Typical activation function r
. threshold h(z) = Liz=0)

. ReLU ReLU(z) = z - t(z) = max{0, z} L=
. sigmoid o(z) = 1/(1 + exp(—2)) SEEERdScea!

. hyperbolic tangent tanh(z) = 20(2z) — 1

- Why not linear activation functions?
- Model would be linear.



Output Layer: Examples

. Regression:y = w'h + b
- Linear units: no nonlinearity

. Multi-dimensional regression: y = W h + b

- Linear units: no nonlinearity

Output layer Output layer

A A
\ [ \




Output Layer: Examples

. Binary classification: y = a(w'h + b)
. Corresponds to using logistic regression on h

. Multiclass classification:
.y = softmax(z) wherez = W'h + b

Output layer Output layer

A A
\ ( \




Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

. Example: 2 scalar weights

$eey

g ' ) "' ',",'-, :\/l",:":,l\\

XX
0.0.9,%.%%%

N>

P ¥ ”
' ¢ » “, ‘.-i‘-F_'.
NAS) 00,974
et r 7

.......
NSNS XN
..................

bias S 5 weight

figure from Cho & Chow, Neurocomputing 1999

70



Training Neural Networks with SGD

Algorithm:
Input dataset D = {(x,yD), .., (x™, y™)}
Initialize weights
Until stopping criterion is met:

For each training point (x®, y() do

- Compute prediction: y@') = fW(x(i)) — forward pass

e.g. negative log-likelihood (NLL) loss
Ly,y) = —ylogy — (1 —y)log(1—7)

. Compute gradient: V,,L®) = (9, L™, 9, LW, ___,anL(i))T ba:;l;\;v:rd

. Compute loss: L) = L(H®), y ()

- Update weights: w « w — aVWL(i) «— SGD step



Training Neural Networks with minibatch SGD

Algorithm:
Input dataset D = {(x(l),y(l)), (x(”),y("))}
Initialize weights
Until stopping criterion is met:

.- Sample a batch of b training points i, ..., i},

. Compute predictions: {9, ... 9} ={f (x)) . £ (x())}
. Compute avg. loss:  L{vib) =2 b_lL(y(‘J) y(lj))

. Compute gradient: V,, L{vib) = (6W1L(i1""'ib), ...,6WmL(i1""'ib))T

Update weights: w « w — aV,, LU



Training Neural Networks: Chain Rule

Will need to compute terms like: oL

But, L is a composition of: Owq
Loss with output y

.- Output itself a composition of softmax with outer layer

. Outer layer a combination of outputs from previous layer

. Outputs from prev. layer a composition of activations and linear
functions...

Need the chain rule!

. Suppose L = L(gl,...,gk)g- = g, (wy,...,wp)

. Then, jr, Z OL g,
Ow; 899 Ow;

Input x  Hidden variables h! h?



Backpropagation

. To compute gradient w.r.t
specific weights we
propagate loss information
back through the network

. Today we do this by
automatic differentiation
(autodiff) for arbitrarily
complex computation
graphs

. Go backwards from top to
bottom, recursively
computing gradients

YWy



Review: Multi-layer perceptrons (MLPs)

So far we’ve been using
MLP networks, which
consist of compositions
of fully-connected layers,

- e ———— -—— - — -—— e e - - - -—— e — -—— e - — -

..Qr

NP

\w ; '6///
fid
\

\
N

JOC z..é

______________________________

so hamed because every AKX AL/

input unit is connected to ):0’;\;‘\"3;{\‘:&\0‘

every output unit 9 ‘
Y OUP 07/

//

1/
1

hi*1 = g(Wh! + b)




What if we have images as our inputs?

Dual
wide-angle and
telephoto cameras

36M floats in a RGB
image!



What if we have images as our inputs?

Input
Hidden layer

100 neurons

Output

~ 36M input elements x 100 = ~3.6B parameters!



Convolutions to the rescue

Convolution layers
can process images with varying numbers of pixels

have a parameter count that doesn’t increase with image
resolution, unlike O(wh) or more for fully connected layers

have computational complexity O(w + h) rather than
O(wh) or worse for fully connected layers

are translation equivariant, i.e. extract the same feature
from a translation of the image



2-D Convolutions

Example:
Input Kernel Output
01] 2
0| 1 19| 25
31415 * —
2|3 37 | 43

Vincent Dumoulin

OxXx0+1x1+3%X2+4%x3=19,
IX0+2%X14+4%x2+5%x3=25,
3IX0+4Xx1+6%X2+7%X3 =37,
4x0+5x1+7%X2+8X%X3=43.



Convolution Operation

*All the units used the same set of weights (kernel)
*The units detect the same “feature” but at different locations

input neurons input neuron S

9998Qeaian 0000000 0C first hidden layer 8000QeaL il 000000000 first hidden layer
e S 00000 =

00000~ e 00000~ AR AR IE e

00000~ 80850

neuralnetworksanddeeplearning.com



Kernels: Examples

(Wikipedia)

Edge
Detectio
n

Sharpen

Gaussia
n Blur



Convolution Layers

Notation:

- X:n,xn, input matrix
W: k, x k, kernel matrix

. b : bias (a scalar)

. As usual W, b are learnable parameters

0| 1] 2
31415
6|78

19

25

37

43




Convolutional Neural Networks

Convolutional networks: neural networks that use convolution
in place of general matrix multiplication in at least one layer

convolution pooling full

convolution

L

L]

120 - F5 full
84 - F6 full
NEVA
[0-Out]

o
@

--'-'-.--— B

ma 6@14x14 Em =
= S2 feature map I

J2x32 Image 0028x28 16@10x10 54 f-:egtﬁil?t);smap
C1 feature map C3 feature map

default approach for image tasks
still used even in modern Transformer alternatives



CNNs: Advantages

. Fully connected layer: m x n edges and parameters

. Convolutional layer: £ m x k edges, k parameters

0 o ° moutputnodes

k kernel size

ojogogogor™



Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:




Convolutional Layers: Channels

How to integrate multiple channels?

. Have a kernel for each channel i,
then sum results over c¢; channels

X:¢Xn,Xn,

W ¢ Xk, Xk, Y=in;;*wi::
Y:mhxmw =0



Convolutional Layers: Channels

We can also have multiple output channels ¢,

. have a kernel for each of ¢; X ¢, pairs (i, 0) of
input channel i and output channel o

. output channel o gets the sumoveri =1, ..., ¢;
over the applications of the kernels (i, 0)

X:¢;Xn,Xn,
W:c Xc; Xk Xk, Y = X*W

Y:c, Xm,Xm,

*9



CNN Tasks

. Traditional tasks: handwritten digit recognition

. Dates back to the ‘70s and ‘80s

- Low-resolution images, 10 classes

/{‘ .
/fﬁ %7& =) /'4 ﬁjﬁi "%l Q“’T T ’.'

Dreer Fpntit

pLElley DL
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CNN Tasks

. Traditional tasks: handwritten digit recognition

. Classic dataset: MNIST
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How to make neural networks deep

Adding too many layers leads to optimization issues:
Vanishing gradients
Unstable training

i
\ALM

20-layer

56-layer

training error (%o)

20-layer

L |
5 b

; iter? (led) ter. (1e4)

He et al: “Deep Residual Learning for Image Recognition”



Residual Connections

Idea: instead of transforming the input,
learn a correction of the identity

f(x) + x

% ftx)

x—>

>0
/

x—>




ResNet Architecture

Residual or skip connections help
make learning easier

Vastly better performance

No additional parameters!

Records on many benchmarks

Have been used in many other
models, including Transformers

VGG-19 34-layer plain 34-layer residual

image image image

ey | dacomsr |
sizar 334 3x3 conv, 64
3x3 conv, b4

poal, f2
utput
el Ty cony, 128 |
i Y
| 3x3 conv, 128 | 7 conv, &4, f2
poal, /2 poal, /2
output
156
s l 3x3 conv, 256 ] [ 3x3 conv, b4 |

[ 3x3conv, 256 | 33 cony, 64
. 2 ¥
| 3x3 conv, 256 | 3x3 conv, B4
Y
3x3 conv, 64

| 3x3 conv, b4 J

pool, /2 3x3 conv, 128, /2
output

shee: 28 3 conv, 512 33 conv, 128

He et al: “Deep Residual Learning for Image Recognition”




Tips & Tricks: Initial Pipeline

First step: building a simple pipeline

Set up data, model training,
evaluation loop

Use a fixed seed

Don’t want to get different values
each time

Overfit on one batch

Goal: see that we can get zero loss,
catch any bugs

Check training loss: goes down?




Tips & Tricks: Data

Shuffle the training data

. In training ,usually don’t select random examples, but
rather go through the dataset for each epoch

. Shuffle to avoid relationships between consecutive points

Pay attention to your data




Tips & Tricks: Learning Rate Schedule

Simple ways:
Constant

Divide by a factor ever certain number of
epochs (annealing)

Look at validation loss and reduce on plateau

Also simple: use an optimizer like Adam that
internally tracks learning rates

In fact, per parameter step-size

Lots of variations available



Tips & Tricks: Regularizing

Best thing to do: get more datal

Not always possible or cheap, but
start here.

B | & B
Augmentation a8 | 880 B,
But make sure you understand the 2 | & [ | &
transformations AT | 5o\ | T | AT
ik Sl e w P |
Enlarge your Dataset

Nanonets

Use other strategies: dropout,
weight decay, early stopping

Check each strategy one-at-a-time



Tips & Tricks: Monitoring & Logging

Checkpoint your models

WARNING: tensorflow: _ init__ (from tensorflow.python.ops.init ops) is deprecated and wi
Instructions for updating:
Use tf.initializers.variance_scaling instead with distribution=uniform to get equivalen

L]
WARNING: tensorflow:From /home/jitendra_gtbitll/.local/lib/python2.7/site-packages/tflea
L] a Ve We I g S reg u a r y deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
2018-09-27 19:49:34.298676: 1 tensorflow/core/platform/cpu_feature guard.cc:141] Your C
start training...
- emotions = 7
- model = B
optimizer = 'momentum’
learning_rate = 0.016

L] e
learning_rate_decay = 0.864

I I otimizer_param (momentum) = 0.95
keep_prob = 0.956

. . epochs = 1500
use landmarks = True
tra I n I n rocess use hog + landmarks = True

use hog sliding window + landmarks = True
use batchnorm after conv = True

. At least keep track of w i

Training samples: 3436

train / test losses, time it b

Training Step: 1 | time: 1.971s
BEr2K
| Momentum | epoch: 001 | loss: 0.00000 - acc: 0.0000 -- iter: 0128/3436

elapsed, current training

| Momentum | epoch: 001 | loss: 1.81674 - acc: 0.0914 -- iter: 8256/3436
BU[ARE[ATraining Step: 3 | total loss: [fZ[im[E][32m1.96555FE[OmEE[Om | time:

[ ]
Ber2K
° | Momentum | epoch: 001 | loss: 1.96555 - acc: 0.1700 -- iter: 0384/3436

Bg[AEE[ATraining Step: 4 | total loss: 1mE|[32m2. 204545 [omE [Om | time:
(2«

| Momentum | epoch: 001 | loss: 2.20454 - acc: 0.1363 -- iter: 8512/3436
BU[ARE[ATraining Step: 5 | total loss: [Z[1imEEj[32m2.05230FF[omEE[Om | time:
ek

| Momentum | epoch: 001 | loss: 2.05230 - acc: 0.1122 -- iter: 0640/3436
BY[AEE[ATraining Step: 6 | total loss: 1m[E|[32m1.97573[F [OmEE[Om | time: 9.3:
=

NeptuneAl



Tips & Tricks: Monitoring & Logging

Log information from training process

My latest experiment

cccccccc
tag: accuracy/accuracy

Use software packages e
Also have built-in visualization — _ - |
Example: TensorBoard, WandB

Sty xent_1
O Ir-1E-03,conv=2,fc=2 tag: xent/xent 1
O Ir1E-04,conv=1fc=2
Ir_1E-04,conv=2,fc=2
GLE ALL RUN
xperir t Advd1 I
Vo y
PN RIS

pytorch.org



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie
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