
CS839: AI for Scientific Computing
Scientific Computing Basics

Misha Khodak

University of Wisconsin-Madison

29 January 2026



Announcements

Enrollment:
• Finalized this week. Please keep checking your status.



Outline

•Partial differential equations
• examples, classification, initial / boundary conditions

•Numerical simulations
• solvers, meshing, stability, linear systems

•Applications
• forward problems, inverse problems, control problems



Outline

•Partial differential equations
• examples, classification, initial / boundary conditions

•Numerical simulations
• solvers, meshing, stability, linear systems

•Applications
• forward problems, inverse problems



What is a partial differential equation (PDE)?

An equation involving partial derivatives of an unknown 
function 𝑢(𝑥1, 𝑥2, … , 𝑡)

Examples:

Here ∇2= 𝜕𝑥
2 + 𝜕𝑦

2 +⋯ is called the Laplacian

name equation type

heat equation 𝜕𝑡𝑢 = 𝛼∇2𝑢 parabolic

wave equation 𝜕𝑡
2𝑢 = 𝑐2∇2𝑢 hyperbolic

Laplace equation ∇2𝑢 = 0 elliptic

Poisson equation ∇2𝑢 = 𝑓 elliptic



Why PDEs matter

They are everywhere in science & engineering:

1. fluid dynamics: Navier-Stokes 

2. heat transfer: diffusion equation

3. electromagnetics: Maxwell’s equations

4. quantum mechanics: Schrodinger equation

5. finance: Black-Scholes equation

6. biology: reaction-diffusion equation



Classification of (2nd-order) linear PDEs

The general form:

𝐴𝜕𝑥
2𝑢 + 2𝐵𝜕𝑥𝑦𝑢 + 𝐶𝜕𝑦

2𝑢 + lower order terms = 0

Classification via the discriminant Δ = 𝐵2 − 𝐴𝐶:

discriminant type prototype physical behavior

Δ < 0 elliptic Laplace equilibrium, steady-state

Δ = 0 parabolic heat equation diffusion / smoothing

Δ > 0 hyperbolic wave equation propagation, finite speed



Elliptic PDEs

steady-state / equilibrium problems

∇2𝑢 = 𝑓 (Poisson equation)

Characteristics:
• information propagates in all directions
• solutions are typically smooth

Applications:
• electrostatics
• gravitational potential
• heat diffusion
• incompressible flow (pressure)



Parabolic PDEs

diffusion problems

𝜕𝑡𝑢 = 𝛼∇2𝑢 (heat equation)

Characteristics:
• time-dependent 
• solutions smooth out over time

Applications:
• heat conduction
• mass diffusion
• option pricing
• image denoising



Hyperbolic PDEs

wave propagation problems

𝜕𝑡
2𝑢 = 𝑐2∇2𝑢 (wave equation)

Characteristics:
• characteristic curves along which information propagates
• develops discontinuities (shocks)

Applications:
• acoustics
• electromagnetics
• seismic waves
• compressible fluid dynamics



Specifying the problem: The domain

The spatial region where we seek the solution is the domain Ω

Geometry complexity:
• simple, e.g. rectangles, sphere: analytical tools available
• complex, e.g. airfoils, porous media: need numerical algos

The domain determines what boundary conditions are 
needed, how to generate the mesh, and compute cost.

type description example

bounded finite region with a boundary flow in a pipe, heat in a plate

unbounded extends to infinity wave radiation, free-space scattering

periodic wraps around (no boundary) toy problems, climate models



Specifying the problem: Boundary conditions

What happens at the edge 𝜕Ω of Ω

Other important conditions:
• periodic
• outflow
• Interface between materials

type mathematical form physical meaning

Dirichlet 𝑢 = 𝑔 on 𝜕Ω prescribed value

Neumann 𝜕𝑛𝑢 = ℎ on 𝜕Ω prescribed flux

Robin 𝛼𝑢 + 𝛽𝜕𝑛𝑢 = 𝛾 on 𝜕Ω convective heat transfer



Specifying the problem: Initial conditions

To solve a transient PDE we need to specify what happens at 
𝑡 = 0 via some (temporally constant) function 𝑢0(𝑥)

𝑢 𝑥, 0 = 𝑢0(𝑥)

Often we try to set a uniform / simple initialization, but this 
can be difficult in irregular domains.



Outline

•Partial differential equations
• examples, classification, initial / boundary conditions

•Numerical simulations
• solvers, meshing, stability, linear systems

•Applications
• forward problems, inverse problems



How do we solve PDEs numerically?

typically we try to convert a continuous PDE to a system of 
algebraic equations

method idea use-case

finite difference method Replace derivatives with 

difference quotients

simple geometries, 

regular grids

finite element method 

(FEM)

weak formulation + 

basis functions

complex geometries, 

unstructured meshes

finite volume method integral conservation on 

control volumes

conservation laws

spectral global basis functions smooth solutions, 

periodic BCs



Finite difference method

Derive from a Taylor series expansion:

𝑓 𝑥 + ℎ = 𝑓 𝑥 + ℎ𝑓′ 𝑥 +
ℎ2

2
𝑓′′ 𝑥 + 𝑂(ℎ3)

derivative approximation accuracy order

forward
𝑓′ 𝑥 =

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ

𝑂(ℎ)

backward
𝑓′ 𝑥 =

𝑓 𝑥 − 𝑓(𝑥 − ℎ)

ℎ

𝑂(ℎ)

central
𝑓′ 𝑥 =

𝑓 𝑥 + ℎ − 𝑓(𝑥 − ℎ)

2ℎ

𝑂(ℎ2)

second-

derivative
𝑓′ 𝑥 =

𝑓 𝑥 + ℎ − 2𝑓 𝑥 + 𝑓(𝑥 − ℎ)

ℎ2
𝑂(ℎ2)



Finite difference method: Heat equation

1D heat equation: 𝜕𝑡𝑢 = 𝛼𝜕𝑥𝑥𝑢

Discretization with resolution Δ𝑥 in space and Δ𝑡 in time:

𝑢 𝑥𝑗 , 𝑡𝑛+1 − 𝑢(𝑥𝑗 , 𝑡𝑛)

Δ𝑡
=
𝑢 𝑥𝑗+1, 𝑡𝑛 − 2𝑢 𝑥𝑗 , 𝑡𝑛 + 𝑢 𝑥𝑗−1, 𝑡𝑛

Δ𝑥 2

So we can set: 

𝑢 𝑥𝑗 , 𝑡𝑛+1 = 𝑢 𝑥𝑗 , 𝑡𝑛 + 𝑟 𝑢 𝑥𝑗+1, 𝑡𝑛 − 2𝑢 𝑥𝑗 , 𝑡𝑛 + 𝑢 𝑥𝑗−1, 𝑡𝑛

Here 𝑟 = 𝛼Δ𝑡/ Δ𝑥 2



Finite element method (FEM)

Steps:

1. mesh the domain
• discretize the domain Ω into triangle / tetrahedra
• place nodes at vertices

2. approximate the solution
• assume 𝑢 = σ𝑖𝑈𝑖𝜙𝑖(𝑥)
• 𝑈𝑖 are unknown values at nodes
• 𝜙𝑖 are simple functions

3. convert to a linear system and solve for the nodal values



Finite volume method

Often we care strongly about conservation (of mass, 
momentum, energy). Finite difference and FEM does not 
guarantee this, but finite volume methods do:

1. divide domain into cells 𝑉

2. store average value of 𝑢 in each cell (not point values)

3. track fluxes across cell faces:
• flux on the cell of one face must correspond to a reverse flux on 

the face of another cell
• forces a change in conserved quantity in one cell must 

correspond to a reverse change in that quantity in another



Spectral methods

Approximate solution via a global basis functions:

𝑢𝑁 𝑥 = ෍

𝑘=0

𝑁

ො𝑢𝑘𝜙𝑘(𝑥)

Common choices:
• Periodic domains: Fourier (𝑒𝑖𝑘𝑥)
• Non-periodic smooth solutions: Chebyshev polynomials
• Other: Legendre polynomials

Advantages: exponential convergence / can be very fast (FFTs)
Disadvantages: strong constraints (smoothness, periodic BCs)



When do we use which method?

simulation 

property

finite 

differences

finite 

element

finite 

volume

spectral

geometry simple complex moderate simple

conservation none weak exact none

accuracy low flexible moderate high

smoothness maybe ok good poor



Timestepping

The previous schemes focus on spatial discretization. We 
typically add time discretization by converting the problem to 
a system of ODEs via the method of lines:

𝜕𝑡𝑢 = 𝐿 𝑢 → 𝜕𝑡𝐮 = 𝐟(𝐮, 𝑡)

where
• 𝐮 𝑡 = [𝑢1 𝑡 , 𝑢2 𝑡 , … , 𝑢𝑁 𝑡 ] are nodal values
• 𝐟 encodes the spatial operator (e.g. 𝐟𝐮 = 𝐀𝐮 for matrix 𝐀)

Now we can consider many schemes for ODE solving…



How do we march forward in time?

𝜕𝑡𝐮 = 𝐟 𝐮, 𝑡 with 𝐮 0 = 𝐮0

explicit methods implicit methods

𝐮 𝑡 + 1 = 𝐮 𝑡 + Δ𝑡𝐟(𝐮 𝑡 , 𝑡) 𝐮 𝑡 + 1 = 𝐮 𝑡 + Δ𝑡𝐟(𝐮 𝑡 + 1 , 𝑡)

update on LHS only update on both sides

no system solve must solve a (non)linear system

conditionally stable unconditionally stable

small Δ𝑡 required can take large timesteps



Explicit schemes

Advantages:
• Simple to implement
• Cheap per timestep
• Easy to parallelize

Disadvantages:
• have to take many timesteps to maintain stability 
• e.g. by following the CFL condition: 

𝑐Δ𝑡

Δ𝑥
≤ 𝐶

• 𝑐 is the wave / signal speed
• 𝐶 is method-dependent but often 1

Good for cases where you have to take a small timestep for other 
reasons or you want to run on GPU.

Examples: forward Euler, RK4



Implicit schemes

Advantages:
• Unconditionally stable
• Can take large time steps

Disadvantages:
• have to solve a (non)linear system at each timestep
• harder to parallelize

Good for stiff problems (multiple time scales)

Examples: backward Euler, Crank-Nicholson

Can even combine implicit + explicit (IMEX schemes)



Linear system solvers

Berkeley EECS Wikipedia

FEM on a disk

Discretizing often converts task to solving 𝐀𝐱 = 𝐛 where 𝐀 is

• large (millions to billions)

• sparse (mostly zero, nnz 𝐀 = 𝑂(𝑛))

• structured (banded, block-structured, etc.)



Can we solve 𝐀𝐱 = 𝐛 exactly?

Suppose 𝐀 is symmetric positive-definite (SPD)

Can try Cholesky decomposition: compute matrix 𝐋 such that
• 𝐋𝐋⊤ = 𝐀
• 𝐋 is triangular

Then can solve 𝐋𝐋⊤𝐱 = 𝐛 using triangular solves in 𝑂(nnz) time

However: 𝐋 is not necessarily sparse if 𝐀 is sparse, and computing 
it takes worst case 𝑂 𝑛3 time

Still useful if:
• we have a sequence of medium-sized system with same LHS 𝐀
• we need to use it as a subroutine, e.g. of a preconditioner



Iterative solvers

• use matrix-vector products to construct a sequence of iterates 
𝐱1, … , that converges to the solution

• stop when 𝐀𝐱𝑘 − 𝐛 ≤ 𝜀 (typically very small)

• most methods are Krylov subspace methods that output a 
solution in the Krylov subspace 𝐛, 𝐀𝐛, 𝐀𝟐𝐛,…
• conjugate gradient (for SPD matrices)
• GMRES (for general matrices)
• …

• performance typically depends on spectral properties of the 
matrix (condition number, clustering of eigenvalues, etc.)



Preconditioning

what if 𝐀 is ill-conditioned, i.e. 𝜅 𝐀 = 𝐀 𝐀−1 is large?

Krylov methods almost always use a preconditioner 𝐌 :
• 𝐌 ≈ 𝐀
• 𝐌−1 is fast to compute (e.g. 𝑂(nnz) time)
• converts problem to solving 𝐌−1𝐀𝐱 = 𝐌−1𝐛
• often defined implicitly

Common choices:
• Jacobi (𝑀 = diag(diag 𝐀 )) and its blocked variants
• incomplete Cholesky (IC(0)) and its thresholded versions
• decomposition approaches
• multigrid



Multigrid

Solvers are good at smoothing 
high-frequency errors

Idea:
• smooth on fine grid
• restrict residual to coarser grid
• solve recursively on coarse grid
• interpolate back to fine grid
• smooth again

Optimal 𝑂(𝑛) complexity for 
certain classes of problems



Meshing

The mesh size/quality significantly 
affects simulation speed:
• determines accuracy / compute cost
• must resolve important features 

(boundary layers, shocks)
• affects matrix conditioning

Two main types:
• Structured: regular grid, easy to 

use/index, limited use-cases
• Unstructured: handles any geometry, 

can have better quality metrics 



What makes a good mesh?

• low aspect ratio (ratio of longest 
to shortest edge)

• smooth transitions between 
element sizes

• captures the physics required 
(typically needs to be finer in 
areas of higher activity)



Outline

•Partial differential equations
• examples, classification, initial / boundary conditions

•Numerical simulations
• solvers, meshing, stability, linear systems

•Applications
• forward problems, inverse problems



Forward problem

Given PDE and initial/boundary conditions, find a solution 𝑢(𝑥, 𝑡)

Applications:

• prediction (e.g. weather, system behavior)

• uncertainty quantification (propagate IC / parameter errors)



Inverse problems

Given observations / measurements, find PDE parameters, 
initial conditions, or the forcing functions that produced them
• usually ill-posed, requiring e.g. regularization
• often tackled via multiple forward solves

Applications:
• MRI reconstruction
• earthquake location
• optimize material properties
• Find optimal control inputs

KFUPM



Thanks Everyone!


	Slide 1: CS839: AI for Scientific Computing Scientific Computing Basics
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: What is a partial differential equation (PDE)?
	Slide 6: Why PDEs matter
	Slide 7: Classification of (2nd-order) linear PDEs
	Slide 8: Elliptic PDEs
	Slide 9: Parabolic PDEs
	Slide 10: Hyperbolic PDEs
	Slide 11: Specifying the problem: The domain
	Slide 12: Specifying the problem: Boundary conditions
	Slide 13: Specifying the problem: Initial conditions
	Slide 14: Outline
	Slide 15: How do we solve PDEs numerically?
	Slide 16: Finite difference method
	Slide 17: Finite difference method: Heat equation
	Slide 18: Finite element method (FEM)
	Slide 19: Finite volume method
	Slide 20: Spectral methods
	Slide 21: When do we use which method?
	Slide 22: Timestepping
	Slide 23: How do we march forward in time?
	Slide 24: Explicit schemes
	Slide 25: Implicit schemes
	Slide 26: Linear system solvers
	Slide 27: Can we solve bold cap A. bold x equals bold b exactly?
	Slide 28: Iterative solvers
	Slide 29: Preconditioning
	Slide 30: Multigrid
	Slide 31: Meshing
	Slide 32: What makes a good mesh?
	Slide 33: Outline
	Slide 34: Forward problem
	Slide 35: Inverse problems
	Slide 36: Thanks Everyone!

