
CS839: AI for Scientific Computing
Neural Operators

Misha Khodak

University of Wisconsin-Madison

3 February 2026

Outline

• Motivation

• Basic architectures

• Successes and challenges

• Ongoing directions

Outline

• Motivation

• Basic architectures

• Successes and challenges

• Ongoing directions

Motivation

Say we have a time-dependent PDE

𝜕𝑡𝑢 𝑡, 𝑥 = 𝐿 𝑢 𝑡, 𝑥 + 𝑐(𝑡, 𝑥)

over domain Ω, and suppose we want to solve it for many different
initial conditions 𝑎 𝑥 = 𝑢(0, x), boundary conditions 𝑏 𝑡, 𝑥 , 𝑥 ∈ 𝜕Ω,
and forcing functions 𝑐(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ Ω.

When do we need to solve a parameterized
PDE multiple times?

Forecasting: multiple initial / boundary conditions

NVIDIA

When do we need to solve a parameterized
PDE multiple times?

Inverse problems: multiple forcing functions and initial conditions

Wendelstein 7-X

Classical approach

Run the simulation multiple times, perhaps at different accuracies

Advantages:
• lots of existing solvers and software
• correctness guarantees

Disadvantages:
• can be very expensive

The neural operator approach

1. generate solutions 𝑢𝑎,𝑏,𝑐(𝑡, 𝑥) for many different 𝑎, 𝑏, 𝑐

2. use the data to learn a neural network 𝑓𝜃 𝑎, 𝑏, 𝑐 ↦ 𝑢𝑎,𝑏,𝑐

3. generate future solutions 𝑢𝑎,𝑏,𝑐 using 𝑓𝜃

Zongyi Li

The neural operator approach

Advantages: fast generation
• just forwarded passes with 𝑓𝜃
• possibly fewer timesteps

Disadvantages
• no correctness guarantees
• original data can be expensive to generate

Comparing to PINNs (next lecture)

PINNs pose a neural network ansatz 𝑢 = 𝑓𝜃 and train it to minimize
the PDE residual:

min
𝜃

𝜕𝑡𝑓𝜃 − 𝐿 𝑓𝜃 − 𝑐 2

Neural operators train 𝑓𝜃 to match classically generated solutions:

min
𝜃

 ෍

𝑖=1

𝑛

𝑓𝜃(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) − 𝑢𝑎𝑖,𝑏𝑖,𝑐𝑖

2

Comparing to PINNs (next lecture)

Both:
• Advantage: can incorporate experimental data
• Disadvantage: non-guaranteed optimization

PINNs:
• Advantage: no need for classically generated training data
• Disadvantage: training requires higher-order derivatives

Neural operators:
• Advantage: very efficient when trained, can take large timesteps
• Disadvantage: requires classically generated training data

Outline

• Motivation

• Basic architectures

• Successes and challenges

• Ongoing directions

What kind of architecture do we need?

• output size scales with input size
• works with high-resolution multi-dimensional data

Zongyi Li

Recall: A simple feedforward neural network

• inputs and outputs constrained
by the parameter sizes ⮾
• can only use if we always have

the same size input and output

• parameter sizes scale with the
number of grid points ⮾
• massive parameter counts even

for moderate resolutions

Wikipedia

Recall: Convolutional neural networks

• replaces linear layer by convolutions with
small, parameterized kernels

• can handle variable input/output shapes ✓

• parameter count is independent of the
input resolution ✓

Vincent Dumoulin

What kind of CNN architecture is suitable?

Basic CNNs (e.g. ResNet):
• built for image classification

• input size does not scale with output size ⮾
• reduces the representation size across convolutional layers

• keeping the representation size the same across layers is too costly ⮾

MATLAB

Early approach: U-Net [Raffenberger et al.]

• Originally for image
segmentation

• Key feature is the
transposed convolution

Vincent Dumoulin

Popular choice: Fourier Neural Operator (FNO)
[Li et al.]
Main idea: replace convolutional layers by Fourier layers

FNO layer-by-layer

initial
state prediction

map each grid
point to a higher

dimension

project back to
the output
dimension

FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

2D input

FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

linear transform on lower modes;
filter the rest

FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

add a local linear transform
(similar to ResNet)

Only difference with a regular CNN:
𝜎(iFFT FFT 𝐯 ⊙ FFT(𝐫) + 𝐖𝐯)

FNO layer-by-layer

𝜎(iFFT FFT 𝐯 ⊙ 𝐑 + 𝐖𝐯)

local activation
(ReLU)

Recap: FNOs

U-Net vs. FNO

Both are popular approaches

FNO has been developed on more, because
• it is claimed to be resolution invariant, enabling super resolution
• it was specifically developed for PDEs
• it does better on most (but not all) tasks in PDEBench

[Takamoto et al.]

Zongyi Li

FNO variants

• PINO [Li et al.]: combines with a PINN-style equation loss
• Geo-FNO [Li et al.]: go beyond FFT to handle irregular geometry

• FFNO [Tran et al.]: separate FFTs across dimensions for efficiency

Transformer architectures

• powerful architectures
built around multi-head
attention blocks

• developed for sequence
tasks but in-principle can
take any set of embeddings
(e.g. grid points or patches
of grid points) given the
right positional embedding

• PDE Transformers are built
around vision models such
as ViT or SWIN

Outline

• Motivation

• Basic architectures

• Successes and challenges

• Ongoing directions

Success story: Weather

NVIDIA’s FourCastNet:
• neural network trained on historical weather data
• FNO adapted to a spherical domain
• 60x faster 15-day forecast than traditional simulation

Key reasons for success:
• availability of historical data
• imperfect PDE model
• CPU-bound competitors

Challenge:
Fair comparisons to classical solvers
• If no historical data, trained models

better be much faster than similar-
quality classical solvers to justify the
cost of generating the training data

• Unfortunately, meta-evaluations have
found speedups to be overstated due to
• comparing speedup relative to much more

accurate solvers
• using the wrong solver for the type of PDE

Weak baselines and reporting biases lead
to overoptimism in machine learning for
fluid-related partial differential equations

Nick McGreivy & Ammar Hakim

Nature Machine Intelligence volume 6, pages 1256–1269 (2024)

https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Nick-McGreivy-Aff1-Aff2
https://www.nature.com/articles/s42256-024-00897-5#auth-Ammar-Hakim-Aff2
https://www.nature.com/natmachintell

Outline

• Motivation

• Basic architectures

• Successes and challenges

• Ongoing directions

Direction: Benchmarks and evaluations

New benchmarks are constantly
being developed:

1. PDEBench (2022):
• 11 different PDEs
• Hundreds of GB

2. The Well (2024):
• 16 different PDEs,
• Tens of thousands of GB

Direction: Foundation models

Idea: reduce the need for simulation data by
1. pretraining a Transformer on tens of thousands of generic simulations
2. fine-tuning it on only a few examples from the target simulation

Direction: Theoretical understanding

Approximation theory [Marwah et al.]: what is the size of the
smallest neural network needed to approximate a solution or
solution operator?

Sample complexity [Boullé et al.]: how many training examples
suffice to learn a neural operator to sufficient accuracy?

Results often depend on the kind of PDE (linear, elliptic, etc.).

Direction: Long-term forecasting

Neural operators are often trained auto-regressively
1. errors compound over time
2. difficult to train with long context windows
3. even on weather, neural PDE do worse on longer (subseasonal)

forecasting than simple baselines that use averages of previous
years’ weather (even classical simulation struggles here)

This problem remains challenging, with some attempts at a solution.

Summary of neural operators for PDEs

Map forcing , initial, and boundary, conditions of to the solution.

Significant amount of architecture development, training, and
benchmarking effort in the machine learning community.

Successful results in domains with significant observational data.

Skepticism from the scientific computing community due to the
need for training data and underperformance relative to traditional
numerical solvers.

Thanks Everyone!

	Slide 1: CS839: AI for Scientific Computing Neural Operators
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Motivation
	Slide 5: When do we need to solve a parameterized PDE multiple times?
	Slide 6: When do we need to solve a parameterized PDE multiple times?
	Slide 7: Classical approach
	Slide 8: The neural operator approach
	Slide 9: The neural operator approach
	Slide 10: Comparing to PINNs (next lecture)
	Slide 11: Comparing to PINNs (next lecture)
	Slide 12: Outline
	Slide 13: What kind of architecture do we need?
	Slide 14: Recall: A simple feedforward neural network
	Slide 15: Recall: Convolutional neural networks
	Slide 16: What kind of CNN architecture is suitable?
	Slide 17: Early approach: U-Net [Raffenberger et al.]
	Slide 18: Popular choice: Fourier Neural Operator (FNO) [Li et al.]
	Slide 19: FNO layer-by-layer
	Slide 20: FNO layer-by-layer
	Slide 21: FNO layer-by-layer
	Slide 22: FNO layer-by-layer
	Slide 23: FNO layer-by-layer
	Slide 24: Recap: FNOs
	Slide 25: U-Net vs. FNO
	Slide 26: FNO variants
	Slide 27: Transformer architectures
	Slide 28: Outline
	Slide 29: Success story: Weather
	Slide 30: Challenge: Fair comparisons to classical solvers
	Slide 31: Outline
	Slide 32: Direction: Benchmarks and evaluations
	Slide 33: Direction: Foundation models
	Slide 34: Direction: Theoretical understanding
	Slide 35: Direction: Long-term forecasting
	Slide 36: Summary of neural operators for PDEs
	Slide 37: Thanks Everyone!

