CS839: Al for Scientific Computing
Neural Operators

Misha Khodak

University of Wisconsin-Madison
3 February 2026

Outline

* Motivation
e Basic architectures
* Successes and challenges

* Ongoing directions

Outline

e Motivation

Motivation
Say we have a time-dependent PDE
do.u(t,x) = Llu](t, x) + c(t, x)

over domain (), and suppose we want to solve it for many different
initial conditions a(x) = u(0, x), boundary conditions b(t, x), x € 0Q,
and forcing functions c(t,x), t = 0,x € Q.

When do we need to solve a parameterized
PDE multiple times?

Forecasting: multiple initial / boundary conditions

2018-05-01

NVIDIA

When do we need to solve a parameterized
PDE multiple times?

Inverse problems: multiple forcing functions and initial conditions

Wendelstein 7-X

Classical approach

Run the simulation multiple times, perhaps at different accuracies

Advantages:
* lots of existing solvers and software
* correctness guarantees

Disadvantages:
* can be very expensive

The neural operator approach

1. generate solutions u, j -(t, x) for many differenta, b, c
2. use the datato learn a neural network fg(a, b,c) = ugp .

3. generate future solutions ug j, - using fy

Initial Vortzczty t=15 t=20 t_25 t=30
\i e - .
| L‘ L

y ‘ -

) "

The neural operator approach

Advantages: fast generation
* just forwarded passes with fy
* possibly fewer timesteps

Disadvantages
* NO correctness guarantees
* original data can be expensive to generate

Comparing to PINNs (next lecture)

PINNs pose a neural network ansatz u = fy and train it to minimize
the PDE residual:

min 19,5 - LIfp] — |l

Neural operators train fg to match classically generated solutions:

n

min Y ||fa(as bi) = ay by

6
=1

Comparing to PINNs (next lecture)

Both:
* Advantage: can incorporate experimental data
* Disadvantage: non-guaranteed optimization

PINNs:
* Advantage: no need for classically generated training data
* Disadvantage: training requires higher-order derivatives

Neural operators:
* Advantage: very efficient when trained, can take large timesteps
* Disadvantage: requires classically generated training data

Outline

e Basic architectures

What kind of architecture do we need?

* output size scales with input size
* works with high-resolution multi-dimensional data

Initial Vortlcny =15 =20

w

——

Fr
N
o

22

S
>

Zongyi Li

Recall: A simple feedforward neural network

by the parameter sizes ®

* canonly use if we always have
the same size input and output Input Layer

* inputs and outputs constrained l l l l

* parameter sizes scale with the Hidden Layer
number of grid points ®

* massive parameter counts even
for moderate resolutions Output Layer

Wikipedia

Recall: Convolutional neural networks

* replaces linear layer by convolutions with
small, parameterized kernels

* can handle variable input/output shapes v

* parameter count is independent of the
iInput resolution v

Vincent Dumoulin

What kind of CNN architecture is suitable?

Basic CNNs (e.g. ResNet):

* built for image classification
* input size does not scale with output size ®
* reduces the representation size across convolutional layers

* keeping the representation size the same across layers is too costly ®

LLLLL

OO

FEATURE LEARNING CLASSIFICATION

MATLAB

Early approach: U-Net [Raffenberger et al.]

* Originally for image 128 % 64 2
segmentation ot
. image b et bl bt gg;%;[antation
* Key feature is the te 214 g8 ma
transposed convolution

572 x 572
570 x 570
568 x 568

' 128 128 I

256 128
slalls Ejlglﬂ
N N (]
¥ 56 256 512 256 '
o[¥ 'N>I =» conv 3x3, ReLU
SHEM 3 SR o8
SAANPEAN R A S t s 3 copy and crop
P 512 512 1024 512
N :.» ‘;"‘ %I?O.E- SE.N.-.N.- }max pool 2x2
- <t
© °¥ 1024 g5 B 4 up-conv 2x2
-
] & % =p conv 1x1
o (o]

Vincent Dumoulin

Popular choice: Fourier Neural Operator (FNO)
[Lietal.]

Main idea: replace convolutional layers by Fourier layers

®—> Fourier layer 1 Fourier layer 2— @ ® @ —> Fourier layer T —>

-
-

-
-

-
-

FNO layer-by-layer

®—> Fourier layer 1

t

initial
state

adh

v

-

R

l

— Fourier layer 2

- > @ @ ® —>|Fourierlayer T

\ map each grid

point to a higher
dimension

project back to /

the output
dimension

1

prediction

)

e

FNO layer-by-layer

o(iFFT(FFT(v) © R) + Wv)

s

2D input

Fourier layer

FNO layer-by-layer

o(iFFT(FFT(v) © R) + Wv)

linear transform on lower modes;
fllterthe rest

OF: ~ @ =o U

FNO layer-by-layer

Only difference with a regular CNN:
o(iFFT(FFT(v) O FFT(r)) + Wv)

o(iFFT(FFT(v) © R) + Wv)

/

add a local linear transform
(similar to ResNet)

Fourier layer

9@

FNO layer-by-layer

o(iFFT(FFT(v) © R) + Wv)

local activation
(RelLU)

Fourier layer

Recap: FNOs

®—> Fourier layer 1

— Fourier layer 2

- > @ @ @ —>|Fourierlayer T

-
-
-‘—
—"_¢
-
-—.

-
-

-
-

‘‘‘‘‘

-
-
-
-
——

Fourier layer

Initial Condition Ground Truth Prediction

. —
U-Net vs. FNO cose 1 APS
u. |
-
CaseZL
Both are popular approaches —y

FNO has been developed on more, because coneyit

* itis claimed to be resolution invariant, enabling super resolution
* it was specifically developed for PDEs

* it does better on most (but not all) tasks in PDEBench
[Takamoto et al.]

FNO variants

* PINO [Li et al.]: combines with a PINN-style equation loss
* Geo-FNO [Lietal.]: gobeyond FFT to handle irregular geometry

Pipe o
Airfoils
* FFNQO [Tran et al.]: separate FFTs across dimensions for efficiency

Transformer architectures

* powerful architectures
built around multi-head
attention blocks

* developed for sequence
tasks but in-principle can
take any set of embeddings
(e.g. grid points or patches
of grid points) given the
right positional embedding

 PDE Transformers are built
around vision models such
as ViT or SWIN

Vision Transformer (ViT)
Architecture

/[Transformer Block]\

[Transformer Block]

: [Feed Forward Neural Network

)
k[Multl Head Self Attentlon U

1

Linear Projection + Posmon Embeddlng

oo

Generate Image 1
Patches |

]

Outline

* Successes and challenges

Success story: Weather

NVIDIA’s FourCastNet:

* neural network trained on historical weather data

* FNO adapted to a spherical domain

* 60x faster 15-day forecast than traditional simulation

Key reasons for success:
* availability of historical data
* imperfect PDE model

e CPU-bound competitors

Challenge:

Fair comparisons to classical solvers

* If no historical data, trained models
better be much faster than similar-
quality classical solvers to justify the
cost of generating the training data

* Unfortunately, meta-evaluations have
found speedups to be overstated due to

* comparing speedup relative to much more
accurate solvers

* using the wrong solver for the type of PDE

Weak baselines and reporting biases lead
to overoptimism in machine learning for
fluid-related partial differential equations

Nick McGreivy & Ammar Hakim

Nature Machine Intelligence volume 6, pages 1256-1269 (2024)

https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Ammar-Hakim-Aff2
https://www.nature.com/natmachintell

Outline

* Ongoing directions

Direction: Benchmarks and evaluations

New benchmarks are constantly
being developed:

1. PDEBench (2022).
11 different PDEs
e Hundreds of GB

2. The Well (2024):
* 16 different PDEs,
 Tens of thousands of GB

Direction: Foundation models

ldea: reduce the need for simulation data by
1. pretraining a Transformer on tens of thousands of generic simulations
2. fine-tuning it on only a few examples from the target simulation

Task-specific Posemon: Foundation Model for PDEs
Operator Learning =
= — . = q W WM
'. "- NS 'ﬂ‘\"_‘ ':\.@\ == + et AN é‘%‘} ﬂ_ + hhs &]
: model Ay s compressible incomp. flow compressible mcomp flow

= 4 ﬁnetune on out of- dlstrlbutlon downstream tasks
~ h(Comp. Euler I8 j
model f

L]
‘;4-}
< ® Poseidon-B
o FNO
Wave L ’
model ‘o"\ L ;:
& 10~ ‘
nber of

Poisson 1096 1 64 4096 1 61 4096 1 61 4096 f ajeata
model Comp. Euler Wave Poisson

Direction: Theoretical understanding

Approximation theory [Marwah et al.]: what is the size of the
smallest neural network needed to approximate a solution or
solution operator?

Sample complexity [Boullé et al.]: how many training examples
suffice to learn a neural operator to sufficient accuracy?

Results often depend on the kind of PDE (linear, elliptic, etc.).

Direction: Long-term forecasting

Neural operators are often trained auto-regressively
1. errors compound over time
2. difficult to train with long context windows

3. even on weather, neural PDE do worse on longer (subseasonal)
forecasting than simple baselines that use averages of previous
years’ weather (even classical simulation struggles here)

This problem remains challenging, with some attempts at a solution.

Summary of neural operators for PDEs

Map forcing, initial, and boundary, conditions of to the solution.

Significant amount of architecture development, training, and
benchmarking effort in the machine learning community.

Successful results in domains with significant observational data.

Skepticism from the scientific computing community due to the
need for training data and underperformance relative to traditional
numerical solvers.

Thanks Everyone!

	Slide 1: CS839: AI for Scientific Computing Neural Operators
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Motivation
	Slide 5: When do we need to solve a parameterized PDE multiple times?
	Slide 6: When do we need to solve a parameterized PDE multiple times?
	Slide 7: Classical approach
	Slide 8: The neural operator approach
	Slide 9: The neural operator approach
	Slide 10: Comparing to PINNs (next lecture)
	Slide 11: Comparing to PINNs (next lecture)
	Slide 12: Outline
	Slide 13: What kind of architecture do we need?
	Slide 14: Recall: A simple feedforward neural network
	Slide 15: Recall: Convolutional neural networks
	Slide 16: What kind of CNN architecture is suitable?
	Slide 17: Early approach: U-Net [Raffenberger et al.]
	Slide 18: Popular choice: Fourier Neural Operator (FNO) [Li et al.]
	Slide 19: FNO layer-by-layer
	Slide 20: FNO layer-by-layer
	Slide 21: FNO layer-by-layer
	Slide 22: FNO layer-by-layer
	Slide 23: FNO layer-by-layer
	Slide 24: Recap: FNOs
	Slide 25: U-Net vs. FNO
	Slide 26: FNO variants
	Slide 27: Transformer architectures
	Slide 28: Outline
	Slide 29: Success story: Weather
	Slide 30: Challenge: Fair comparisons to classical solvers
	Slide 31: Outline
	Slide 32: Direction: Benchmarks and evaluations
	Slide 33: Direction: Foundation models
	Slide 34: Direction: Theoretical understanding
	Slide 35: Direction: Long-term forecasting
	Slide 36: Summary of neural operators for PDEs
	Slide 37: Thanks Everyone!

