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Motivation

Say we have a time-dependent PDE

𝜕𝑡𝑢 𝑡, 𝑥 = 𝐿 𝑢 𝑡, 𝑥 + 𝑐(𝑡, 𝑥)

over domain Ω, and suppose we want to solve it for many different 
initial conditions 𝑎 𝑥 = 𝑢(0, x), boundary conditions 𝑏 𝑡, 𝑥 , 𝑥 ∈ 𝜕Ω, 
and forcing functions 𝑐(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ Ω.



When do we need to solve a parameterized 
PDE multiple times?

Forecasting: multiple initial / boundary conditions

NVIDIA



When do we need to solve a parameterized 
PDE multiple times?

Inverse problems: multiple forcing functions and initial conditions

Wendelstein 7-X



Classical approach

Run the simulation multiple times, perhaps at different accuracies

Advantages:
• lots of existing solvers and software
• correctness guarantees

Disadvantages:
• can be very expensive



The neural operator approach

1. generate solutions 𝑢𝑎,𝑏,𝑐(𝑡, 𝑥) for many different 𝑎, 𝑏, 𝑐

2. use the data to learn a neural network 𝑓𝜃 𝑎, 𝑏, 𝑐 ↦ 𝑢𝑎,𝑏,𝑐

3. generate future solutions 𝑢𝑎,𝑏,𝑐  using 𝑓𝜃

Zongyi Li



The neural operator approach

Advantages: fast generation 
• just forwarded passes with 𝑓𝜃  
• possibly fewer timesteps

Disadvantages
• no correctness guarantees
• original data can be expensive to generate



Comparing to PINNs (next lecture)

PINNs pose a neural network ansatz 𝑢 = 𝑓𝜃  and train it to minimize 
the PDE residual:

min
𝜃

𝜕𝑡𝑓𝜃 − 𝐿 𝑓𝜃 − 𝑐 2

Neural operators train 𝑓𝜃  to match classically generated solutions:

min
𝜃

 ෍

𝑖=1

𝑛

𝑓𝜃(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) − 𝑢𝑎𝑖,𝑏𝑖,𝑐𝑖

2



Comparing to PINNs (next lecture)

Both:
• Advantage: can incorporate experimental data
• Disadvantage: non-guaranteed optimization

PINNs:
• Advantage: no need for classically generated training data
• Disadvantage: training requires higher-order derivatives

Neural operators:
• Advantage: very efficient when trained, can take large timesteps
• Disadvantage: requires classically generated training data
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What kind of architecture do we need?

• output size scales with input size
• works with high-resolution multi-dimensional data

Zongyi Li



Recall: A simple feedforward neural network

• inputs and outputs constrained 
by the parameter sizes ⮾
• can only use if we always have 

the same size input and output

• parameter sizes scale with the 
number of grid points ⮾
• massive parameter counts even 

for moderate resolutions

Wikipedia



Recall: Convolutional neural networks

• replaces linear layer by convolutions with 
small, parameterized kernels

• can handle variable input/output shapes ✓

• parameter count is independent of the 
input resolution ✓

Vincent Dumoulin



What kind of CNN architecture is suitable?

Basic CNNs (e.g. ResNet):
• built for image classification

• input size does not scale with output size ⮾
• reduces the representation size across convolutional layers 

• keeping the representation size the same across layers is too costly ⮾

MATLAB



Early approach: U-Net [Raffenberger et al.]

• Originally for image 
segmentation

• Key feature is the 
transposed convolution

Vincent Dumoulin



Popular choice: Fourier Neural Operator (FNO) 
[Li et al.]
Main idea: replace convolutional layers by Fourier layers



FNO layer-by-layer

initial 
state prediction

map each grid 
point to a higher 

dimension

project back to 
the output 
dimension



FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

2D input



FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

linear transform on lower modes; 
filter the rest



FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

add a local linear transform 
(similar to ResNet)

Only difference with a regular CNN:
𝜎(iFFT FFT 𝐯 ⊙ FFT(𝐫) + 𝐖𝐯)



FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

local activation 
(ReLU)



Recap: FNOs



U-Net vs. FNO

Both are popular approaches

FNO has been developed on more, because
• it is claimed to be resolution invariant, enabling super resolution
• it was specifically developed for PDEs
• it does better on most (but not all) tasks in PDEBench 

[Takamoto et al.]

Zongyi Li



FNO variants

• PINO [Li et al.]: combines with a PINN-style equation loss
• Geo-FNO [Li et al.]:  go beyond FFT to handle irregular geometry

• FFNO [Tran et al.]: separate FFTs across dimensions for efficiency



Transformer architectures

• powerful architectures 
built around multi-head 
attention blocks

• developed for sequence 
tasks but in-principle can 
take any set of embeddings 
(e.g. grid points or patches 
of grid points) given the 
right positional embedding

• PDE Transformers are built 
around vision models such 
as ViT or SWIN
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Success story: Weather

NVIDIA’s FourCastNet:
• neural network trained on historical weather data
• FNO adapted to a spherical domain
• 60x faster 15-day forecast than traditional simulation

Key reasons for success:
• availability of historical data
• imperfect PDE model
• CPU-bound competitors



Challenge: 
Fair comparisons to classical solvers
• If no historical data, trained models 

better be much faster than similar-
quality classical solvers to justify the 
cost of generating the training data

• Unfortunately, meta-evaluations have 
found speedups to be overstated due to
• comparing speedup relative to much more 

accurate solvers
• using the wrong solver for the type of PDE

Weak baselines and reporting biases lead 
to overoptimism in machine learning for 
fluid-related partial differential equations

Nick McGreivy & Ammar Hakim

Nature Machine Intelligence volume 6, pages 1256–1269 (2024)

https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Ammar-Hakim-Aff2
https://www.nature.com/natmachintell
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Direction: Benchmarks and evaluations

New benchmarks are constantly 
being developed:

1. PDEBench (2022): 
• 11 different PDEs
• Hundreds of GB

2. The Well (2024): 
• 16 different PDEs, 
• Tens of thousands of GB



Direction: Foundation models

Idea: reduce the need for simulation data by
1. pretraining a Transformer on tens of thousands of generic simulations
2. fine-tuning it on only a few examples from the target simulation



Direction: Theoretical understanding

Approximation theory [Marwah et al.]: what is the size of the 
smallest neural network needed to approximate a solution or 
solution operator?

Sample complexity [Boullé et al.]: how many training examples 
suffice to learn a neural operator to sufficient accuracy?

Results often depend on the kind of PDE (linear, elliptic, etc.).



Direction: Long-term forecasting

Neural operators are often trained auto-regressively
1. errors compound over time
2. difficult to train with long context windows
3. even on weather, neural PDE do worse on longer (subseasonal) 

forecasting than simple baselines that use averages of previous 
years’ weather (even classical simulation struggles here)

This problem remains challenging, with some attempts at a solution.



Summary of neural operators for PDEs

Map forcing , initial, and boundary, conditions of to the solution.

Significant amount of architecture development, training, and 
benchmarking effort in the machine learning community.

Successful results in domains with significant observational data.

Skepticism from the scientific computing community due to the 
need for training data and underperformance relative to traditional 
numerical solvers.



Thanks Everyone!
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