CS839: Al for Scientific Computing
Scientific Computing Basics

Misha Khodak

University of Wisconsin-Madison
29 January 2026

Announcements

Enrollment:
* Finalized this week. Please keep checking your status.

Outline

* Partial differential equations
* examples, classification, initial / boundary conditions

* Numerical simulations
* solvers, meshing, stability, linear systems

* Applications
e forward problems, inverse problems, control problems

Outline

* Partial differential equations
* examples, classification, initial / boundary conditions

What is a partial differential equation (PDE)?

An equation involving partial derivatives of an unknown
function u(xq, x5, ..., t)

Examples:
 _name | equaton | type
heat equation o.u = aV?u parabolic
wave equation 0¢u = c?Viu hyperbolic
Laplace equation Viu=0 elliptic
Poisson equation Viu=f elliptic

Here V*= 05 + 05 + -+ is called the Laplacian

Why PDEs matter

They are everywhere in science & engineering:

cadence

. fluid dynamics: Navier-Stokes

. heat transfer: diffusion equation s

. electromagnetics: Maxwell’s equations
. quantum mechanics: Schrodinger equation

. finance: Black-Scholes equation

o U B W N

. biology: reaction-diffusion equation

Classification of (2"9-order) linear PDEs
The general form:

Ad;u + 2B0yyu + Co5u + lower order terms = 0

Classification via the discriminant A = B% — AC:

m prototype physical behavior

A<O elliptic Laplace equilibrium, steady-state
A=0 parabolic heat equation diffusion / smoothing
A>0 hyperbolic wave equation propagation, finite speed

Elliptic PDEs

steady-state / equilibrium problems
V4u = f (Poisson equation)

Characteristics:
* information propagates in all directions
* solutions are typically smooth

Applications:

* electrostatics

* gravitational potential

* heat diffusion

* incompressible flow (pressure)

Parabolic PDEs

diffusion problems
d,u = aV?u (heat equation)

Characteristics:
* time-dependent
* solutions smooth out over time

Applications:

* heat conduction
* mass diffusion

* option pricing

* image denoising

Hyperbolic PDEs

wave propagation problems
07u = c*V4u (wave equation)

Characteristics:
* characteristic curves along which information propagates
* develops discontinuities (shocks)

Appllcatlons

acoustics

electromagnetics

seismic waves

compressible fluid dynamics

Specifying the problem: The domain

The spatial region where we seek the solution is the domain (2

bounded finite region with a boundary flow in a pipe, heat in a plate
unbounded extends to infinity wave radiation, free-space scattering
periodic wraps around (no boundary) toy problems, climate models

Geometry complexity:

* simple, e.g. rectangles, sphere: analytical tools available
* complex, e.g. airfoils, porous media: need numerical algos

The domain determines what boundary conditions are
needed, how to generate the mesh, and compute cost.

Specifying the problem: Boundary conditions

What happens at the edge 90} of ()

mathematical form physical meaning

Dirichlet u = g on dQ prescribed value
Neumann d,u = h on d() prescribed flux
Robin au + f0,u =y on 9} convective heat transfer

Other important conditions:

* periodic

* outflow

* |nterface between materials

Specifying the problem: Initial conditions

To solve a transient PDE we need to specify what happens at
t = 0 via some (temporally constant) function uy(x)

U(X, O) — uO(x)

Often we try to set a uniform / simple initialization, but this
can be difficult in irregular domains.

Outline

* Numerical simulations
* solvers, meshing, stability, linear systems

How do we solve PDEs numerically?

typically we try to convert a continuous PDE to a system of
algebraic equations

finite difference method Replace derivatives with simple geometries,

difference quotients regular grids
finite element method weak formulation + complex geometries,
(FEM) basis functions unstructured meshes
finite volume method integral conservation on conservation laws
control volumes
spectral global basis functions smooth solutions,

periodic BCs

Finite difference method
Derive from a Taylor series expansion:

h2
fOc+h) = fO) +hf10) +—f"(x) + O(h%)

derivative approximation accuracy order

forward £ = flx+ h})l —f(x) O(h)
backward 1) = flx) - i (x — h) O(h)
central 10 = f(x+h) Z—hf(x — h) 0(h?)

second- ooy S+ h)=2f(x)+ f(x —h) 0(h?)
derivative fre) = h?

Finite difference method: Heat equation

1D heat equation: d;u = a0, u

Discretization with resolution Ax in space and At in time:

u(xj, tn+1) —u(x;, ty) B u(xj+1, tn) — Zu(xj, tn) + u(xj_l, tn)
At B (Ax)?

So we can set:
u(xj, tn+1) = u(xj, tn) +r (u(xj+1, tn) — Zu(xj, tn) + u(xj_l, tn))

Here r = aAt/(Ax)?

Finite element method (FEM)

Steps:

1. mesh the domain
* discretize the domain (into triangle / tetrahedra
 place nodes at vertices

2. approximate the solution
* assumeu =),; U;¢p;(x)
* U; are unknown values at nodes
* ¢; are simple functions

3. convert to a linear system and solve for the nodal values

Finite volume method

Often we care strongly about conservation (of mass,
momentum, energy). Finite difference and FEM does not
guarantee this, but finite volume methods do:

1. divide domain into cells V
2. store average value of u in each cell (not point values)

3. track fluxes across cell faces:
* flux on the cell of one face must correspond to a reverse flux on
the face of another cell
 forces a change in conserved quantity in one cell must
correspond to a reverse change in that quantity in another

Spectral methods

Approximate solution via a global basis functions:

N

uy () =) i (x)

k=0

Common choices: _

* Periodic domains: Fourier (%)

* Non-periodic smooth solutions: Chebyshev polynomials
* Other: Legendre polynomials

Advantages: exponential convergence / can be very fast (FFTs)
Disadvantages: strong constraints (smoothness, periodic BCs)

When do we use which method?

simulation finite finite finite
property differences | element | volume

geometry simple complex moderate simple
conservation none weak exact none
accuracy low flexible moderate high

smoothness maybe ok good poor

Timestepping

The previous schemes focus on spatial discretization. We

typically add time discretization by converting the problem to
a system of ODEs via the method of lines:

d;u = Llu| - d;u = f(u, t)
where
* u(t) =[uq(t), uy(t),...,uy(t)] are nodal values

* f encodes the spatial operator (e.g. fu = Au for matrix A)

Now we can consider many schemes for ODE solving...

How do we march forward in time?

d.u = f(u, t) withu(0) = u,

explicit methods implicit methods

u(t+1) =u(t) + Atf(u(t),t) u(t+1) =u(t) + Atf(u(t + 1),¢t)

update on LHS only update on both sides
no system solve must solve a (non)linear system
conditionally stable unconditionally stable

small At required can take large timesteps

Explicit schemes

Advantages:

* Simple to implement
®* Cheap per timestep
* Easy to parallelize

Disadvantages:

* have to take many timesteps to maintain stability

* e.g. by following the CFL condition: cat <C

: : Ax
® cisthe wave / signal speed
® (is method-dependent but often 1

Good for cases where you have to take a small timestep for other
reasons or you want to run on GPU.

Examples: forward Euler, RK4

Implicit schemes

Advantages:

* Unconditionally stable

®* (Can take large time steps

Disadvantages:

* have to solve a (non)linear system at each timestep
* harder to parallelize

Good for stiff problems (multiple time scales)

Examples: backward Euler, Crank-Nicholson

Can even combine implicit + explicit (IMEX schemes)

Linear system solvers

Discretizing often converts task to solving AX = b where A is
* |arge (millions to billions)

* sparse (mostly zero, nnz(A) = 0(n))

® structured (banded, block-structured, etc.) FEM on a disk

L o - -- -
l- L .. .
I... [R—— - .I --I
L}

el s

Diseraeta Poisson Problem on 4-by-4 Grid

"
d-1 ! : U(LL) h(L1) "
FLa-roa L ! uU(21) h(21) .1
R A : U(31) h(31) L
I X R o S B Ud.l) bhi4.1) .

-1 -1l | u(L2) h(L2) e
Sl e R U22) h(22) o
e U(32) h(32) '

________ Lo Aa L. |udy| - | hid2) a0
1 - A U(L3) b(L3) '
A U(23) h(23) 1
A s A U(33) h(33)

I B e S . RN -1 U43) hi4.3) .
' 1 4 -1 U(14) h(14) 1.

;L orid- U(24) b(24) "y
| e B B VE Y b(34) !
L : : -1 -14 L U{a.4) L h(a4) .

Berkeley EECS Wikipedia

Can we solve Ax = b exactly?

Suppose A is symmetric positive-definite (SPD)

Can try Cholesky decomposition: compute matrix L such that
* LLT=A
* Listriangular

Then can solve LL"x = b using triangular solves in O(nnz) time

However: L is not necessarily sparse if A is sparse, and computing
it takes worst case 0(n?) time

Still useful if:
* we have a sequence of medium-sized system with same LHS A
* we need to use it as a subroutine, e.g. of a preconditioner

Iterative solvers

e use matrix-vector products to construct a sequence of iterates
X4, ..., that converges to the solution

* stop when ||Ax;, — b|| < € (typically very small)

* most methods are Krylov subspace methods that output a

solution in the Krylov subspace b, Ab, A?b, ...
e conjugate gradient (for SPD matrices)
e GMRES (for general matrices)

 performance typically depends on spectral properties of the
matrix (condition number, clustering of eigenvalues, etc.)

Preconditioning
what if A is ill-conditioned, i.e. k(A) = ||A||||A~!]] is large?

Krylov methods almost always use a preconditioner M :
c M=xA
e M™1jsfast to compute (e.g. O(nnz) time)
« converts problem to solving M~1Ax = M~ 'b
e often defined implicitly

Common choices:

 Jacobi (M = diag(diag(A))) and its blocked variants

* incomplete Cholesky (IC(0)) and its thresholded versions
« decomposition approaches

 multigrid

L] []
MUltlgrld M=t g

restriction interpolation

Solvers are good at smoothing == eh = ph g2
high-frequency errors P L S

I d ed. :fft:ri;tzi}?;h A 21322;%2133013
* smooth on fine grid N
® restrict residual to coarser grid direct solver

* solve recursively on coarse grid
* interpolate back to fine grid
* smooth again

Optimal O (n) complexity for
certain classes of problems

Meshing

The mesh size/quality significantly

affects simulation speed: f
* determines accuracy / compute cost e
. N

must resolve important features
(boundary layers, shocks)
* affects matrix conditioning

Vertex

O Skewed cell at vertex

Structured mesh

Two main types:
® Structured: regular grid, easy to
use/index, limited use-cases

Unstructured: handles any geometry,
can have better quality metrics

Unstructured mesh

What makes a good mesh?

low aspect ratio (ratio of longest
to shortest edge)

smooth transitions between
element sizes

captures the physics required
(typically needs to be finer in
areas of higher activity)

O Skewed cell at vertex

Structured mesh

ARy
% ‘4%&::355'5“' s
"4'43" YA

Unstructured mesh

Outline

* Applications
e forward problems, inverse problems

Forward problem

Given PDE and initial/boundary conditions, find a solution u(x, t)

Applications:
* prediction (e.g. weather, system behavior)

* uncertainty quantification (propagate IC / parameter errors)

Inverse problems

Given observations / measurements, find PDE parameters,
initial conditions, or the forcing functions that produced them
* usuallyill-posed, requiring e.g. regularization

e often tackled via multiple forward solves

FORWARD MODELING

Applications: . (RO
* MRI reconstruction | BN
* earthquake location

* optimize material properties
* Find optimal control inputs

Thanks Everyone!

	Slide 1: CS839: AI for Scientific Computing Scientific Computing Basics
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: What is a partial differential equation (PDE)?
	Slide 6: Why PDEs matter
	Slide 7: Classification of (2nd-order) linear PDEs
	Slide 8: Elliptic PDEs
	Slide 9: Parabolic PDEs
	Slide 10: Hyperbolic PDEs
	Slide 11: Specifying the problem: The domain
	Slide 12: Specifying the problem: Boundary conditions
	Slide 13: Specifying the problem: Initial conditions
	Slide 14: Outline
	Slide 15: How do we solve PDEs numerically?
	Slide 16: Finite difference method
	Slide 17: Finite difference method: Heat equation
	Slide 18: Finite element method (FEM)
	Slide 19: Finite volume method
	Slide 20: Spectral methods
	Slide 21: When do we use which method?
	Slide 22: Timestepping
	Slide 23: How do we march forward in time?
	Slide 24: Explicit schemes
	Slide 25: Implicit schemes
	Slide 26: Linear system solvers
	Slide 27: Can we solve bold cap A. bold x equals bold b exactly?
	Slide 28: Iterative solvers
	Slide 29: Preconditioning
	Slide 30: Multigrid
	Slide 31: Meshing
	Slide 32: What makes a good mesh?
	Slide 33: Outline
	Slide 34: Forward problem
	Slide 35: Inverse problems
	Slide 36: Thanks Everyone!

