
CS839: AI for Scientific Computing
ML Basics

Misha Khodak

University of Wisconsin-Madison

22 January 2026

Announcements

Enrollment:
• Finalized next week. Please keep checking your status.

Office hours:
• By appointment. Email me at khodak@wisc.edu.

Outline:
• Today: ML basics
• Tuesday: (relevant) topics in advanced ML
• Thursday: scientific computing basics

mailto:khodak@wisc.edu

Outline

• Supervised learning
• features, parametric modeling, estimation, optimization

• Unsupervised learning
• dimensionality reduction

• Neural networks
• MLPs, CNNs, training

Outline

• Supervised learning
• features, parametric modeling, estimation, optimization

• Unsupervised learning
• dimensionality reduction

• Neural networks
• MLPs, CNNs, training

Supervised Learning

• Can I eat this?

• Safe or poisonous?
• Never seen it before

• How to decide?

Supervised Learning: Training Instances

• I know about other mushrooms:

• Training set of examples/instances/labeled data

safe

poisonous

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):

• Training set of instances for unknown target function,

safe safepoisonous

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):

• Training set of instances for unknown target function,

Goal: model h that best approximates f

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

• Examples:
• Input space: feature vectors

• Output space:
• Binary classification

• Continuous

safe poisonous

• Need a way to represent instance information (no need to use

raw image):

• For each instance, store features as a vector.

• Next: What kinds of features can we have?

Input Space: Feature Vectors

safe

Input Space: Feature Types

• nominal (including Boolean)
• no ordering among values (e.g. color ∈ {red, blue, green})

• ordinal
• values of the feature are totally ordered (e.g. size ∈ {small, medium, large})

• numeric (continuous)
height ∈ [0, 100] inches

• hierarchical
• possible values are partially ordered in a hierarchy, e.g. shape

closed

polygon
continuou

s

trianglesquare circle ellipse

Output space: Classification vs. Regression

Choices of have special names:

• Discrete: “classification”. The elements of are classes
• Note: does not have to be binary

• Continuous: “regression”
• Example: linear regression

• There are other types…

Hypothesis class

We talked about what about ?

• Recall: hypothesis class / model space.
• Theoretically, could be all maps from to
• But - does not work! We’ll see why later.

• Pick specific class of models. E.g. linear models:

Hypothesis class: Linear Functions

• Example class of models: linear models

• How many linear functions are there?
• Can any function be fit by a linear model?

Parameters (weights) Features

Hypothesis class: Other Examples

Example classes of models: (deep) neural networks

Feedforward network

• Each layer:
• linear transformation
• Non-linearity

• What are the parameters here?
Wikipedia

Supervised Learning: Training

Goal: model h that best approximates f

• One way: empirical risk minimization (ERM)

Model prediction

Loss function: how far is the
prediction from the label)?

Hypothesis Class

Supervised Learning: Predicting

Now that we have our learned model, we can use it for
predictions.

safe or poisonous

Generalization

Fitting data isn’t the only task, we want to generalize

• Apply learned model to unseen data:
• For ,

• Can study theoretically or empirically
• For theory: need assumptions, e.g. training instances are iid

Supervised Learning: Review

Problem setting
• Set of possible instances
• Unknown target function
• Set of models (a.k.a. hypotheses)

Get
• Training set of instances for unknown target function f,

Goal: model h that best approximates f

19

Parametric Learning

• A way to categorize learning techniques
• Parametric: hypotheses indexed by a parameter
• Learning: find parameter yielding model that

best approximates the target
• Ex: linear models, neural networks

• Nonparametric methods:
• Instance-based methods (k-NN)
• Decision trees



Hh 

20

Classification: Linear models

• How do we learn a linear separator between two classes?

Class 1

Class 0

𝑤

Linear Classification: Attempt 1

• Hyperplane: solutions to

• So… try to use such hyperplanes as separators?
• Model:

• Predict: y=1 if , y=0 otherwise

• i.e.

• Training objective:

difficult loss function to optimize!!

step function

ℓ 𝑓𝜃 =
1

𝑛
෍

𝑖=1

𝑚

1 step 𝑓𝜃 𝑥 𝑖 ≠ 𝑦(𝑖)

Linear Classification: Attempt 2

Let us instead think probabilistically and learn instead

How?

• Specify the conditional distribution

• Use maximum likelihood estimation (MLE) to get a nicer loss

• Run gradient descent (or related optimization algorithm)

step function sigmoid function

Likelihood Function

• Captures the probability of seeing some data as a function
of model parameters:

• If data is iid, we have

• Often more convenient to work with the log likelihood
• Both mathematically and for numerical stability
• Log is a monotonic + strictly increasing function

ML: Conditional Likelihood

Similar idea, but now using conditional probabilities:

If data is iid, we have

Apply this to linear classification to get logistic regression.

Logistic Regression: Conditional Distribution

• Notation:

• Conditional distribution
model for logistic regression:

sigmoid

“soft” version of step

function

𝑧 ← 𝜃𝑇𝑥

Logistic Regression: Loss

Conditional MLE:

So:

Equivalently:

Logistic regression: Summary

• logistic regression = sigmoid conditional distribution + MLE

• More precisely:
• Give training data iid from some distribution D,
• Train:

• Test: output label probabilities

Linear Regression: Setup

Training/learning: given

Find that minimizes

Loss function (how far are we)?

Hypothesis Class

Note: set x0 = 1

Linear regression: MLE

How did we get this objective?

Once again, conditional MLE:

• model: 𝑦 = 𝑓𝜃 𝑥 + 𝜀, 𝜀~𝑁(0, 𝜎2)

• likelihood:

∝ෑ

𝑗=1

𝑛

exp −
𝑓𝜃 𝑥(𝑗) − 𝑦(𝑗)

2

2𝜎2

Linear Regression: Notation

• Matrix notation:
• set X to have jth row be

• And y to be the vector

• Can re-write the loss function as

Linear Regression: Fitting

• Set gradient to 0 w.r.t. the weight,

(assume 𝑿𝑻𝑿 is invertible)

Evaluation: Metrics

• MSE/RMSE (mean-square error + root version)

• MAE (mean average error)

• R-squared

• Usually, compute on training data… (but should
do cross validation!)

High-dimensional linear regression

Data matrix 𝑋 is 𝑛 × 𝑑
• number of data points 𝑛

• number of features 𝑑

If 𝑛 > 𝑑 and X has full column rank then 𝑋⊤𝑋 is invertible

But what if 𝒅 ≫ 𝒏 ?

Solution: Regularization

Same setup, new loss (Ridge regression):

Conveniently, still has a closed form solution

Goals:

• solves the problem of 𝑋⊤𝑋 not being invertible
• results in a 𝜃 with small norm, often less likely to overfit

regularization

parameter

Alternative regularization: LASSO

• Another type of regularization:

• unlike the ℓ2-norm, regularizing by the ℓ1-norm is
known to encourage a sparse 𝜃
• theoretical understanding of this phenomenon exists

under assumptions on 𝑋 and 𝑦 (compressed sensing)
• useful for both regularization and feature selection

regularization

parameter

Choosing the regularization strength 𝜆

For prediction: use cross-validation!

• split dataset into 𝑘 train-validation folds

• for each candidate 𝜆:
• compute average across folds 𝑖 = 1,… , 𝑘

of
• MSE (or other metric) of 𝜃𝜆,𝑖 on fold i’s

validation data
• 𝜃𝜆,𝑖 minimizes Ridge/LASSO with

parameter 𝜆 on fold i’s training data

• retrain on the full training data with the
optimal candidate 𝜆

full training data

fold 1’s

validation

data fold 1’s training data

fold 2’s

training

data

fold 2’s

validation

data

fold 2’s

training

data

fold 3’s training data

fold 3’s

validation

data

full training data

• Let’s consider a different approach

• Need a little bit of terminology

• H is the hypothesis

• E is the evidence

Another Approach: Bayesian Inference

38

Bayesian Inference Definitions

Terminology:

Prior: estimate of the probability without evidence

Prior

39

Bayesian Inference Definitions

Terminology:

Likelihood: probability of evidence given a hypothesis.

• Compare to the way we defined the likelihood earlier

Likelihood

40

Bayesian Inference Definitions

Terminology:

Posterior: probability of hypothesis given evidence.

Posterior

41

MAP Definition

• Suppose we think of the parameters as random variables
• There is a prior

• Then, can do learning as Bayesian inference
• “Evidence” is the data

• Maximum a posteriori probability (MAP) estimation

42

MAP vs ML

What’s the difference between ML and MAP?

the prior!

43

Probabilistic interpretation

the ordinary least squares (OLS) estimator 𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦
estimator is the MLE of a Gaussian probabilistic model:

• 𝑦(𝑖) ∼ 𝑁(𝜃⊤𝑥(𝑖), 𝜎2)

• assume variance 𝜎2 is known

Ridge regression and LASSO are MAP estimators of the same
probabilistic model with different priors for 𝜃

• Ridge regression: 𝜃 ∼ 𝑁(0𝑑 , 𝜏
2𝐼𝑑)

• LASSO: 𝜃 ∼ Laplace(0𝑑 , 𝜏)

• in both cases 𝜏 depends on 𝜎2 and 𝜆

Iterative Methods: Gradient Descent

What if there’s no closed-form solution to the objective?
Use an iterative approach to gradually get closer to the solution.

Gradient descent:
• Suppose we’re computing
• Start at some

• Iteratively compute

• Stop after some # of steps
learning rate /

step size

Gradient Descent: Illustration

• Goal: steps get closer to minimizer

• Some notes:
• Step size can be fixed or varying

• Under certain conditions, will
converge to global minimum

Wikipedia
level sets

Gradient Descent: Convergence

Gradient descent is guaranteed to converge under a variety
of assumptions on the objective (e.g. smoothness, convexity)

These hold for the regression models we’ve seen so far

They do NOT hold for deep nets

Gradient Descent as a heuristic

If a function is non-convex, gradient descent
• can still be applied so long as it is differentiable
• is only guaranteed to reach a stationary point, not

necessarily a global minimum

Nevertheless, neural networks are commonly fit using
(extensions of) gradient descent:
• objectives are non-convex AND non-smooth
• often get parameters that are optimal (low training

loss) AND generalize well (high test accuracy)
• required decades hacking and experimentation
• should be viewed as a poorly understood heuristic

Wikipedia

Gradient Descent: Drawbacks

• Why would we use anything but GD?

• Let’s go back to ERM.

• For GD, need to compute

• Each step: n gradient computations
• ImageNet: 106 samples… so for 100 iterations, 108 gradients

Solution: Stochastic Gradient Descent

Simple modification to GD:

SGD:

• Here a is selected uniformly from 1,…,n (“stochastic” bit)
• Note: no sum!
• In expectation, same gradient as GD.
• In practice we often update using minibatches of data to

take advantage of (GPU) parallelism

Other drawbacks of gradient descent

Behaves poorly on many important
functions:
• e.g. LASSO is convex but non-

differentiable, so we use
coordinate descent or proximal
methods

• on poorly conditioned problems,
GD struggles to make progress
down narrow valleys.

• alternatives:
• momentum methods
• second-order methods (Newton)
• approximate second-order

methods (includes widely used
deep net optimizers such as Adam)

Gradient Descent Trajectory

Momentum Trajectory

Source: Goh. Why Momentum Really Works. Distill 2017.

Outline

• Supervised learning
• features, parametric modeling, estimation, optimization

• Unsupervised learning
• dimensionality reduction

• Neural networks
• MLPs, CNNs, training

Unsupervised Learning: Setup

• Given instances

• Goal: discover interesting regularities/structures/patterns
that characterize the instances. For example:

• clustering

• dimensionality reduction

• generative models

• …

Principal Components Analysis

Unsupervised technique for extracting variance structure
from high dimensional datasets

• also reduces dimensionality

PCA: orthogonal projection / transformation of the data

• Into a (possibly lower dimensional) subspace

• Goal: maximize variance of the projected data

PCA Intuition

The dimension of the ambient space (ie, Rd) might be
much higher than the intrinsic data dimension

In case where data lies on or near a low d-dimensional
linear subspace, axes of this subspace are an effective
representation of the data.

PCA: Principal Components

Principal Components (PCs) are
orthogonal directions that capture
most of the variance in the data.

• First PC – direction of greatest
variability in data.

• Projection of data points along first
PC discriminates data most along
any one direction

PCA: Principal Components and Projection

How does dimensionality reduction work?
From d dimensions to r dimensions:

• get orthogonal vectors (PCs) 𝑣1, … , 𝑣𝑟 ∈ ℝ𝑑

that maximize variability (equivalently
minimize reconstruction error)

• then project data onto PCs

Victor Powell

PCA First Step

First component,

Same as getting

PCA Recursion

Once we have k-1 components, next?

Then do the same thing

deflation

PCA Interpretations

The v’s are eigenvectors of XXT (Gram matrix)

XXT (proportional to) sample covariance matrix

• when data is 0 mean!

• i.e. PCA is the eigendecomposition of
sample covariance

• nested subspaces span(v1), span(v1,v2),…,

PCA Interpretations: First Component

Two specific ways to think about the first component

Maximum variance direction

• What we saw so far

Minimum reconstruction error

• A direction so that projection yields minimum MSE in
reconstruction

So

• means that v (the first PC) is an eigenvector of XXT

• eigenvalue 𝜆 denotes the amount of variability captured
along that dimension

• PCs are just the eigenvectors…
• How to find them? Eigendecomposition

• Don’t need to keep all eigenvectors
• Just the ones for largest eigenvalues x1

x2

PCA Covariance Matrix Interpretation

Outline

• Supervised learning
• features, parametric modeling, estimation, optimization

• Unsupervised learning
• dimensionality reduction

• Neural networks
• MLPs, CNNs

Neural Networks: Basics

So far we’ve seen simple parametric models: 𝑓𝜃 𝑥 = 𝜃⊤𝑥

A neural network is just a more complicated one:

𝑓𝑊1,…,𝑊𝐿,𝜃 𝑥 = 𝜃⊤𝜎 𝑊𝐿𝜎 𝑊𝐿−1𝜎 ⋯𝑊2𝜎 𝑊1𝑥

• 𝜎 is an elementwise nonlinearity (e.g. 𝜎 𝑥 𝑖 = max{𝑥𝑖 , 0})

• this is a feedforward network or multi-layer perceptron (MLP)

• each matrix multiply followed by nonlinearity is called a layer

• ℎ𝑙 = 𝜎 𝑊𝑙𝜎 𝑊𝑙−1𝜎 ⋯𝑊2𝜎 𝑊1𝑥 is called an activation

or hidden representation

Neural Network Components

… …

…
… …

…

Hidden variables ℎ1 ℎ2Input 𝑥 = ℎ0

First layer

ℎ𝐿

𝑦 = ℎ𝐿+1

Output layer

An 𝐿 + 1 -layer network

65

Hidden Layers

• Neuron takes weighted linear combination of the previous
representation layer
• Outputs one value for the next layer

…
…

ℎ𝑖 ℎ𝑖+1

66

Hidden Layers

• Outputs 𝑎 = 𝑟 𝑤𝑇𝑥 + 𝑏

• Typical activation function 𝑟
• threshold h 𝑧 = 1{𝑧≥0}
• ReLU ReLU 𝑧 = 𝑧 ⋅ 𝑡 𝑧 = max{0, 𝑧}
• sigmoid 𝜎 𝑧 = 1/ 1 + exp(−𝑧)
• hyperbolic tangent tanh 𝑧 = 2𝜎 2𝑧 − 1

• Why not linear activation functions?
• Model would be linear.

𝑎𝑥
𝑟(⋅)

67

Output Layer: Examples

• Regression: 𝑦 = 𝑤𝑇ℎ + 𝑏
• Linear units: no nonlinearity

• Multi-dimensional regression: 𝑦 = 𝑊𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

68

Output Layer: Examples

• Binary classification: 𝑦 = 𝜎(𝑤𝑇ℎ + 𝑏)
• Corresponds to using logistic regression on ℎ

• Multiclass classification:
• 𝑦 = softmax 𝑧 where 𝑧 = 𝑊𝑇ℎ + 𝑏

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

𝑧

69

Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

• Example: 2 scalar weights

figure from Cho & Chow, Neurocomputing 1999

70

Training Neural Networks with SGD

Algorithm:

• Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

• Initialize weights
• Until stopping criterion is met:

• For each training point (𝑥 𝑖 , 𝑦 𝑖) do

• Compute prediction: ො𝑦(𝑖) = 𝑓𝑤(𝑥
𝑖)

• Compute loss: 𝐿(𝑖) = 𝐿(ො𝑦 𝑖 , 𝑦 𝑖)

• Compute gradient: ∇𝑤𝐿
𝑖 = 𝜕𝑤1

𝐿 𝑖 , 𝜕𝑤2
𝐿 𝑖 , … , 𝜕𝑤𝑚

𝐿 𝑖 ⊤

• Update weights: 𝑤 ← 𝑤 − 𝛼∇𝑤𝐿
𝑖

forward pass

backward

pass

71SGD step

e.g. negative log-likelihood (NLL) loss
𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − (1 − 𝑦) log(1 − ො𝑦)

Training Neural Networks with minibatch SGD

Algorithm:
• Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

• Initialize weights
• Until stopping criterion is met:

• Sample a batch of 𝒃 training points 𝑖1, … , 𝑖𝑏

• Compute predictions: ො𝑦 𝑖1 , … , ො𝑦 𝑖𝑏 = 𝑓𝑤 𝑥 𝑖1 , … , 𝑓𝑤 𝑥 𝑖𝑏

• Compute avg. loss: 𝐿(𝑖1,…,𝑖𝑏) = 1

𝑏
σ𝑗=1
𝑏 𝐿(ො𝑦 𝑖𝑗 , 𝑦 𝑖𝑗)

• Compute gradient: ∇𝑤𝐿
𝑖1,…,𝑖𝑏 = 𝜕𝑤1

𝐿 𝑖1,…,𝑖𝑏 , … , 𝜕𝑤𝑚
𝐿 𝑖1,…,𝑖𝑏

⊤

• Update weights: 𝑤 ← 𝑤 − 𝛼∇𝑤𝐿
𝑖1,…,𝑖𝑏

72

Training Neural Networks: Chain Rule

Will need to compute terms like:

• But, L is a composition of:
• Loss with output y
• Output itself a composition of softmax with outer layer
• Outer layer a combination of outputs from previous layer
• Outputs from prev. layer a composition of activations and linear

functions…

Need the chain rule!

• Suppose

• Then,

Backpropagation

• To compute gradient w.r.t
specific weights we
propagate loss information
back through the network

• Today we do this by
automatic differentiation
(autodiff) for arbitrarily
complex computation
graphs

• Go backwards from top to
bottom, recursively
computing gradients

74

Wiki

Review: Multi-layer perceptrons (MLPs)

So far we’ve been using
MLP networks, which
consist of compositions
of fully-connected layers,
so named because every
input unit is connected to
every output unit

ℎ𝑙+1 = 𝜎(𝑊ℎ𝑙 + 𝑏)

What if we have images as our inputs?

36M floats in a RGB

image!

What if we have images as our inputs?

Output

Hidden layer

Input

100 neurons

~ 36M input elements x 100 = ~3.6B parameters!

Convolutions to the rescue

Convolution layers

• can process images with varying numbers of pixels

• have a parameter count that doesn’t increase with image
resolution, unlike 𝑂 𝑤ℎ or more for fully connected layers

• have computational complexity ෨𝑂(𝑤 + ℎ) rather than
𝑂 𝑤ℎ or worse for fully connected layers

• are translation equivariant, i.e. extract the same feature
from a translation of the image

2-D Convolutions

Example:

Vincent Dumoulin

Convolution Operation

neuralnetworksanddeeplearning.com

•All the units used the same set of weights (kernel)

•The units detect the same “feature” but at different locations

Kernels: Examples

Edge

Detectio

n

Sharpen

Gaussia

n Blur

(Wikipedia)

Convolution Layers

• Notation:
• X: nh x nw input matrix
• W: kh x kw kernel matrix
• b : bias (a scalar)

• As usual W, b are learnable parameters

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution
in place of general matrix multiplication in at least one layer

• default approach for image tasks

• still used even in modern Transformer alternatives

CNNs: Advantages

• Fully connected layer: m x n edges and parameters

• Convolutional layer: ≤ m x k edges, k parameters

Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:

Convolutional Layers: Channels

How to integrate multiple channels?

• Have a kernel for each channel 𝑖,
then sum results over 𝑐𝑖 channels

Convolutional Layers: Channels

We can also have multiple output channels 𝑐𝑜
• have a kernel for each of 𝑐𝑖 × 𝑐𝑜 pairs 𝑖, 𝑜 of

input channel 𝑖 and output channel 𝑜

• output channel 𝑜 gets the sum over 𝑖 = 1,… , 𝑐𝑖
over the applications of the kernels 𝑖, 𝑜

CNN Tasks

• Traditional tasks: handwritten digit recognition

• Dates back to the ‘70s and ‘80s
• Low-resolution images, 10 classes

CNN Tasks

• Traditional tasks: handwritten digit recognition

• Classic dataset: MNIST

• Properties:
• 10 classes
• 28 x 28 images
• Centered and scaled
• 50,000 training data
• 10,000 test data

How to make neural networks deep

Adding too many layers leads to optimization issues:

• Vanishing gradients

• Unstable training

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: instead of transforming the input,
learn a correction of the identity

x

f(x) f(x)

x

+f(x) + x

residual

connection

ResNet Architecture

Residual or skip connections help
make learning easier

• Vastly better performance

• No additional parameters!

• Records on many benchmarks

• Have been used in many other
models, including Transformers

He et al: “Deep Residual Learning for Image Recognition”

First step: building a simple pipeline
• Set up data, model training,

evaluation loop

• Use a fixed seed
• Don’t want to get different values

each time

• Overfit on one batch
• Goal: see that we can get zero loss,

catch any bugs

• Check training loss: goes down?

Tips & Tricks: Initial Pipeline

Shuffle the training data

• In training ,usually don’t select random examples, but
rather go through the dataset for each epoch

• Shuffle to avoid relationships between consecutive points

Pay attention to your data

Tips & Tricks: Data

Simple ways:

• Constant

• Divide by a factor ever certain number of
epochs (annealing)

• Look at validation loss and reduce on plateau

Also simple: use an optimizer like Adam that
internally tracks learning rates

• In fact, per parameter step-size

Lots of variations available

Tips & Tricks: Learning Rate Schedule

Best thing to do: get more data!
• Not always possible or cheap, but

start here.

Augmentation
• But make sure you understand the

transformations

Use other strategies: dropout,
weight decay, early stopping
• Check each strategy one-at-a-time

Tips & Tricks: Regularizing

Nanonets

Checkpoint your models

• Save weights regularly

Log information from
training process

• At least keep track of
train / test losses, time
elapsed, current training
settings. Log regularly

Tips & Tricks: Monitoring & Logging

NeptuneAI

Log information from training process

• Use software packages

• Also have built-in visualization

• Example: TensorBoard, WandB

Tips & Tricks: Monitoring & Logging

pytorch.org

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie

	Slide 1: CS839: AI for Scientific Computing ML Basics
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Supervised Learning
	Slide 6: Supervised Learning: Training Instances
	Slide 7: Supervised Learning: Formal Setup
	Slide 8: Supervised Learning: Formal Setup
	Slide 9: Supervised Learning: Objects
	Slide 10: Input Space: Feature Vectors
	Slide 11: Input Space: Feature Types
	Slide 12: Output space: Classification vs. Regression
	Slide 13: Hypothesis class
	Slide 14: Hypothesis class: Linear Functions
	Slide 15: Hypothesis class: Other Examples
	Slide 16: Supervised Learning: Training
	Slide 17: Supervised Learning: Predicting
	Slide 18: Generalization
	Slide 19: Supervised Learning: Review
	Slide 20: Parametric Learning
	Slide 21: Classification: Linear models
	Slide 22: Linear Classification: Attempt 1
	Slide 23: Linear Classification: Attempt 2
	Slide 24: Likelihood Function
	Slide 25: ML: Conditional Likelihood
	Slide 26: Logistic Regression: Conditional Distribution
	Slide 27: Logistic Regression: Loss
	Slide 28: Logistic regression: Summary
	Slide 29: Linear Regression: Setup
	Slide 30: Linear regression: MLE
	Slide 31: Linear Regression: Notation
	Slide 32: Linear Regression: Fitting
	Slide 33: Evaluation: Metrics
	Slide 34: High-dimensional linear regression
	Slide 35: Solution: Regularization
	Slide 36: Alternative regularization: LASSO
	Slide 37: Choosing the regularization strength lambda
	Slide 38: Another Approach: Bayesian Inference
	Slide 39: Bayesian Inference Definitions
	Slide 40: Bayesian Inference Definitions
	Slide 41: Bayesian Inference Definitions
	Slide 42: MAP Definition
	Slide 43: MAP vs ML
	Slide 44: Probabilistic interpretation
	Slide 45: Iterative Methods: Gradient Descent
	Slide 46: Gradient Descent: Illustration
	Slide 47: Gradient Descent: Convergence
	Slide 48: Gradient Descent as a heuristic
	Slide 49: Gradient Descent: Drawbacks
	Slide 50: Solution: Stochastic Gradient Descent
	Slide 51: Other drawbacks of gradient descent
	Slide 52: Outline
	Slide 53: Unsupervised Learning: Setup
	Slide 54: Principal Components Analysis
	Slide 55: PCA Intuition
	Slide 56: PCA: Principal Components
	Slide 57: PCA: Principal Components and Projection
	Slide 58: PCA First Step
	Slide 59: PCA Recursion
	Slide 60: PCA Interpretations
	Slide 61: PCA Interpretations: First Component
	Slide 62: PCA Covariance Matrix Interpretation
	Slide 63: Outline
	Slide 64: Neural Networks: Basics
	Slide 65: Neural Network Components
	Slide 66: Hidden Layers
	Slide 67: Hidden Layers
	Slide 68: Output Layer: Examples
	Slide 69: Output Layer: Examples
	Slide 70: Training Neural Networks
	Slide 71: Training Neural Networks with SGD
	Slide 72: Training Neural Networks with minibatch SGD
	Slide 73: Training Neural Networks: Chain Rule
	Slide 74: Backpropagation
	Slide 75: Review: Multi-layer perceptrons (MLPs)
	Slide 76: What if we have images as our inputs?
	Slide 77: What if we have images as our inputs?
	Slide 78: Convolutions to the rescue
	Slide 79: 2-D Convolutions
	Slide 80: Convolution Operation
	Slide 81: Kernels: Examples
	Slide 82: Convolution Layers
	Slide 83: Convolutional Neural Networks
	Slide 84: CNNs: Advantages
	Slide 85: Convolutional Layers: Channels
	Slide 86: Convolutional Layers: Channels
	Slide 87: Convolutional Layers: Channels
	Slide 88: CNN Tasks
	Slide 89: CNN Tasks
	Slide 90: How to make neural networks deep
	Slide 91: Residual Connections
	Slide 92: ResNet Architecture
	Slide 93: Tips & Tricks: Initial Pipeline
	Slide 94: Tips & Tricks: Data
	Slide 95: Tips & Tricks: Learning Rate Schedule
	Slide 96: Tips & Tricks: Regularizing
	Slide 97: Tips & Tricks: Monitoring & Logging
	Slide 98: Tips & Tricks: Monitoring & Logging
	Slide 99: Thanks Everyone!

