s a s ; EC R
R R L e e e R

CS839: Al for Scientific Computing
Advanced ML

Misha Khodak

University of Wisconsin-Madison
27 January 2026

Announcements

Enrollment:
* Finalized this week. Please keep checking your status.

Office hours:
* By appointment. Email me at khodak@wisc.edu.

Outline

 Advanced neural architectures
* RNNs, Transformers, GNNs

* Generative modeling
e density estimation, GANs, flow-based models, diffusion

* Transfer learning
* pretraining, multi-task learning, foundation models

Outline

 Advanced neural architectures
* RNNs, Transformers, GNNs

Modeling Sequential Data

. Simplistic model:
. sltstate at time t. Transition function f

S(t+1) — f(S(t), 8)

%f

Modeling Sequential Data: External Input

*

(t+1) — f(S(t),X(t+1); 6) x

External inputs can also influence transitions
. sl state at time t. Transition function f
. x{: input at time t

Important: the
same f and 0
for all time
steps

x(t_z) x(t_l) x(t) x(t+1)

Recurrent Neural Networks

x(t_z) x(t_l) x(t) x(t+1)

Use the principle from the system above:

. Same computational function and parameters across
different time steps of the sequence

Each time step: takes the input entry and the previous
hidden state to compute the current hidden state and

the output entry
. Training: loss typically computed at every time step

RNNs: Basic Components

. What do we need for our new network?

Input X
. States
Output o

Labels y & Loss function L)
- Still need to train!

Recurrent: state >
Is plugged back
into itself

RNNs: Unrolled Graph

I
SHONCSEEE -

Simple RNNs

. Classical RNN variant:

a® =p+WwstD 4 yx®
s® = tanh(a®)
o® = ¢ + Vs®
$® = softmax(o®)
L® = CrossEntropy(y®, $®))

Properties

. Hidden state: a lossy summary of the past

. Shared functions / parameters
. Reduce the capacity and good for generalization

. Uses the knowledge that sequential data can be processed
in the same way at different time step

. Powerful (universal): any function computable by a Turing
machine computed by such a RNN of a finite size
. Siegelmann and Sontag (1995)

Example: Char. Level Language Model

LM goal: predict next character:

target chars: ‘e’ iy o i v
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
Vocabulary oufput layer IS 1.0 1.9 0.1
{h I } 4.1 12 -1.1 2.2
e,lo0 . -
) B B | T I W_hy
« o p) . 0.3 1.0 0.1 (w hh!-0.3
Training sequence: ‘hello hidden layer |-0.1 |——{ 0.3 |—>| 0.5 [~ 0.9
0.9 0.1 -0.3 0.7
A
T T TW__xh
1 0 0 0
: 0 1 0 0
input layer 0 0 > :
0 0 0 0
input chars: “p” “e” I I

Stanford CS231N

Example: Char. Level Language Model

Sample
LM goal: predict next char
Softmax
Vocabulary
{h’ e, |’ O} output layer
Training sequence: ‘hello’
hidden layer
Test time:
Sample chars and feed
back into the model input layer

input chars: *

‘.?_‘

.03
A3
.00
.84

i

-3.0

1.0
2.2

4.1

|

-0.1

0.3

1

T

&

0.9

S0 =,

A

o
Y=

RNN Variants

Example: use the output at
the previous step

ot+D)
w \WwW
2N
\
4
U

)

Example: only output at the
end

w
—_ e
U

*x@

RNN Variants: Encoder/Decoder

RNNSs:

. can map a sequence to one vector
. or to sequences of same length

. What about mapping sequence to
sequence of different length?

- EX: speech recognition, machine
translation, question answering,
numerical simulation

RNN Variants: Encoder/Decoder
/ Encoder \

Training RNNs

How: Backpropagation Through Time
- ldea: unfold the computational graph, and use backpropagation

. Conceptually: first compute the gradients of the internal nodes,
then compute the gradients of the parameters

E, E,

éa ¢
()Ez_aﬁ ’I‘T—}—% "I‘T ()hllT

= <_—. U — Ohs \'? 0Oy Oho " °

%éé

RNN Problems

. What happens to gradients in backprop w. many layers?

In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.

- We can avoid this by initializing the weights very carefully.

Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.

RNNs have difficulty dealing with long-range dependencies.

. Most popular solution: LSTMs

Transformers: Idea

* |nitial goal for an architecture:
encoder-decoder

* Get rid of recurrence xa
* Replace with self-attention

Feed
Forward
s I ~\ | Add & Norm g
Add & Ni -
"’{ﬂ‘.ﬂ] Multi-Head
Feed Attention
Forward 7}
-
Add & Norm
N f-" Add & Norm I -
Masked
Multi-Head Muiti-Head
Attention Attention
R ———
. J %
Positional Posi
Encodng Q9 Q) e
Input Qutput
Embedding Embedding

Vaswani et al. ‘17

Transformers: Architecture

* Sequence-sequence model with stacked

encoders/decoders:

* For example, for French-English translation:

n a stuaent

r 3

(¢)
[ENCODER DECODER
w,
4 [)
\
(ENCODER DECODER
J
@ 4
-
[ENCODER DECODER
J
4 4
.
{ ENCODER DECODER
J
A 4
.
(ENCODER DECODER
J
i@ 4
.
(ENCODER DECODER
J
\)

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

* Sequence-sequence model with stacked
encoders/decoders:
* What’s inside each encoder/decoder unit?

t
-
Feed Forward
1. .
Ly
f ™ 4
Feed Forward Encoder-Decoder Attention
\ - J -
o
4 N (:
Self-Attention Self-Attention
. 7 -

t t

Transformers: Inside an Encoder

* Let’s take a look at the encoder. Two components:
* 1. Self-attention layer
*2. Feedforward nets

b t
.
Feed Forward Feed Forwar d
Neural Network Neural Network
‘ .
t t
[Self-Attention j
t i

Transformers: Self-Attention

e Self-attention is the key layer in a transformer stack
* Get 3 vectors for each embedding: Query, , Value

Input

Embedding [T T T] [T T 1]
Queries L1 1] [T 1]
Keys [:I:I:] ::I:]:]

Values [][][] :j:j:]

Transformers: Self-Attention

* Self-attention is the key neut
layer in a transformer stack Embedding
* lllustration. Recall the three Queries
vectors for each embedding: eys

Query, , Value

Values

Score

* The sum values are the outputs
of the self-attention layer

Softmax

e Send these to feedforward NNs Softmax

X

* Highly parallelizable!

Sum

Divide by 8 (

'n";_

)

[L[]

L[[]

Transformers: Multi-Headed Attention

* We can do this multiple times in parallel
* Called multiple heads
* Need to combine the resulting output sums

ATTENTION HEAD #0

S

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

ATTENTION HEAD#1 bt 4 L | L L L 1 { [L L L { { | [L 1 { | X

3) The result would be the matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Transformers: Attention Visualization

e Attention tells us where to focus the information
e |llustration for a sentence:

Layer. 5 § Attention:| Input - Input

o
The_ The_
animal_ animal_
didn_ didn_
t_ | 98
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ > it
was_ was_
too_ too_
tire tire
d d

Transformers: Positional Encodings

* One thing we haven’t discussed: the order of the
symbols/elements in the sequence
* Add a vector containing a special positional formula’s embedding

(ENCODER #1)
A A A

(ENCODER #0)
A A A

\

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

+ + +
EMBEDDINGS | | I [1 | I

INPUT

Transformers: More Tricks

* Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

4 4
. +(Add & Normalize)
: 4 4
. (Feed Forward) (Feed Forward)
R —— A-----ccccccccnnnnn- A
,»(Add & Normalize)
; R 1

E (Self-Attention)

POSITIONAL
ENCODING

x+ [x2 [

Thinking Machines

Transformers: Decoder

* Similar to encoders
* e.g.generating a translation

Decoding time step: 1 2 3(4)5 6 OUTPUT | am a student

T

(

V (Linear + Softmax

i

)\
[ENCODERS] [DECODERS]
/

.

EMBEDDING t t t U
WITH TIME L1111 [TTT] (ITTT] |]][||JII|H|||
SIGNAL
EMBEDDINGS CITT] LLTT] CIT1] CITT T T T
INPUT Je suis étudiant PREVIOUS am a

OUTPUTS

Transformers: Putting it All Together

e What does the full architecture look like?

ENCODER #2

= 4
L* C Feed Forward) C Feed Forward) ’(Encoder-Decoder Attention
Y [——— P —— g | | Semmesees fescccsscsanesancans L

EN
~
~

"~
~

- .
s S - & &
o 1L i i

Thinking Machines

Graph Neural Networks: Motivations

Setting: data that comes with some associated graph
structure indicating similarity

Example: citation networks.
Instances are scientific papers

Labels: subfield/genre

Graphs: if a paper cites another,
there’s an edge between them

Example: meshes on which Long
PDEs are solved

Graph Neural Networks: Approach

. ldea: want to use the graph information in our predictions.
. One popular network: graph convolutional network (GCN)

f(X, A) = softmax(Ac(AXW O (1)
t t t

adjacency layer 1 layer 2
matrix weights weights

Kipf and Welling: “Semi-Supervised Classification with Graph Convolutional Networks”

Graph Convolutional Networks

. One popular network: graph convolutional network (GCN)
f(X,A) = softmax(Ac(AX WOy

. Just like a feedforward network, but also mix together
nodes by multiplying by adjacency matrix

. Can also normalize, use Laplacian,(ggnany variations
hB

Graph Convolutional Networks

. One popular network: graph convolutional network (GCN)
f(X,A) = softmax(Ac(AX WO)

Note the resemblance to CNNs:
. Pixels: arranged as a very regular graph
. Want: more general configurations (less regular)

Wu et al, A Comprehensive Survey on Graph Neural Networks

|7.<[§§ AR
X XIXT e
|'/>< i><i></ ——)

Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Outline

* Generative modeling
e density estimation, GANs, flow-based models, diffusion

Goal: Learn a Distribution

* Want to estimate p,_,, from samples
1 2
'CU()737()7 . 737(71) i pdata(m)
 Desired abilities:

* Inference: compute p(x) for some x
e Sampling: obtain a sample from p(x)

Goal: Learn a Distribution

* Want to estimate p,,,, from samples

:U(l),az(Z), . ,a’;(”) ~ Ddata(T)

* One way: build a histogram:
* Bin data space into k groups.

0.06 1

* Estimate p,, p,, ..., Py

* Train this model: |
* Count times bin i appears in dataset

0.01 A

0.04

Probability

0.00 -
160

Histograms: Inference & Samples

* Inference: check our estimate of p,

* Sampling: straightforward, select bin i with probability p;,
then select uniformly from bin 1.

* But..
* inefficient in high dimensions

Parametrizing Distributions

* Don’t store each probability, store pgy(x)

* One approach: likelihood-based

e We know how to train with maximum likelihood

1 .
in — — 1 (%)
arg min —— Z og po(x'*’)

1=1

Parametrizing Distributions

* One approach: likelihood-based

e We know how to train with maximum likelihood
*Then, train with SGD

* Just need to make some choices for pgy(x)
« For example, recall Gaussian mixture models.

* But many types of data have more complex underlying
distributions.

Parametrizing Distributions: Autoregressive models

e e.g.recurrent neural networks, transformers.

'

L
i

Flow Models

* One way to specify pgy(x)

e Use a latent variable z with a “simple” (e.g Gaussian)
distribution.

* Then use a “complex” transformation, x = fg(2).

Flow Models

* We will need to compute the inverse transformation and
take its derivative as well (for training).

* So compose multiple “simple” transformations

= fo,(fo,. (- f6.(2)))
2= fo (fo. (- fp (2)))

Flow Models

* Transform a simple distribution to a complex one via a
chain of invertible transformations (the “flow”)

f1 (Zo) fz’(zz’—l) fz’—l—l(zi)

//’ \\\ //’ \\\
V4 \ / \

\ / \

1 \

A 1 I M 1 ‘/\/\P—\/\

> \\ | *l'

\ / \ /
\ 4 \ 7/

o po(Zo) sl pz’(zz’) K~ pK(ZK)

image from Lilian Weng

Flow Models: How to sample?

 Sample from z (the latent variable)---has a simple
distribution that lets us do it: Gaussian, uniform, etc.

* Then run the sample z through the flow to get a sample x

f1(zo) fi(Zi—1) fi+1(2;)

/// A \\\ /// A \\\ Vs \
/ \ / \ / \
1 \ 1 \ 1 \
' /\ ‘ | J\/\ ‘ | ‘/\/\P’\/\ ‘
\ e II x »/' | _

s I
\ / \ / \ /
/ 7

N\
' 4 4

~ - .- - N —-—

Zg ~ po(zo) Z; ~ pi(zi) Zg ~ PK(ZK)

Flow Models: How to train?

* Relationship between Pz () and »-(z) (densities of x and z),

given that x = fy(2)?

pﬂ:(x) — pz(fe_l(.’L‘))

[change of variables]

0f, ' (z)

ozx

.

Determinant of
Jacobian matrix

Flow Models: Training

. . 0
mgxglog(pm(ww;e)) = max (Z log (p-(f; ' (27))) + log L

\ I f |

Y Latent variable Determinant of

Maximum version Jacobian matrix
Likelihood

GANSs: Generative Adversarial Networks

* So far we’ve been modeling the
density...

* What if we just want to get high-quality
samples?

* GANSs do this.
* Think of art forgery

e Left: original
* Right: forged version
* Two-player game:
« Generator wants to pass off the
discriminator as an original

 Discriminator wants to distinguish
forgery from original

GANSs: Basic Setup

* Let’s set up networks that implement this idea:
* Discriminator network
* Generator network

Fake Images |
(from generator) | | e (

Real or Fake

¢

Discriminator Network

Generator Network

Random noise

*

=

Real Images

from training set)

image from Stanford CS231n / Emily Denton

GAN Training: Discriminator

* How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

* Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross-entropy loss, we get

I%&X Eprdata log D9d (I‘) + EZNP(Z) log(l o ng (GQQ (Z)))
1 T

Real data, want Fake data, want to
to classify 1 classify 0

GAN Training: Generator & Discriminator

* How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

 This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

r%in max L mpanta 108 Do, (T) + E,op(z) log(1l — Dy, (Gg, (2)))
g d
I I

Real data, want Fake data, want to
to classify 1 classify 0

GAN Training: Alternating Training

* So we have an optimization goal:

I%in I%&X 4”CUdia,ta]-Og DQd (ZU) _|_ {"ZNp(Z)]'Og(l o DQd(GQQ (Z)))

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

I%&X EQUdiata lOg ng ('CC) + EZNP(Z) log(l o ng (GQQ (Z)))

* Gradient descent: fix discriminator, make the generator better

min B,z log(1 — Do, (Ge, (2)))

GAN Training: Issues

* Training often not stable

 Many tricks to help with this:
* Replace the generator training with

I%?X e log(Dy, (GGQ (2)))

* Better gradient shape
* Choose number of alternating steps carefully

* Can still be challenging.

GAN Architectures

e Discriminator: image classification, use a CNN

 What should generator look like
* Input: noise vector z.
e OQutput: an image (i.e. a 3-channel x width x height volume)
*Similar to a reversed CNN pattern... 3

Stride 2

CONV 2

Generator @

image from Radford et al ‘16

Diffusion Models

* Learning to generate by denoising

* Denoising diffusion models consist of two processes:
* Forward diffusion process that gradually adds noise to input

* Reverse denoising process that learns to generate data by
denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Diffusion Models

 The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data

/4
q(xe|xi—1) = N(xe; V1 — Bixe_1, BI) = q(x17|X0) = H(](Xt|xt—l) (joint)

Diffusion Models

e Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define a; = H(l —Bs) = q(xexg) = N(x¢; Vagxg, (1 — ay)I)) (Diffusion Kernel)

=]

Forsampling: x; = /ay xg+ /(1 — &) ¢ where € ~ N(0,1)

B¢ values schedule (i.e., the noise schedule) is designed such that v — 0 and ¢(x7|xg) &~ N (x7;0,1))

Diffusion Models

* Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

<€

Data Noise

p(x7) = N(x7;0,I) _
= po(x0.7) = px7) | | PO(}¢—1]%1t)
po(x¢_1)%t) = N(x¢_1; g(xt,), o3 1) 251;[1
%/_/

Trainable network
(U-net, Denoising Autoencoder)

Outline

* Transfer learning
* pretraining, multi-task learning, foundation models

Transfer learning

We typically assume labeled points (x{, y1), ..., (X5, Vi) ~ D
drawn i.i.d. from the target distribution D

What if:

. nis too small to learn a sufficiently expressive model

. but we have access to more data (x7,y7), ..., (xn, yy) ~ D’
from a related distribution D'?

Using data from a related distribution to improve
performance on the target distribution is transfer learning

Canonical example: ImageNet

standard vision pipeline:

1.

3.

collect a bunch of data
for your target task

download a large CNN
(e.g. a big ResNet)
trained on ImageNet
and replace its
classification layer

then

either pass its features
to a simpler model

or fine-tune it directly
on the task

e ST ...
ESey iy pr< v L PG S datapoints
REESEE -
e[R

Arun et al. J. Phytopathology.

Approach I: feature extraction

d-dimensional learned

representation
1000 class

1000 logits probabilities

input image

d X 100v ...
- many convolutions and - - layer to project
. pooling layers to a thousand -:

lort

“frozen” layers
» not updated on target task data

18 class
« used only to extract features 18 logits probabilities
e e .. dx 18
randomly initialized layers inear layer Y WG sof
« trained on target task data to project max

to 18 logits

* can be more complex than ——

a linear classifier (e.g. a
shallow MLP)

Approach Il: fine-tuning

d-dimensional learned

representation
1000 class

1000 logits probabilities

input image

‘ many convolutions and
pooling layers '

“warm-started” layers
« updated on target task data

d X 100v ...
layer to project
‘ ‘ to a thousand -:

lort

. . 18 class
 typically much smaller learning rate 18 logits probabilities
e e .. dx18
randomly initialized layers inear layer Y WG sof
« trained on target task data to project max

to 18 logits

* can be more complex than ——

a linear classifier (e.g. a
shallow MLP)

Transfer learning

. Transfer learning has been hugely successful
Numerous other potential approaches

Big remaining question: what if the related data lacks labels?

. we chop off the classification layers anyway, so we just need to
extract some representation of the data

. can do so using classical unsupervised learning (PCA, etc.)

. or we can do it with self-supervised learning (SSL)

Self Supervision: Basic Idea

. Use domain-specific properties of the inputs (x) to create
pseudo-labels (y) corresponding to “pretext tasks”

. Ex: predict stuff you already know

b l
]

o

b 4

image completion rotation prediction “‘ligsaw puzzle” colorization
Stanford CS 231n

Self Supervision: Using the Representations

Don’t care specifically about our performance on pretext task
Use the learned network as a feature extractor

Once we have labels for a particular task, train on a small
amount of data

4 N " feature i R p
g :> self-supervised [> extractor = supervised @{ evaluate on the ‘
learning ' (e.g.,a learning target task

N Y, . convnet) | L ‘

e.g. classification, detection

lots of
unlabeled

= Nl 8wl

A labeled data on e
conv fc the target task “conv “linear
Stanford CS 231n classifier

Self Supervision: Pretext Tasks

Lots of options for pretext tasks
Predict rotations

Coloring
Fill in missing portions of the image

Solve puzzles

Noroozi and Favaro

Self Supervision: Contrastive Learning

. Type of SSL where we learn representations such that:
. transformed versions of single sample are similar
. different samples are different

?
same object .
Stanford CS 231n

N g >
different object

Self-supervised learning: Summary

Procedure:
. pretrain a network to do well on a pretext task
. transfer the network to your target task ChatGPT

Most well-known example: predict-the-next-word

Transfer learning from multiple tasks

What if instead of one related task with lots of data we have
many related tasks with similar amounts of data?

Many setu pS: (xl,l' yl,l)' "ty (xl,nl; }’1,n1) ~ D1

. multi-task learning

. meta-learning

. continual learning (%t ve1)s o (Keme Yeme) ~ De
. lifelong learning

We’'ll cover two of them: multi-task and meta-learning

Multi-task learning

Setup: fixed number of related tasks

Examples:
predict the weather in nearby cities
diagnose patients in different hospitals

4
}

Key challenges: T
how to encode task-relationships? .
how to avoid conflicting tasks? e

One common approach: Layer-sharing

.. : : Task-specific
. jointly train a multi-output Shared LayF:ers
network Layers
hg f91 ! e Task 1
assumes existence of a good .
shared representation /15,
X —P . | —p . Task 2
example objective: Jo,
T n 5 p — Task 3
0
z (ytl f@t hQO (xt 1))) :

(o
I

1i=1 Thung & Wee. Multimedia Tools & Applications

Another common approach: Regularization

. jointly train separate networks
. regularize parameters to be closer together
. example objective:

T ng T T
ZZ Yt,i_fet(xtl +Z Z /1t,u||9t_3u”2
t=11i=1 t=1u=t+1

. allows hand-encoding of task-relationships via the
regularization strengths A, ,,

Meta-learning

(x1,1»)’1,1)» Ty (x1,n1»)’1,n1) ~ D4
Setup:

. meta-training dataset of related tasks

. at meta-test time we get a new
dataset (xll yl); ery (xn ;Yn) ~ D

. our goal: low expected error on
unseen examples (x,y) ~ D

(XT,1»}’T,1): T (XT,nT:J’T,nT) ~ Dr

Applications:

» auto-complete for new cellphone users (federated learning)
* Image classification with limited labels (few-shot learning)

* robots in related environments (meta-RL)

What is a foundation model?

4.

take a massive neural network
older / specialized models had 100M+ params
latest models have 1-100 billion or more

pretrain it on Internet-scale data
(optionally) post-train on large-scaled supervised data

use it for transfer learning for many different tasks

Early history

2017: BERT model (340M)

. Transformer trained on masked
language modeling (pretext task)

. “solved” transfer learning for
language

2017-present: GPT series

. Transformer trained on next-word
prediction

. first observation of in-context
learning capabilities in GPT-3

. ChatGPT post-trained on GPT-3.5

you has the highest probability you,they, your..

1

[CLS] how are doing today [SEP]

N A O

BERT masked language model i

N L I

[CLS] how are doing today [SEP]

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe => girafe peluche

cheese => prompt

Post-ChatGPT

many models with varying capabilities

e Aishwarya Srinivasan DON'T FORGET TO SAVE n

Products & Applications

- closed-source models typically [@ e o
Outpe rfo rm Open_source mOdeIS ChatGPT MidJourney Perplexity Notion Al Al copilots

Tools @

.kklmn I:il i hW&'B lamaind
. new challenges: e ok oo
- massive ComPUte costs 4 Frameworks
- privacy, security, safety . P,,O o O @
4 Inference Providers .
.. Ve > i
o new O p po rt un |t |eSs: _ Fireworks Al HuggingFace AWSBedrock Google Vertex

. in_co ntext Iea rning Foundation Model Builders
_ &) LLaMA % Claude
° re a S O n I n g OpenAl (GPT) Meta (Llama) Anthropic (Claude)

Challenge: Compute costs

pretraining FMs limited to large orgs
one training run requires 100s of

even fine-tuning is hard:
. SGD on GPT-3 (175B) uses 1.2TB

GPUs

need many training runs (to tune)
and engineers (to manage training

VRAM

NVIDIA GPUs max out below
200GB

what can we do?

Model

&

A100 GPU accelerator
(PCle card)!##214431

H100 GPU accelerator
(PCle card)***

H100 GPU accelerator
(SXM card)

H200 GPU accelerator
(PCle card)*+

H200 GPU accelerator
(SXM card)

H800 GPU accelerator
(SXM card)

L40 GPU
accelerator %'l

L4 GPU
accelerator' 17314541

B100 GPU
accelerator'*?7!

B200 GPU
accelerator 3!

Microarchitecture

“*

Hopper

Ada
Lovelace

Blackwell

Launch

March 22,
202214481

November
18
2024142

March 21,

October
13, 2022

March 21,
20231458

November
2024

2024

Shaders
Core
Core clock | Core config Base
(MHz) @ clock
(MHz)

- a Py
+
0T 1£.432

1= GA100-
233AAAT 160:432:0
(108)
14592:456
— :24:456:0
(114)
1
GH1001447]
16896:528
24:528:0
1x GH100 (132)
1< GH100 | —
18176:568
— | :192:568:142
(142)
7424:240
1x
AD104 — 80:240:0
(60)
% GBI2 | — &
16896:528
24:528:0
2« GB100 | — (132)

765

10685

1085

1365

1580

1085

795

1665

1665

Py
+

1755
CUDA
1620
TC

1980
CuDA
1830
TC

1785

1980

1755

2490

2040

1837

1837

Bus
type

Py
+

HBM2

HBMZE

HBM3

HBM3E

HBM3E

HBM3

GDDR6

GDDR6

HBM3E

HBM3E

Memory
Bus}
widtd Size | Clock | Bandwidth
"V ey |MTis) | (GBIs)
(bit
E LN% * *
52| or [fr215 | 1855
80
5124 | 8o [frooo | 2039
64
or
s12q | 80 [fisoo | 3382
or
95
s12q | 141 (1313 | 3380
s12q | 141 (313 | 3380
s12q | 8o [f1313 | 3360
4] | 48 [fp2so | ee4
192f | 24 [fiss3 | 300
1 2 Tbooo | 2+ 4100
004 | 95)
20| 2= 1hoogo | 2x 4100
0o | 95

Parameter-efficient fine-tuning (PEFT)

Most popular approach: LoRA

1. take an FM with pretrained
weight matrices Wy, ..., Wy

,. for each matrix W; € R*¥:
. setr « min{d, k} and
initialize fine-tuning
weights:
- B, e R t0B; =0 = W;x + B;Ax
. A; € R™* to A; ~ Gaussian
- replace W; by W; + B;A;
3. fine-tune on target task but —

. freeze W;
- update B; and A;

A

B

t

How does LoRA save memory?

. original weights W; € R4*¥
have dk trainable params f(x) = Wx

. new weights B; € R**" and
A; € R™* have (d + K)r

. typical values in GPT-3 1758B:

. dzkz104‘ = WiX+BiAiX
- <10
. > 10*x fewer trainable params! = + |3
R

. 3x less fine-tuning VRAM

Does LoRA affect accuracy?

Yes, it constrains weights of the fine-
tuned model:

fine-tuned matrices W; + B;A; at

most a rank r < min{d, k} update

away from pretrained matrices W;
. LoRA = Low-Rank Adaptation

. in practice do not need large r for
good performance

. learning theory intuition?

e
-
wu

o
q
o

Validation Accuracy
o o
[#)] [o)]
o u

o
6]
%))

0.92

0.90

0.88

0.86

0.84

WikiSQL

Method

e Fine-Tune
PrefixEmbed

* PrefixLayer
Adapter(H)
LoRA

7 8 9 10 11
log.p # Trainable Parameters

MultiNLI-matched

7 8 9 10 11
log.o # Trainable Parameters

Hu et al.

Opportunity: In-context learning

Observation: the perfect next-word
predictor can be prompted to
answer any question correctly Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

|ldea: in-context learning

. . Translate English to French: task description
1. encode task instructions and T I
data as a context sequence - o
peppermint => menthe poivrée
2. make the FM generate the plush girafe = girafe peluche

remainder of the sequence e .

prompt

Enables learning with target data
without updating the weights at all!

Brown et al.

Opportunity: In-context learning

Usefulness:

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

handles tasks with diverse

inpUt and OUtpUt StrUCtureS Translate English to French: task description
sea otter => loutre de mer examples
directly incorporates peppermint => menthe poivrée

plush girafe => girafe peluche

pretraining knowledge

cheese => prompt

enables multi-step reasoning

Brown et al.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie, Fei-Fei Li, Justin
Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Ruigi Gao

	Slide 1: CS839: AI for Scientific Computing Advanced ML
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Modeling Sequential Data
	Slide 6: Modeling Sequential Data: External Input
	Slide 7: Recurrent Neural Networks
	Slide 8: RNNs: Basic Components
	Slide 9: RNNs: Unrolled Graph
	Slide 10: Simple RNNs
	Slide 11: Properties
	Slide 12: Example: Char. Level Language Model
	Slide 13: Example: Char. Level Language Model
	Slide 14: RNN Variants
	Slide 15: RNN Variants: Encoder/Decoder
	Slide 16: RNN Variants: Encoder/Decoder
	Slide 17: Training RNNs
	Slide 18: RNN Problems
	Slide 19: Transformers: Idea
	Slide 20: Transformers: Architecture
	Slide 21: Transformers: Architecture
	Slide 22: Transformers: Inside an Encoder
	Slide 23: Transformers: Self-Attention
	Slide 24: Transformers: Self-Attention
	Slide 25: Transformers: Multi-Headed Attention
	Slide 26: Transformers: Attention Visualization
	Slide 27: Transformers: Positional Encodings
	Slide 28: Transformers: More Tricks
	Slide 29: Transformers: Decoder
	Slide 30: Transformers: Putting it All Together
	Slide 31: Graph Neural Networks: Motivations
	Slide 32: Graph Neural Networks: Approach
	Slide 33: Graph Convolutional Networks
	Slide 34: Graph Convolutional Networks
	Slide 35: Outline
	Slide 36: Goal: Learn a Distribution
	Slide 37: Goal: Learn a Distribution
	Slide 38: Histograms: Inference & Samples
	Slide 39: Parametrizing Distributions
	Slide 40: Parametrizing Distributions
	Slide 41: Parametrizing Distributions: Autoregressive models
	Slide 42: Flow Models
	Slide 43: Flow Models
	Slide 44: Flow Models
	Slide 45: Flow Models: How to sample?
	Slide 46: Flow Models: How to train?
	Slide 47: Flow Models: Training
	Slide 48: GANs: Generative Adversarial Networks
	Slide 49: GANs: Basic Setup
	Slide 50: GAN Training: Discriminator
	Slide 51: GAN Training: Generator & Discriminator
	Slide 52: GAN Training: Alternating Training
	Slide 53: GAN Training: Issues
	Slide 54: GAN Architectures
	Slide 55: Diffusion Models
	Slide 56: Diffusion Models
	Slide 57: Diffusion Models
	Slide 58: Diffusion Models
	Slide 59: Outline
	Slide 60: Transfer learning
	Slide 61: Canonical example: ImageNet
	Slide 62: Approach I: feature extraction
	Slide 63: Approach II: fine-tuning
	Slide 64: Transfer learning
	Slide 65: Self Supervision: Basic Idea
	Slide 66: Self Supervision: Using the Representations
	Slide 67: Self Supervision: Pretext Tasks
	Slide 68: Self Supervision: Contrastive Learning
	Slide 69: Self-supervised learning: Summary
	Slide 70: Transfer learning from multiple tasks
	Slide 71: Multi-task learning
	Slide 72: One common approach: Layer-sharing
	Slide 73: Another common approach: Regularization
	Slide 74: Meta-learning
	Slide 75: What is a foundation model?
	Slide 76: Early history
	Slide 77: Post-ChatGPT
	Slide 78: Challenge: Compute costs
	Slide 79: Parameter-efficient fine-tuning (PEFT)
	Slide 80: How does LoRA save memory?
	Slide 81: Does LoRA affect accuracy?
	Slide 82: Opportunity: In-context learning
	Slide 83: Opportunity: In-context learning
	Slide 84: Thanks Everyone!

