
CS839: AI for Scientific Computing
Advanced ML

Misha Khodak

University of Wisconsin-Madison

27 January 2026

Announcements

Enrollment:
• Finalized this week. Please keep checking your status.

Office hours:
• By appointment. Email me at khodak@wisc.edu.

Outline

• Advanced neural architectures
• RNNs, Transformers, GNNs

• Generative modeling
• density estimation, GANs, flow-based models, diffusion

• Transfer learning
• pretraining, multi-task learning, foundation models

Outline

• Advanced neural architectures
• RNNs, Transformers, GNNs

• Generative modeling
• density estimation, GANs, flow-based models, diffusion

• Transfer learning
• pretraining, multi-task learning, foundation models

Modeling Sequential Data

• Simplistic model:
• s(t) state at time t. Transition function f

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 ; 𝜃)

𝑠(𝑡−2) 𝑠(𝑡−1) 𝑠(𝑡)
𝑓𝑓

𝑠 𝑓

Modeling Sequential Data: External Input

• External inputs can also influence transitions
• s(t) state at time t. Transition function f
• x(t): input at time t

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

𝑠(𝑡−2) 𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)
𝑓 𝑓𝑓

𝑥(𝑡−2) 𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

Important: the

same 𝒇 and 𝜽
for all time

steps

𝑠

𝑥

𝑓

Recurrent Neural Networks

• Use the principle from the system above:
• Same computational function and parameters across

different time steps of the sequence

• Each time step: takes the input entry and the previous
hidden state to compute the current hidden state and
the output entry

• Training: loss typically computed at every time step

𝑠(𝑡−2) 𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)
𝑓 𝑓𝑓

𝑥(𝑡−2) 𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

RNNs: Basic Components

• What do we need for our new network?

• Input x
• State s
• Output o
• Labels y & Loss function L

• Still need to train!

𝑠

𝑥

𝑜

𝐿

𝑦

Recurrent: state

is plugged back

into itself

RNNs: Unrolled Graph

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

State

Input

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1) Output

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1)
Label

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1) Loss

Simple RNNs

• Classical RNN variant:

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑎(𝑡) = 𝑏 +𝑊𝑠(𝑡−1) + 𝑈𝑥(𝑡)

𝑠(𝑡) = tanh 𝑎 𝑡

𝑜(𝑡) = 𝑐 + 𝑉𝑠(𝑡)

ො𝑦(𝑡) = softmax 𝑜 𝑡

𝐿(𝑡) = CrossEntropy(𝑦 𝑡 , ො𝑦(𝑡))

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1)

𝑉 𝑉 𝑉

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1)

Properties

• Hidden state: a lossy summary of the past

• Shared functions / parameters
• Reduce the capacity and good for generalization

• Uses the knowledge that sequential data can be processed
in the same way at different time step

• Powerful (universal): any function computable by a Turing
machine computed by such a RNN of a finite size
• Siegelmann and Sontag (1995)

Example: Char. Level Language Model

• LM goal: predict next character:

• Vocabulary
{h,e,l,o}

• Training sequence: ‘hello’

Stanford CS231N

Example: Char. Level Language Model

• LM goal: predict next char

• Vocabulary
{h,e,l,o}

• Training sequence: ‘hello’

• Test time:
• Sample chars and feed

back into the model

RNN Variants

𝑠(𝜏−1) 𝑠(𝜏)𝑠(1)

𝑥(𝜏−1) 𝑥(𝜏)𝑥(1)

𝑜(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝑈

𝑊

𝑈𝑈

𝑠(0)
𝑊 …

Example: only output at the

end

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1)

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1)

𝑈

𝑉
𝑊

𝑈

𝑉
𝑊

𝑈

𝑉
𝑊

Example: use the output at

the previous step

RNN Variants: Encoder/Decoder

• RNNs:
• can map a sequence to one vector
• or to sequences of same length

• What about mapping sequence to
sequence of different length?
• Ex: speech recognition, machine

translation, question answering,
numerical simulation

RNN Variants: Encoder/Decoder

𝑠(𝜏−1) 𝑠(𝜏)𝑠(1)

𝑥(𝜏−1) 𝑥(𝜏)𝑥(1)

𝑠(0)
…

Encoder

memory

ℎ(1)

Decoder

𝑦(1)

ℎ(2) ℎ(𝑇−1)

𝑦(𝑇−1)

ℎ(𝑇)

𝑦(𝑇)

Training RNNs

• How: Backpropagation Through Time
• Idea: unfold the computational graph, and use backpropagation

• Conceptually: first compute the gradients of the internal nodes,
then compute the gradients of the parameters

RNN Problems

• What happens to gradients in backprop w. many layers?
• In an RNN trained on long sequences (e.g. 100 time steps) the

gradients can easily explode or vanish.
• We can avoid this by initializing the weights very carefully.

• Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.

• RNNs have difficulty dealing with long-range dependencies.

• Most popular solution: LSTMs

Transformers: Idea

• Initial goal for an architecture:
encoder-decoder

• Get rid of recurrence
• Replace with self-attention

Vaswani et al. ‘17

Transformers: Architecture

• Sequence-sequence model with stacked
encoders/decoders:

• For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

• Sequence-sequence model with stacked
encoders/decoders:

• What’s inside each encoder/decoder unit?

Transformers: Inside an Encoder

• Let’s take a look at the encoder. Two components:
• 1. Self-attention layer
• 2. Feedforward nets

Transformers: Self-Attention

• Self-attention is the key layer in a transformer stack
• Get 3 vectors for each embedding: Query, Key, Value

Transformers: Self-Attention

• Self-attention is the key
layer in a transformer stack

• Illustration. Recall the three
vectors for each embedding:
Query, Key, Value

• The sum values are the outputs
of the self-attention layer

• Send these to feedforward NNs

• Highly parallelizable!

Transformers: Multi-Headed Attention

• We can do this multiple times in parallel
• Called multiple heads
• Need to combine the resulting output sums

Transformers: Attention Visualization

• Attention tells us where to focus the information
• Illustration for a sentence:

Transformers: Positional Encodings

• One thing we haven’t discussed: the order of the
symbols/elements in the sequence

• Add a vector containing a special positional formula’s embedding

Transformers: More Tricks

• Recall a big innovation for ResNets: residual connections
• And also layer normalizations
• Apply to our encoder layers

Transformers: Decoder

• Similar to encoders

• e.g. generating a translation

Transformers: Putting it All Together

• What does the full architecture look like?

Graph Neural Networks: Motivations

• Setting: data that comes with some associated graph
structure indicating similarity

• Example: citation networks.
• Instances are scientific papers
• Labels: subfield/genre
• Graphs: if a paper cites another,

there’s an edge between them

• Example: meshes on which
PDEs are solved

Leng

Graph Neural Networks: Approach

• Idea: want to use the graph information in our predictions.

• One popular network: graph convolutional network (GCN)

layer 1

weights

adjacency

matrix

Kipf and Welling: “Semi-Supervised Classification with Graph Convolutional Networks”

layer 2

weights

Graph Convolutional Networks

• One popular network: graph convolutional network (GCN)

• Just like a feedforward network, but also mix together
nodes by multiplying by adjacency matrix

• Can also normalize, use Laplacian, many variations

Graph Convolutional Networks

• One popular network: graph convolutional network (GCN)

Note the resemblance to CNNs:
• Pixels: arranged as a very regular graph

• Want: more general configurations (less regular)

Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Wu et al, A Comprehensive Survey on Graph Neural Networks

Outline

• Advanced neural architectures
• RNNs, Transformers, GNNs

• Generative modeling
• density estimation, GANs, flow-based models, diffusion

• Transfer learning
• pretraining, multi-task learning, foundation models

Goal: Learn a Distribution

• Want to estimate pdata from samples

• Desired abilities:
• Inference: compute p(x) for some x
• Sampling: obtain a sample from p(x)

Goal: Learn a Distribution

• Want to estimate pdata from samples

• One way: build a histogram:

• Bin data space into k groups.
• Estimate p1, p2, …, pk

• Train this model:
• Count times bin i appears in dataset

Histograms: Inference & Samples

• Inference: check our estimate of pi

• Sampling: straightforward, select bin 𝑖 with probability 𝑝𝑖,
then select uniformly from bin 𝑖.

• But …
• inefficient in high dimensions

Parametrizing Distributions

• Don’t store each probability, store pθ(x)

• One approach: likelihood-based
• We know how to train with maximum likelihood

Parametrizing Distributions

• One approach: likelihood-based
• We know how to train with maximum likelihood

• Then, train with SGD

• Just need to make some choices for pθ(x)
• For example, recall Gaussian mixture models.
• But many types of data have more complex underlying

distributions.

Parametrizing Distributions: Autoregressive models

• e.g. recurrent neural networks, transformers.

Flow Models

• One way to specify pθ(x)

• Use a latent variable z with a “simple” (e.g Gaussian)
distribution.

• Then use a “complex” transformation, 𝑥 = 𝑓𝜃(𝑧).

Flow Models

• We will need to compute the inverse transformation and
take its derivative as well (for training).

• So compose multiple “simple” transformations

Flow Models

• Transform a simple distribution to a complex one via a
chain of invertible transformations (the “flow”)

image from Lilian Weng

Flow Models: How to sample?

• Sample from 𝑧 (the latent variable)---has a simple
distribution that lets us do it: Gaussian, uniform, etc.

• Then run the sample 𝑧 through the flow to get a sample x

Flow Models: How to train?

• Relationship between and (densities of x and z),
given that ?

Determinant of

Jacobian matrix

[change of variables]

Flow Models: Training

Latent variable

version

Determinant of

Jacobian matrixMaximum

Likelihood

GANs: Generative Adversarial Networks

• So far we’ve been modeling the
density…

• What if we just want to get high-quality
samples?

• GANs do this.
• Think of art forgery
• Left: original
• Right: forged version
• Two-player game:

• Generator wants to pass off the
discriminator as an original

• Discriminator wants to distinguish
forgery from original

GANs: Basic Setup

• Let’s set up networks that implement this idea:
• Discriminator network
• Generator network

image from Stanford CS231n / Emily Denton

GAN Training: Discriminator

• How to train these networks? Two sets of parameters to
learn: θd (discriminator) and θg (generator)

• Let’s fix the generator. What should the discriminator do?
• Distinguish fake and real data: binary classification.
• Use the cross-entropy loss, we get

Real data, want

to classify 1

Fake data, want to

classify 0

GAN Training: Generator & Discriminator

• How to train these networks? Two sets of parameters to
learn: θd (discriminator) and θg (generator)

• This makes the discriminator better, but also want to make
the generator more capable of fooling it:

• Minimax game! Train jointly.

Real data, want

to classify 1

Fake data, want to

classify 0

GAN Training: Alternating Training

• So we have an optimization goal:

• Alternate training:
• Gradient ascent: fix generator, make the discriminator better:

• Gradient descent: fix discriminator, make the generator better

GAN Training: Issues

• Training often not stable

• Many tricks to help with this:
• Replace the generator training with

• Better gradient shape
• Choose number of alternating steps carefully

• Can still be challenging.

image from Radford et al ‘16

GAN Architectures

• Discriminator: image classification, use a CNN

• What should generator look like
• Input: noise vector z.
• Output: an image (i.e. a 3-channel x width x height volume)
• Similar to a reversed CNN pattern…

Diffusion Models

• Learning to generate by denoising

• Denoising diffusion models consist of two processes:
• Forward diffusion process that gradually adds noise to input
• Reverse denoising process that learns to generate data by

denoising

Some slides were borrowed from

Denoising Diffusion-based Generative Modeling CVPR2022 tutorial

(https://cvpr2022-tutorial-diffusion-models.github.io/)

Diffusion Models

• The formal definition of the forward process in T steps:

Diffusion Models

• Diffusion Kernel

Diffusion Models

• Reverse Denoising Process

Outline

• Advanced neural architectures
• RNNs, Transformers, GNNs

• Generative modeling
• density estimation, GANs, flow-based models, diffusion

• Transfer learning
• pretraining, multi-task learning, foundation models

Transfer learning

We typically assume labeled points 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ∼ 𝐷
drawn i.i.d. from the target distribution 𝐷

What if:
• 𝑛 is too small to learn a sufficiently expressive model
• but we have access to more data 𝑥1

′ , 𝑦1
′ , … , 𝑥𝑁

′ , 𝑦𝑁
′ ∼ 𝐷′

from a related distribution 𝐷′?

Using data from a related distribution to improve
performance on the target distribution is transfer learning

Canonical example: ImageNet

standard vision pipeline:
1. collect a bunch of data

for your target task
2. download a large CNN

(e.g. a big ResNet)
trained on ImageNet
and replace its
classification layer

3. then
I. either pass its features

to a simpler model
II. or fine-tune it directly

on the task

a few

datapoints

for a few

classes

Arun et al. J. Phytopathology.

thousands

of

datapoints

for each of

a thousand

classesKaggle

𝑑 × 18
linear layer

to project

to 18 logits

soft

max

18 logits
18 class

probabilities

Approach I: feature extraction

many convolutions and

pooling layers

𝑑 × 1000 linear

layer to project

to a thousand

logits

soft

max

𝑑-dimensional learned

representation

1000 logits
1000 class

probabilities

input image

randomly initialized layers

• trained on target task data

• can be more complex than

a linear classifier (e.g. a

shallow MLP)

“frozen” layers

• not updated on target task data

• used only to extract features

soft

max

Approach II: fine-tuning

many convolutions and

pooling layers

𝑑 × 1000 linear

layer to project

to a thousand

logits

𝑑-dimensional learned

representation

1000 logits
1000 class

probabilities

input image

𝑑 × 18
linear layer

to project

to 18 logits

18 logits
18 class

probabilities

“warm-started” layers

• updated on target task data

• typically much smaller learning rate

randomly initialized layers

• trained on target task data

• can be more complex than

a linear classifier (e.g. a

shallow MLP)

soft

max

Transfer learning

• Transfer learning has been hugely successful

• Numerous other potential approaches

• Big remaining question: what if the related data lacks labels?

• we chop off the classification layers anyway, so we just need to
extract some representation of the data

• can do so using classical unsupervised learning (PCA, etc.)

• or we can do it with self-supervised learning (SSL)

Stanford CS 231n

Self Supervision: Basic Idea

• Use domain-specific properties of the inputs (𝑥) to create
pseudo-labels (𝑦) corresponding to “pretext tasks”

• Ex: predict stuff you already know

Self Supervision: Using the Representations

• Don’t care specifically about our performance on pretext task

• Use the learned network as a feature extractor

• Once we have labels for a particular task, train on a small
amount of data

Stanford CS 231n

Self Supervision: Pretext Tasks

• Lots of options for pretext tasks
• Predict rotations
• Coloring
• Fill in missing portions of the image
• Solve puzzles

Noroozi and Favaro

Self Supervision: Contrastive Learning

• Type of SSL where we learn representations such that:
• transformed versions of single sample are similar
• different samples are different

Stanford CS 231n

Self-supervised learning: Summary

Procedure:

• pretrain a network to do well on a pretext task

• transfer the network to your target task

Most well-known example: predict-the-next-word

Transfer learning from multiple tasks

What if instead of one related task with lots of data we have
many related tasks with similar amounts of data?

Many setups:
• multi-task learning
• meta-learning
• continual learning
• lifelong learning
• …

We’ll cover two of them: multi-task and meta-learning

𝑥1,1, 𝑦1,1 , … , 𝑥1,𝑛1 , 𝑦1,𝑛1 ∼ 𝐷1

⋮

𝑥𝑡,1, 𝑦𝑡,1 , … , 𝑥𝑡,𝑛𝑡 , 𝑦𝑡,𝑛𝑡 ∼ 𝐷𝑡

⋮

Multi-task learning

Setup: fixed number of related tasks

Examples:

• predict the weather in nearby cities

• diagnose patients in different hospitals

Key challenges:

• how to encode task-relationships?

• how to avoid conflicting tasks?

Thung & Wee. Multimedia Tools & Applications

One common approach: Layer-sharing

• jointly train a multi-output
network

• assumes existence of a good
shared representation ℎ𝜃0

• example objective:

෍

𝑡=1

𝑇

෍

𝑖=1

𝑛𝑡

𝑦𝑡,𝑖 − 𝑓𝜃𝑡 ℎ𝜃0 𝑥𝑡,𝑖

2

𝑓𝜃1

𝑓𝜃3

𝑓𝜃2

ℎ𝜃0

Another common approach: Regularization

• jointly train separate networks

• regularize parameters to be closer together

• example objective:

෍

𝑡=1

𝑇

෍

𝑖=1

𝑛𝑡

𝑦𝑡,𝑖 − 𝑓𝜃𝑡 𝑥𝑡,𝑖
2
+෍

𝑡=1

𝑇

෍

𝑢=𝑡+1

𝑇

𝜆𝑡,𝑢 𝜃𝑡 − 𝜃𝑢
2

• allows hand-encoding of task-relationships via the
regularization strengths 𝜆𝑡,𝑢

Meta-learning

Setup:

• meta-training dataset of related tasks

• at meta-test time we get a new
dataset 𝑥1, 𝑦1 , … , 𝑥𝑛 , 𝑦𝑛 ∼ 𝐷

• our goal: low expected error on
unseen examples 𝑥, 𝑦 ∼ 𝐷

𝑥1,1, 𝑦1,1 , … , 𝑥1,𝑛1 , 𝑦1,𝑛1 ∼ 𝐷1

⋮

𝑥𝑇,1, 𝑦𝑇,1 , … , 𝑥𝑇,𝑛𝑇 , 𝑦𝑇,𝑛𝑇 ∼ 𝐷𝑇

Applications:

• auto-complete for new cellphone users (federated learning)

• image classification with limited labels (few-shot learning)

• robots in related environments (meta-RL)

What is a foundation model?

1. take a massive neural network
• older / specialized models had 100M+ params
• latest models have 1-100 billion or more

2. pretrain it on Internet-scale data

3. (optionally) post-train on large-scaled supervised data

4. use it for transfer learning for many different tasks

Early history

2017: BERT model (340M)
• Transformer trained on masked

language modeling (pretext task)
• “solved” transfer learning for

language

2017-present: GPT series
• Transformer trained on next-word

prediction
• first observation of in-context

learning capabilities in GPT-3
• ChatGPT post-trained on GPT-3.5

Post-ChatGPT

• many models with varying capabilities

• closed-source models typically
outperform open-source models

• new challenges:
• massive compute costs
• privacy, security, safety

• new opportunities:
• in-context learning
• reasoning

Challenge: Compute costs

pretraining FMs limited to large orgs
• one training run requires 100s of

GPUs
• need many training runs (to tune)

and engineers (to manage training)

even fine-tuning is hard:
• SGD on GPT-3 (175B) uses 1.2TB

VRAM
• NVIDIA GPUs max out below

200GB
• what can we do?

Parameter-efficient fine-tuning (PEFT)

Most popular approach: LoRA
1. take an FM with pretrained

weight matrices 𝐖1, … ,𝐖𝑁

2. for each matrix 𝐖𝑖 ∈ ℝ𝑑×𝑘:
• set 𝑟 ≪ min 𝑑, 𝑘 and

initialize fine-tuning
weights:
• 𝐁𝑖 ∈ ℝ𝑑×𝑟 to 𝐁𝑖 = 0
• 𝐀𝑖 ∈ ℝ𝑟×𝑘 to 𝐀𝑖 ∼ Gaussian

• replace 𝐖𝑖 by 𝐖𝑖 + 𝐁𝑖𝐀𝑖

3. fine-tune on target task but
• freeze 𝐖𝑖
• update 𝐁𝑖 and 𝐀𝑖

𝐖𝑖
𝐱𝑓𝑖 𝐱 = 𝐖𝑖𝐱 =

𝐁𝑖

𝐀𝑖

𝐖𝑖
𝐱 𝐱= +

= 𝐖𝑖𝐱 + 𝐁𝑖𝐀𝑖𝐱

How does LoRA save memory?

• original weights 𝐖𝑖 ∈ ℝ𝑑×𝑘

have 𝑑𝑘 trainable params

• new weights 𝐁𝑖 ∈ ℝ𝑑×𝑟 and
𝐀𝑖 ∈ ℝ𝑟×𝑘 have (d + k)𝑟

• typical values in GPT-3 175B:
• 𝑑 ≈ 𝑘 ≈ 104

• 𝑟 ≤ 10

• ≥ 104x fewer trainable params!

• 3x less fine-tuning VRAM

𝐖𝑖

𝐁𝑖

𝐀𝑖

𝐖𝑖
𝐱

𝐱

𝐱

𝑓𝑖 𝐱 = 𝐖𝑖𝐱 =

= +

= 𝐖𝑖𝐱 + 𝐁𝑖𝐀𝑖𝐱

Does LoRA affect accuracy?

Yes, it constrains weights of the fine-
tuned model:

• fine-tuned matrices 𝐖𝑖 + 𝐁𝑖𝐀𝑖 at
most a rank 𝑟 ≪ min 𝑑, 𝑘 update
away from pretrained matrices 𝐖𝑖

• LoRA = Low-Rank Adaptation

• in practice do not need large 𝑟 for
good performance

• learning theory intuition?
Hu et al.

Opportunity: In-context learning

Observation: the perfect next-word
predictor can be prompted to
answer any question correctly

Idea: in-context learning
1. encode task instructions and

data as a context sequence
2. make the FM generate the

remainder of the sequence

Enables learning with target data
without updating the weights at all!

Brown et al.

Opportunity: In-context learning

Usefulness:

• handles tasks with diverse
input and output structures

• directly incorporates
pretraining knowledge

• enables multi-step reasoning

Brown et al.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie, Fei-Fei Li, Justin
Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Ruiqi Gao

	Slide 1: CS839: AI for Scientific Computing Advanced ML
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Modeling Sequential Data
	Slide 6: Modeling Sequential Data: External Input
	Slide 7: Recurrent Neural Networks
	Slide 8: RNNs: Basic Components
	Slide 9: RNNs: Unrolled Graph
	Slide 10: Simple RNNs
	Slide 11: Properties
	Slide 12: Example: Char. Level Language Model
	Slide 13: Example: Char. Level Language Model
	Slide 14: RNN Variants
	Slide 15: RNN Variants: Encoder/Decoder
	Slide 16: RNN Variants: Encoder/Decoder
	Slide 17: Training RNNs
	Slide 18: RNN Problems
	Slide 19: Transformers: Idea
	Slide 20: Transformers: Architecture
	Slide 21: Transformers: Architecture
	Slide 22: Transformers: Inside an Encoder
	Slide 23: Transformers: Self-Attention
	Slide 24: Transformers: Self-Attention
	Slide 25: Transformers: Multi-Headed Attention
	Slide 26: Transformers: Attention Visualization
	Slide 27: Transformers: Positional Encodings
	Slide 28: Transformers: More Tricks
	Slide 29: Transformers: Decoder
	Slide 30: Transformers: Putting it All Together
	Slide 31: Graph Neural Networks: Motivations
	Slide 32: Graph Neural Networks: Approach
	Slide 33: Graph Convolutional Networks
	Slide 34: Graph Convolutional Networks
	Slide 35: Outline
	Slide 36: Goal: Learn a Distribution
	Slide 37: Goal: Learn a Distribution
	Slide 38: Histograms: Inference & Samples
	Slide 39: Parametrizing Distributions
	Slide 40: Parametrizing Distributions
	Slide 41: Parametrizing Distributions: Autoregressive models
	Slide 42: Flow Models
	Slide 43: Flow Models
	Slide 44: Flow Models
	Slide 45: Flow Models: How to sample?
	Slide 46: Flow Models: How to train?
	Slide 47: Flow Models: Training
	Slide 48: GANs: Generative Adversarial Networks
	Slide 49: GANs: Basic Setup
	Slide 50: GAN Training: Discriminator
	Slide 51: GAN Training: Generator & Discriminator
	Slide 52: GAN Training: Alternating Training
	Slide 53: GAN Training: Issues
	Slide 54: GAN Architectures
	Slide 55: Diffusion Models
	Slide 56: Diffusion Models
	Slide 57: Diffusion Models
	Slide 58: Diffusion Models
	Slide 59: Outline
	Slide 60: Transfer learning
	Slide 61: Canonical example: ImageNet
	Slide 62: Approach I: feature extraction
	Slide 63: Approach II: fine-tuning
	Slide 64: Transfer learning
	Slide 65: Self Supervision: Basic Idea
	Slide 66: Self Supervision: Using the Representations
	Slide 67: Self Supervision: Pretext Tasks
	Slide 68: Self Supervision: Contrastive Learning
	Slide 69: Self-supervised learning: Summary
	Slide 70: Transfer learning from multiple tasks
	Slide 71: Multi-task learning
	Slide 72: One common approach: Layer-sharing
	Slide 73: Another common approach: Regularization
	Slide 74: Meta-learning
	Slide 75: What is a foundation model?
	Slide 76: Early history
	Slide 77: Post-ChatGPT
	Slide 78: Challenge: Compute costs
	Slide 79: Parameter-efficient fine-tuning (PEFT)
	Slide 80: How does LoRA save memory?
	Slide 81: Does LoRA affect accuracy?
	Slide 82: Opportunity: In-context learning
	Slide 83: Opportunity: In-context learning
	Slide 84: Thanks Everyone!

