

CS839: AI for Scientific Computing **Physics-Informed Neural Networks**

Misha Khodak

University of Wisconsin-Madison
5 February 2026

Outline

- **Upcoming classes: guest lectures and student presentations**
- **Introduction to PINNs**
- **Challenges of PINNs**
- **Recap of neural PDE solvers**

Outline

- **Upcoming classes: guest lectures and student presentations**
- Introduction to PINNs
- Challenges of PINNs
- Recap of neural PDE solvers

Upcoming classes: Research lectures

- 10 Feb – Mariel Pettee: *Invisible Cities: Imagining the next era of AI-enabled fundamental physics research* [abstract online]
- 17 Feb – Qin Li: control in kinetic equations
- 19 Feb – Misha Khodak: learned preconditioners
- 24 Feb – Rogerio Jorge: ML for plasma physics
- 26 Feb – Xuhui Huang + Zige Liu: ML for computational chemistry
- 5 March – Wenxiao Pan: data-driven simulation of complex fluids

Upcoming classes: Participation

- policy outlined on website
- roughly: submit two question during each of half the lectures
- encouraged but not required to ask questions during the talk

Discussions

Grades

People

Pages

Files

Syllabus

Outcomes

Rubrics

Quizzes

Modules

Collaborations

Research Lecture 1

Quiz Type	Graded Quiz
Points	2
Assignment Group	Assignments
Shuffle Answers	No
Time Limit	No Time Limit
Multiple Attempts	No
View Responses	No
One Question at a Time	No

Due	For	Available from	Until
Feb 10 at 2:15pm	Everyone	Feb 10 at 1pm	Feb 10 at 2:15pm

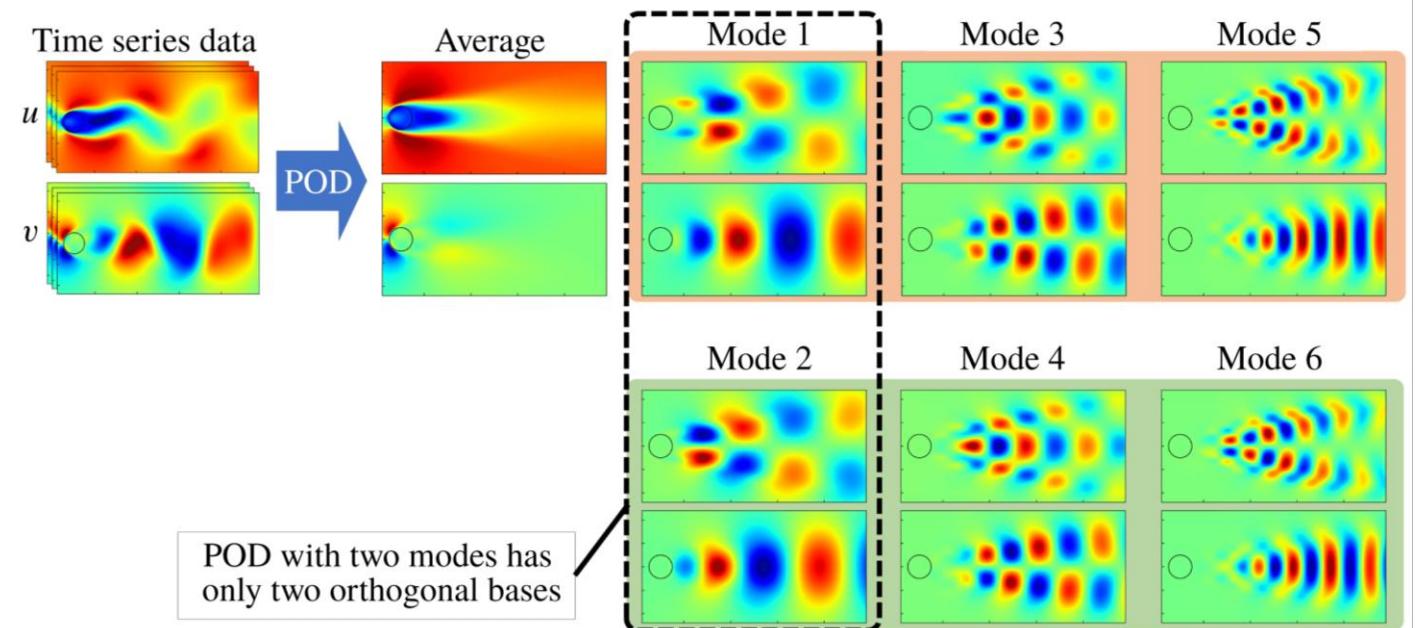
Upcoming classes: Student presentations

- first presentation March 3rd
- 2-3 people per presentation
- will send out sign-up sheet soon, but start thinking about what you might like to present
- standard approaches:
 - deep dive into a single paper
 - overview of an area via several papers

Presentation ideas: Reduced-order models

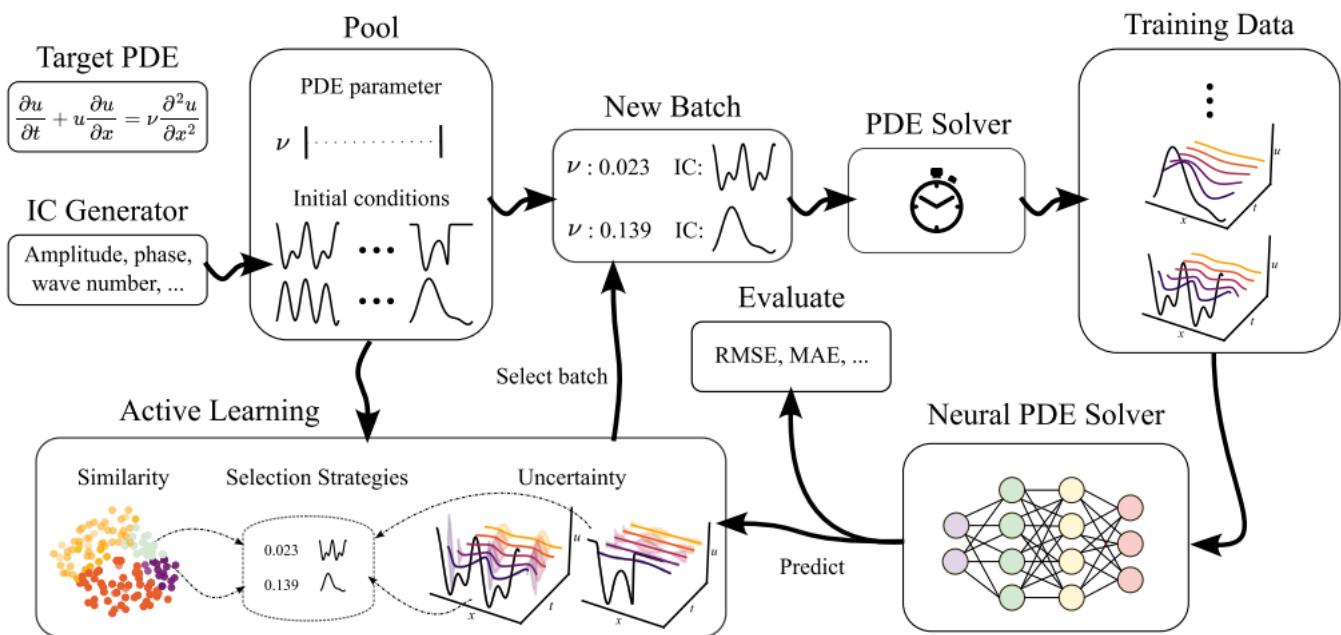
- dynamic mode decomposition

- closure modeling



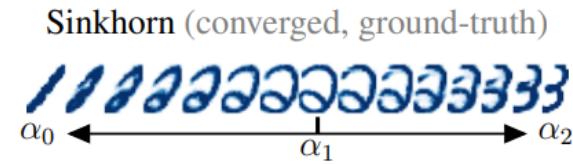
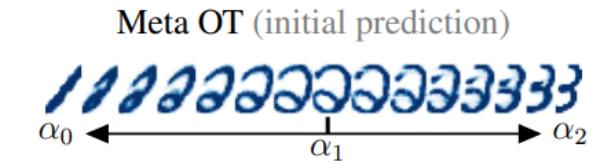
Presentation ideas: Data-efficiency

- active learning
- foundation models



Presentation ideas: learning-augmented (scientific computing) algorithms

- neural preconditioners

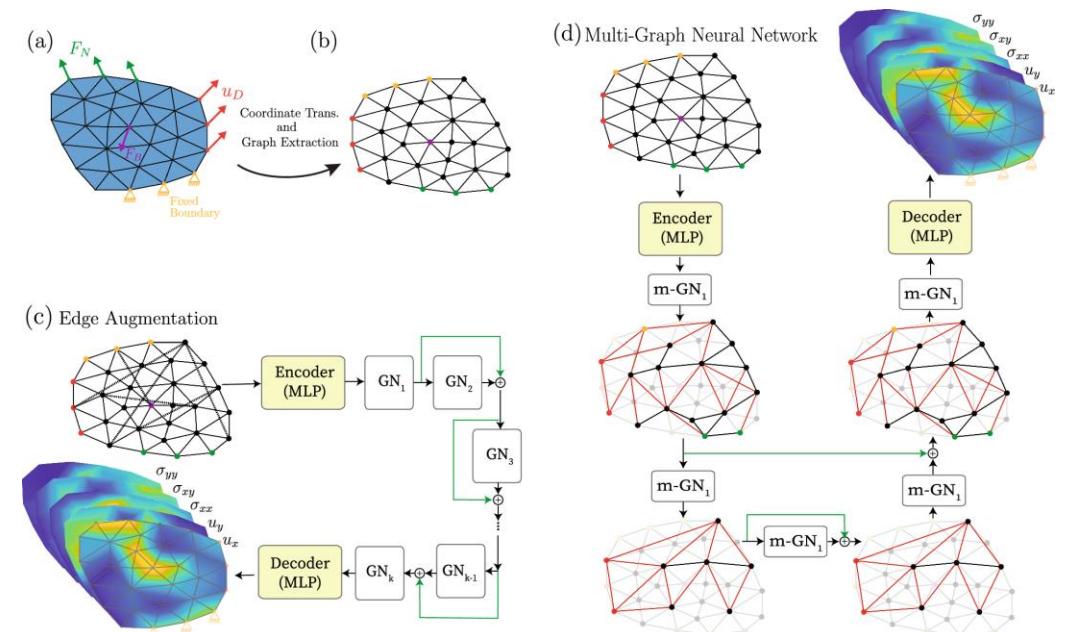


[Amos et al., 2022]

- neural multigrid
- meta-learned optimizers
- meta-learned optimal transport

Presentation ideas: Advanced architectures

- neural ODEs for PDEs
- GNNs for PDEs
- Transformers for PDEs
- geometry-adaptive architectures
- hybrid (neural and classical) solvers



[Gladstone et al., 2024]

Presentation ideas: Applications

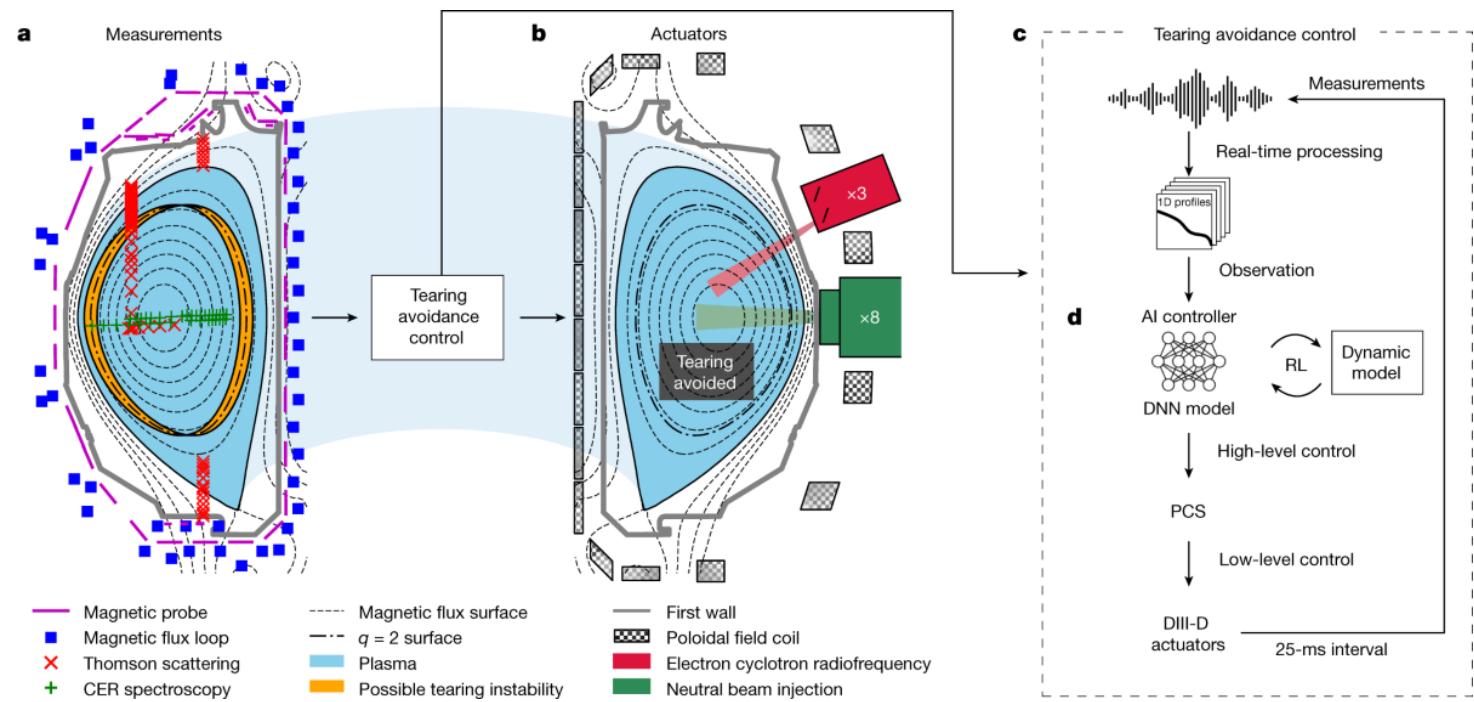
- molecular dynamics

- drug discovery

- materials science

- plasma control

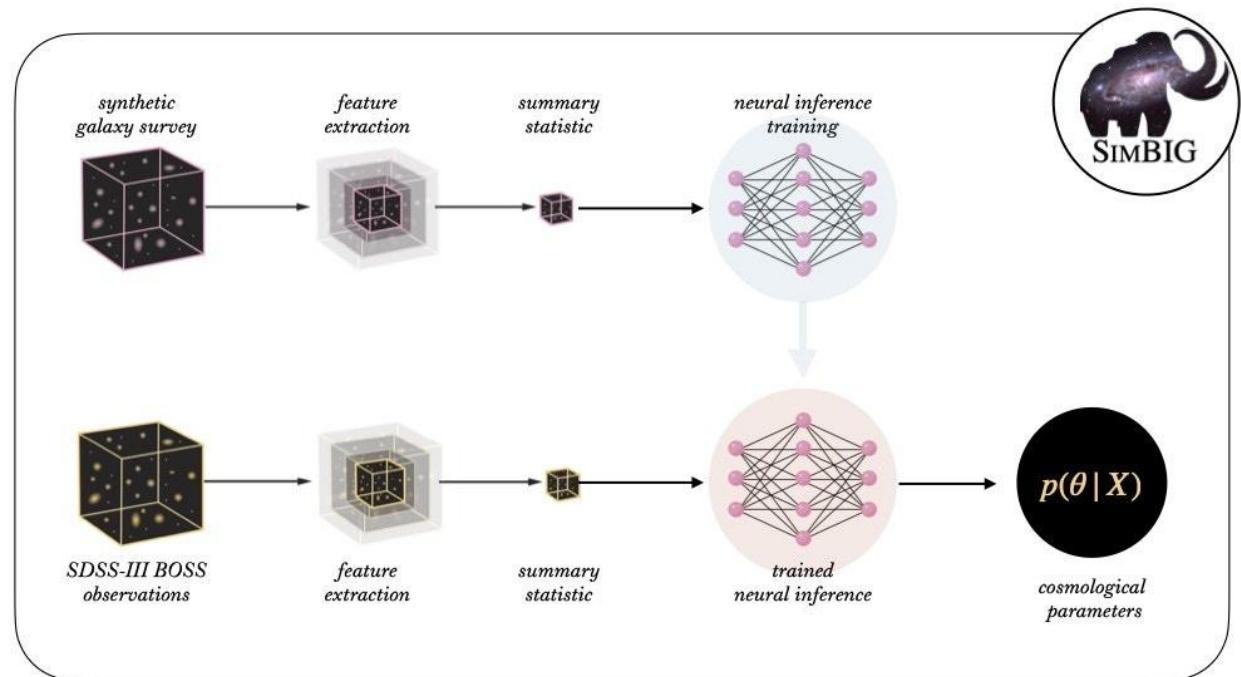
- ...



[Seo et al., 2024]

Presentation ideas: Other topics

- theory for neural operators
- uncertainty quantification
- simulation-based inference

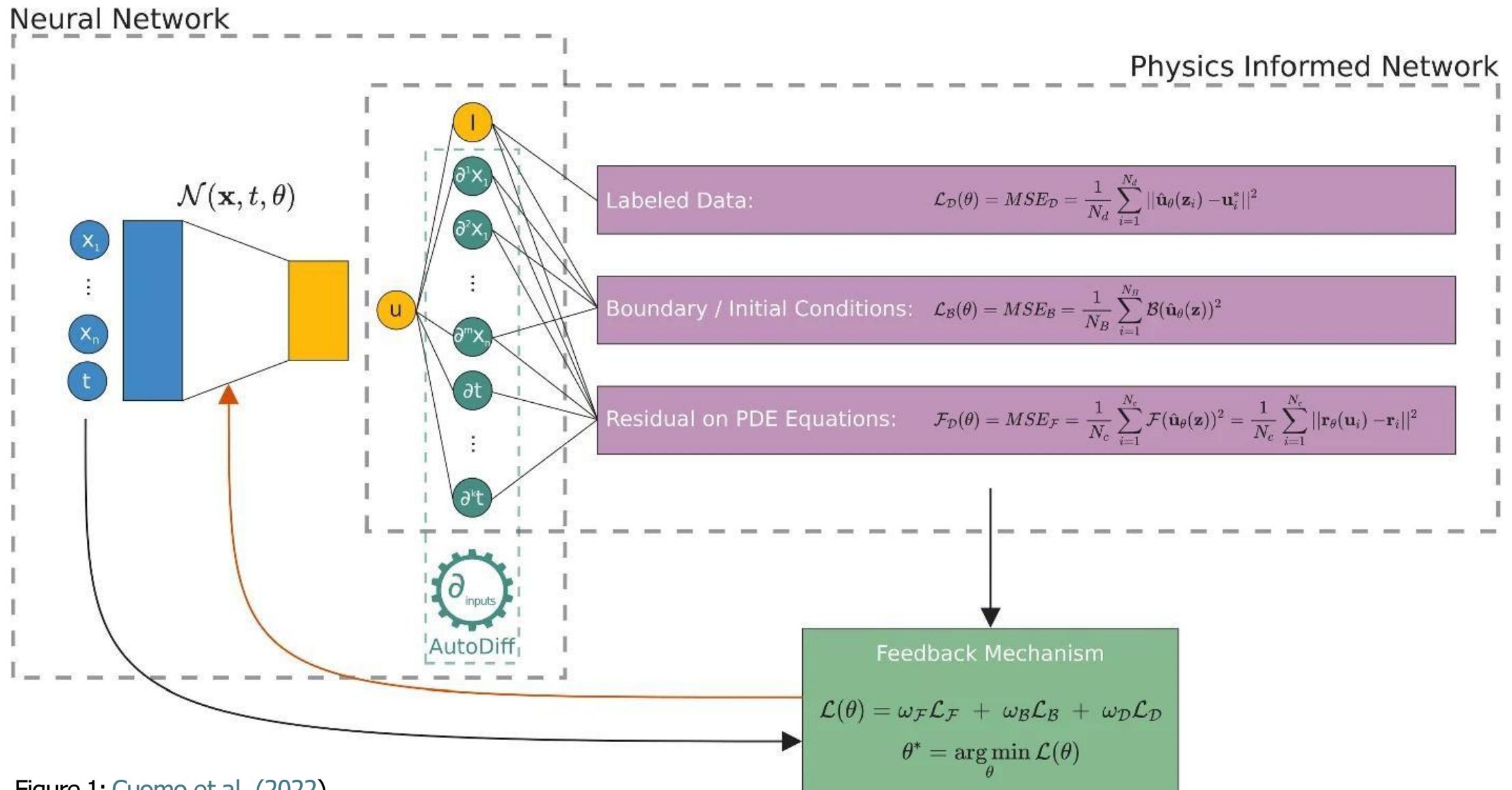


[Ho & Parker]

Outline

- Upcoming classes: guest lectures and student presentations
- **Introduction to PINNs**
- Challenges of PINNs
- Recap of neural PDE solvers

What Are PINNs? – Core Concept



How PINNs Are Trained

- Define NN: inputs (coords/params), outputs (field(s)).
- Form composite loss: $L = L_D + L_F + L_B$.
- Sample collocation points; compute residuals with AutoDiff.
- Optimize (Adam → L-BFGS); monitor residuals/BCs
- Enforce BCs softly (penalty) or hard (by design); validate.

Example: Pendulum - ML

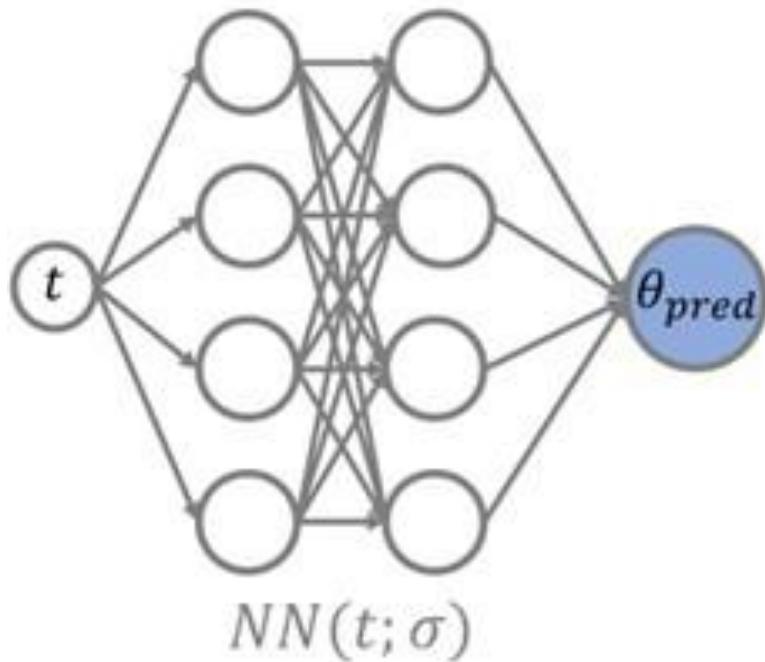
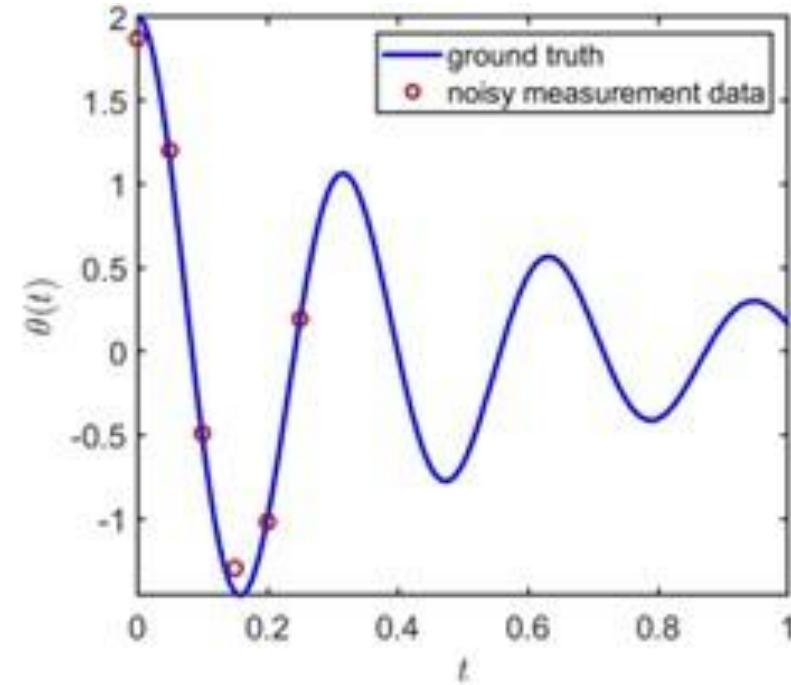


Figure 2: [MathWorks: PINNs](#)



$$\min_{\sigma} \frac{1}{N} \sum_{i=1}^N |\theta_{pred}(\mathbf{t}_i; \sigma) - \theta_{meas}(\mathbf{t}_i)|^2$$

Example: a damped pendulum - ML solution

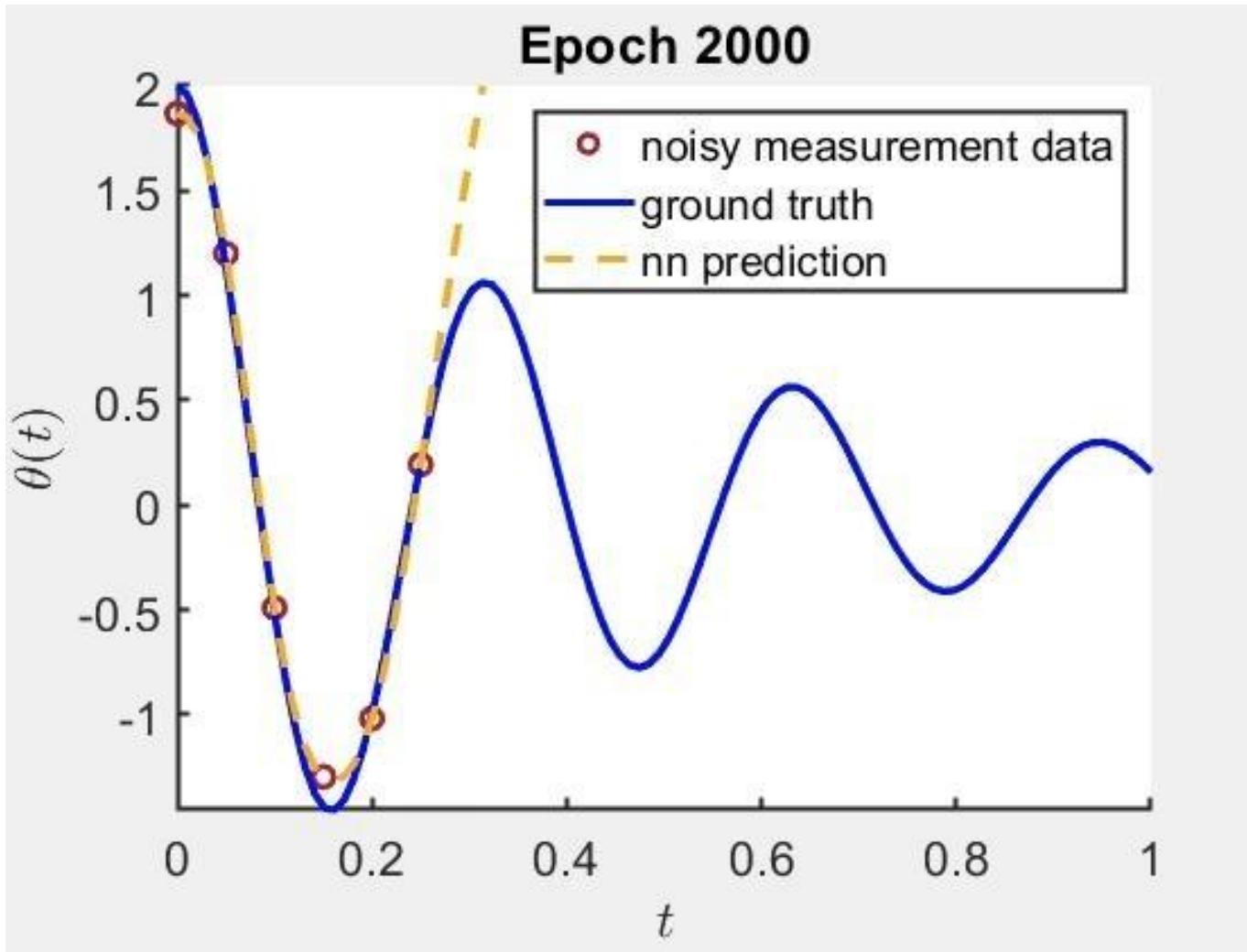
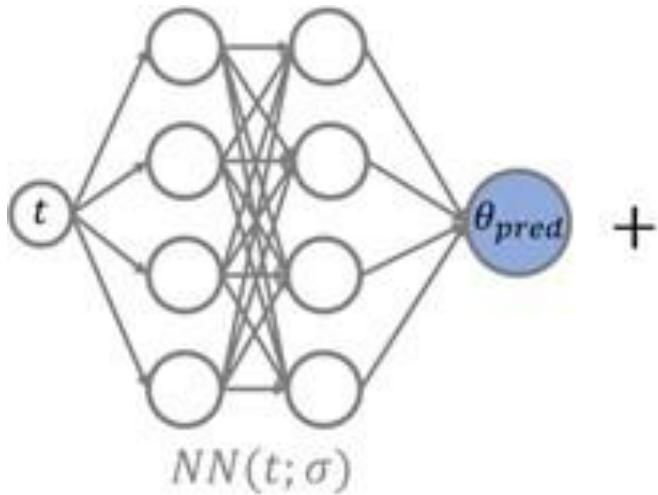
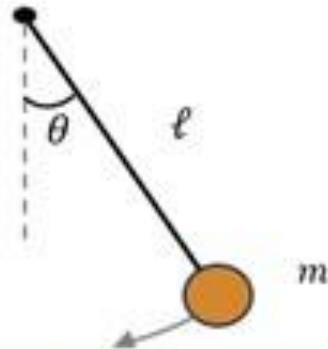
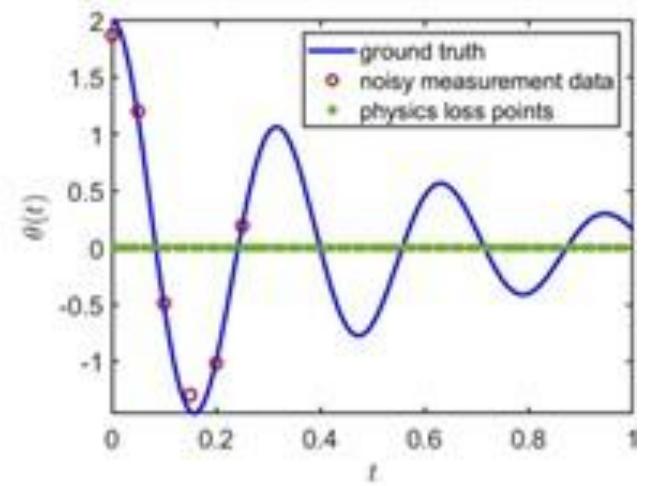


Figure 3: [MathWorks: PINNs](#)

Example: a damped pendulum - PINN



$$\theta''(t) + 2\beta\theta'(t) + \omega_0^2\theta(t) = 0$$



$$\min_{\sigma} \frac{1}{N} \sum_{i=1}^N |\theta_{pred}(t_i; \sigma) - \theta_{meas}(t_i)|^2$$

$$+ \frac{1}{M} \sum_{j=1}^M \left| \frac{\partial^2}{\partial t^2} \theta_{pred}(t_j; \sigma) + 2\beta \frac{\partial}{\partial t} \theta_{pred}(t_j; \sigma) + \omega_0^2 \theta_{pred}(t_j; \sigma) \right|^2$$

Figure 4: [MathWorks: PINNs](#)

Example: a damped pendulum - PINN solution

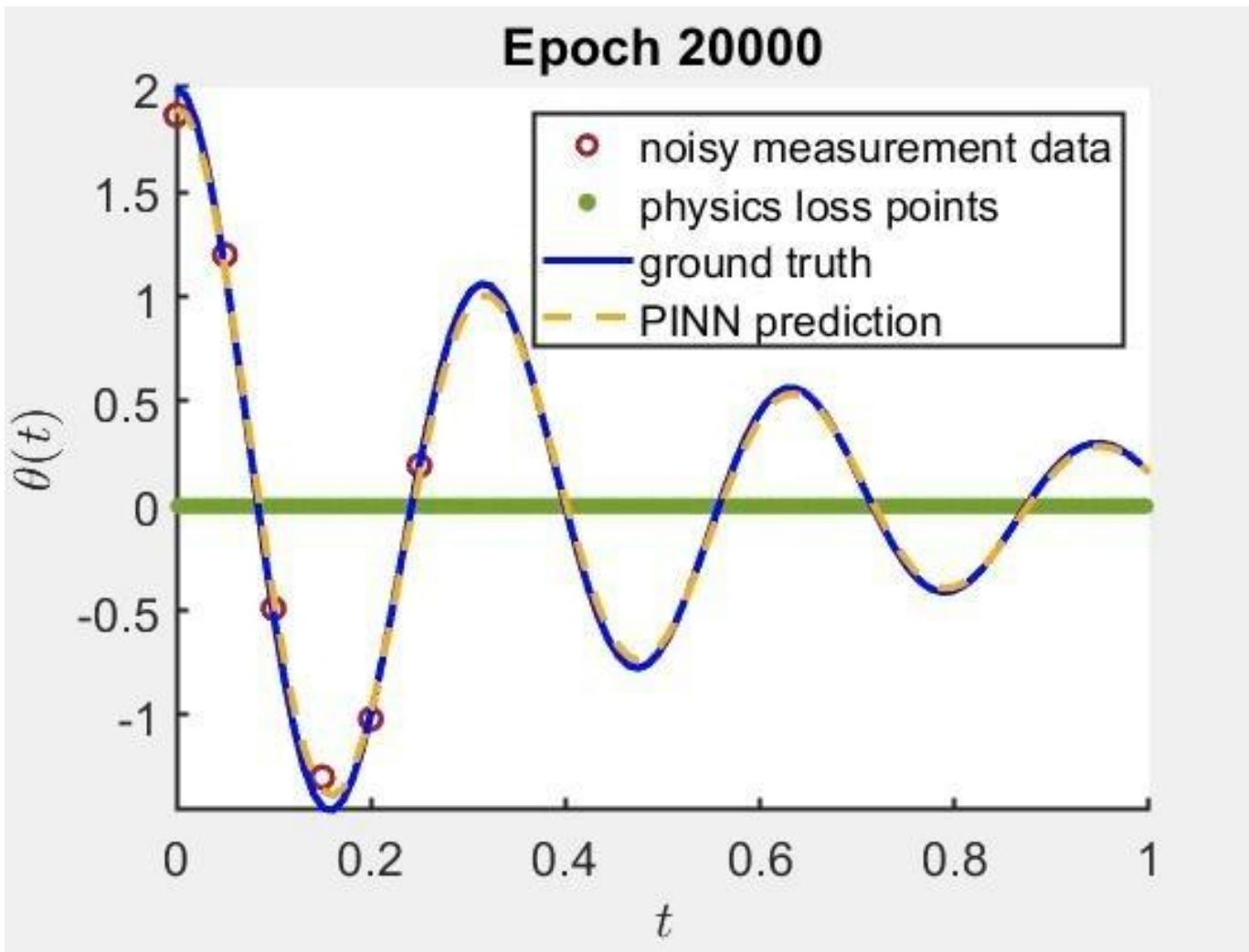


Figure 5: [MathWorks: PINNs](#)

Why PINNs? – Key Advantages

- Mesh-free and flexible; continuous solutions over domain.
- Physics-consistent; integrates sparse data.
- Unified forward and inverse framework.
- Often scales better in higher dimensions; substituting modeling.

Trade-off: ML vs. Numerical Methods vs. PINNs

	Purely Data-Driven Approaches	Traditional Numerical Methods	PINNs
Incorporate known physics	✗	✓	✓
Generalize well with limited or noisy training data	✗	✗	✓
Solve forward and inverse problems simultaneously	✓	✗	✓
Solve high-dimensional PDEs	✗	✗	✓
Enable fast “online” prediction	✓	✗	✓
Are mesh-free	✓	✗	✓
Have well-understood convergence theory	✗	✓	✗
Scale well to high-frequency and multiscale PDEs	✗	✓	✗

Figure 6: [MathWorks: PINNs](#)

Outline

- Upcoming classes: guest lectures and student presentations
- Introduction to PINNs
- Challenges of PINNs
- Recap of neural PDE solvers

Major challenges of PINNs

Optimization: actually training the PINN can be very difficult

- ad hoc / non-standardized training approaches
- convergence not guaranteed
- imbalance between losses (data / residual / BC) can lead to instability

Limited theory: underdeveloped convergence theory relative to classical methods

Higher-order derivatives needed to solve higher-order PDEs become expensive

Computational cost of calculating high-order derivatives

Difficulty expressing high-frequency, large-gradient, or multi-scale PDE solutions

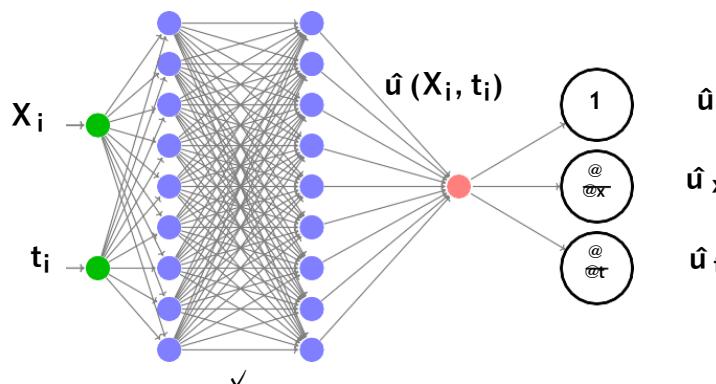
PINNs can fail to fit a simple convection problem

Problem formulation. We first consider a one-dimensional convection problem, a hyperbolic PDE which is commonly used to model transport phenomena:

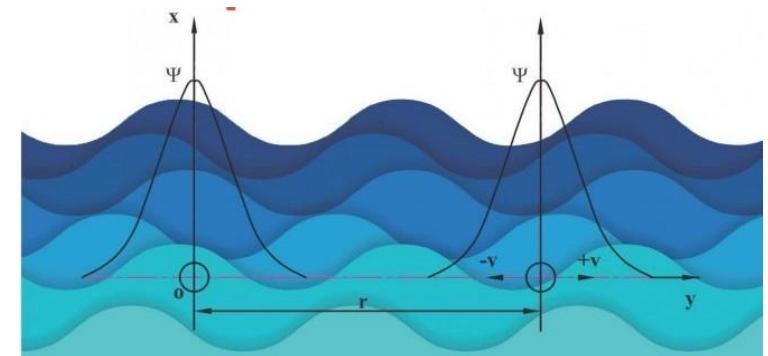
$$\begin{aligned}\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} &= 0, \quad x \in \Omega, t \in [0, T], \\ u(x, 0) &= h(x), \quad x \in \Omega.\end{aligned}$$

Here, β is the convection coefficient and $h(x)$ is the initial condition. For constant β and periodic boundary conditions, this problem has a simple analytical solution:

$$u_{\text{analytical}}(x, t) = F^{-1}(F(h(x))e^{-i\beta kt}),$$



$$\begin{aligned}\min L = \lambda_F & \left\| \hat{u}_t + \beta \hat{u}_x \right\|_2^2 \\ & + \left\| \hat{u}(x, 0) - \sin(x) \right\|_2^2 \\ & + \left\| \hat{u}(x = 2\pi) - \hat{u}(x = 0) \right\|_2^2\end{aligned}$$

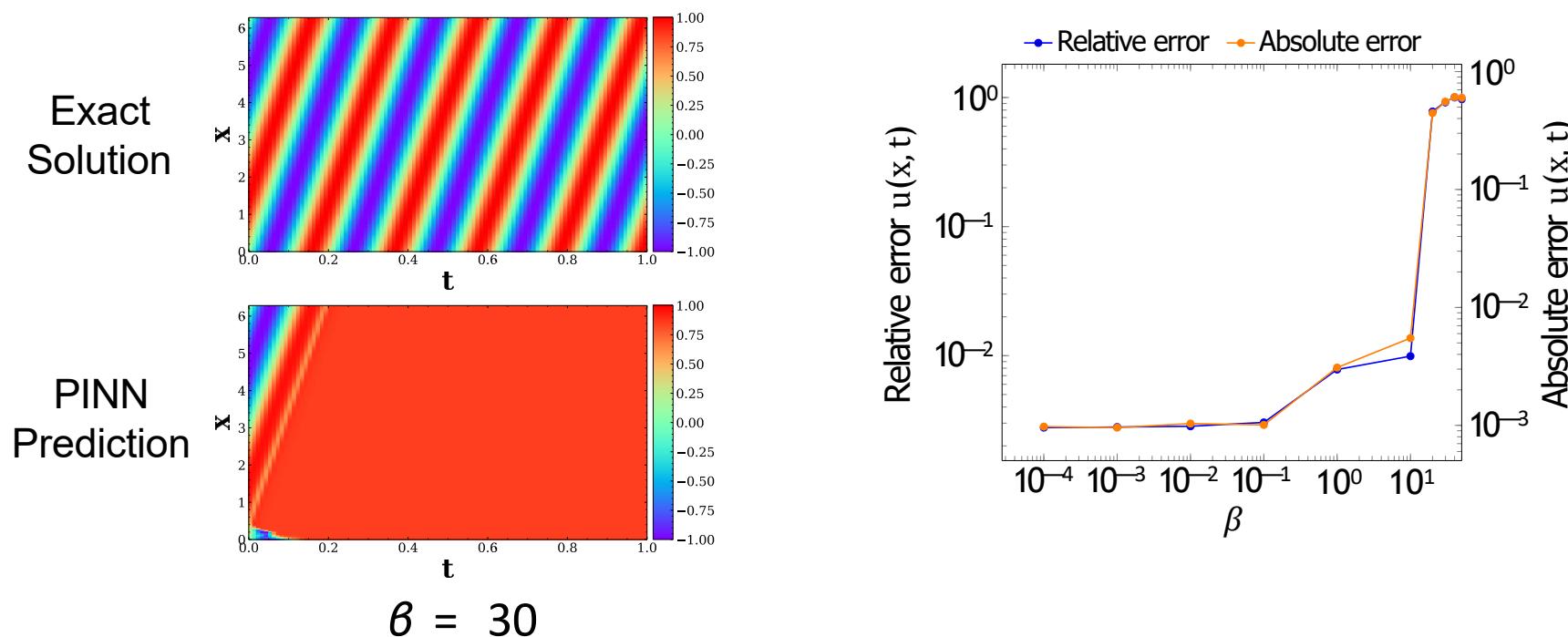


PDE Residual

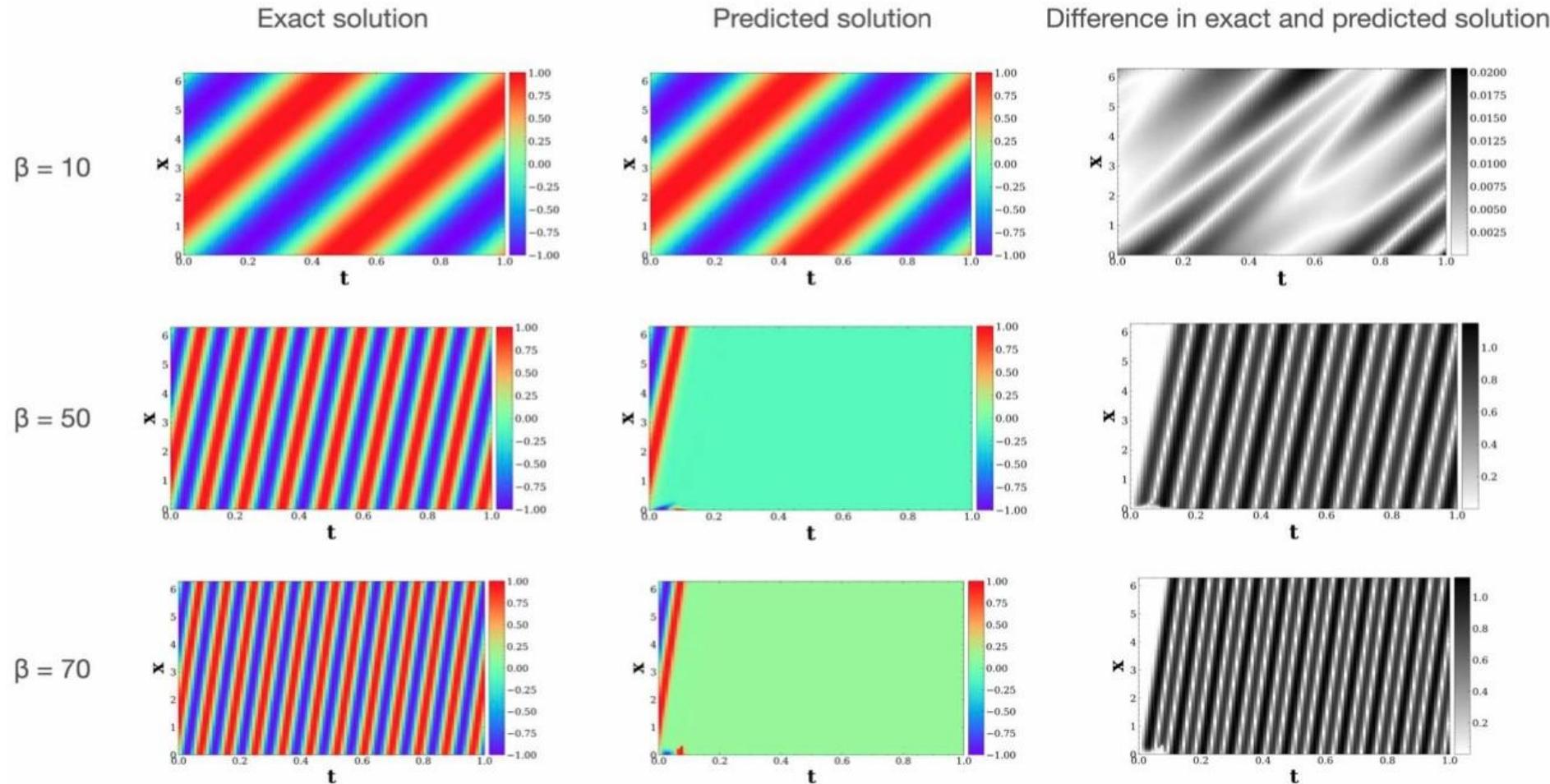
Initial Condition

Boundary Condition

PINNs can fail to fit a simple convection problem



PINNs can fail to fit a simple convection problem



PINNs can fail to fit a reaction equation

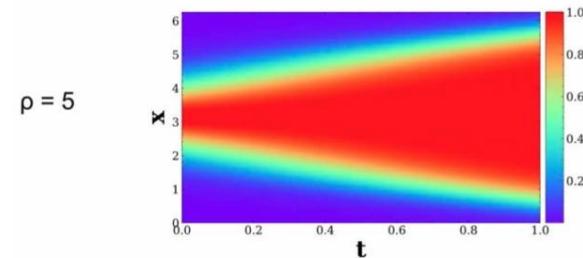
Learning reaction with PINNs

$$\frac{\partial u}{\partial t} - \rho u(1 - u) = 0, x \in \Omega, t \in [0, T],$$

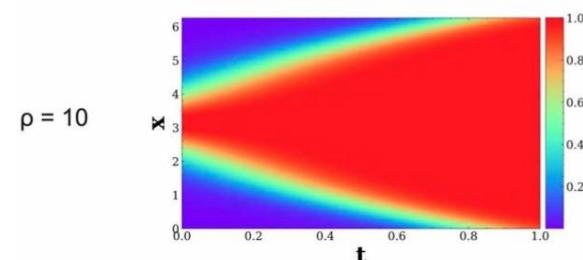
↓
reaction coefficient

$$u(x, 0) = h(x), x \in \Omega$$

Exact solution



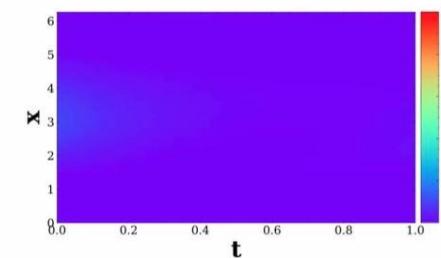
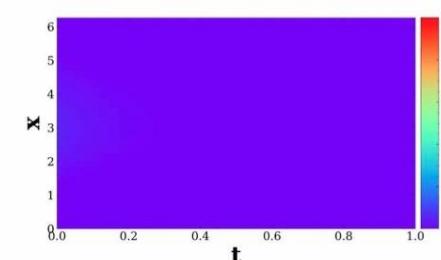
$\rho = 10$



Initial condition: $u(x, 0) = e^{-\frac{(x-\pi)^2}{2(\pi/4)^2}},$

Periodic boundary conditions: $u(0, t) = u(2\pi, t)$

Predicted solution



PINNs can fail to fit a reaction-diffusion equation

Learning reaction-diffusion with PINNs

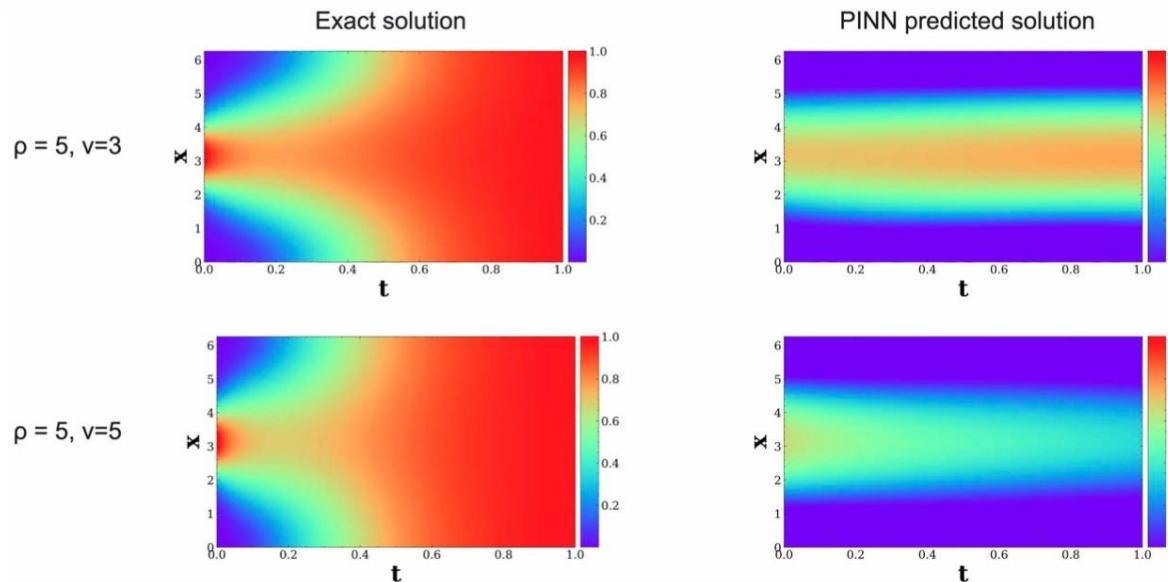
$$\frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} - \rho u(1-u) = 0, \quad x \in \Omega, \quad t \in (0, T],$$

↓ $u(x, 0) = h(x), \quad x \in \Omega$

diffusion coefficient
reaction coefficient
coefficient

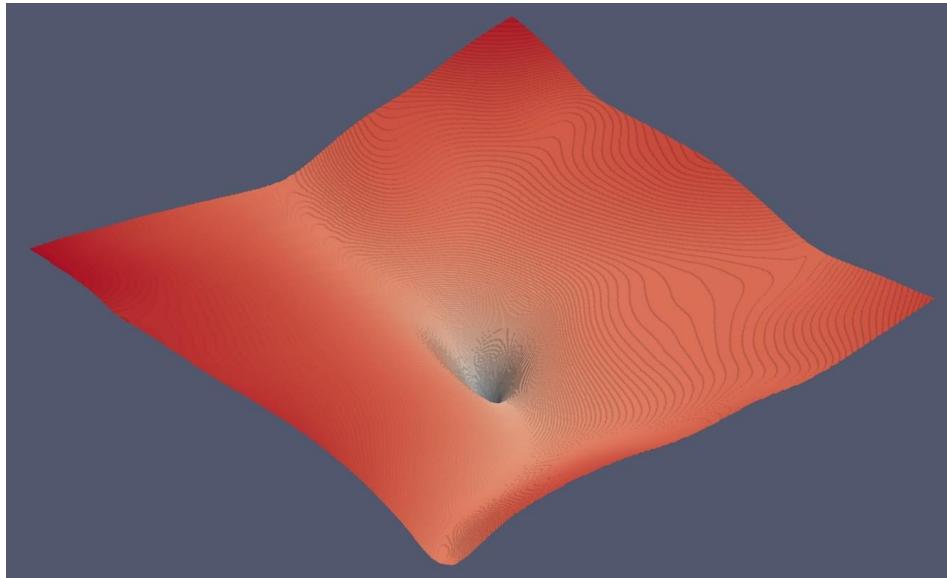
Initial condition: $u(x, 0) = e^{-\frac{(x-\pi)^2}{2(\pi/4)^2}},$

Periodic boundary conditions: $u(0, t) = u(2\pi, t)$

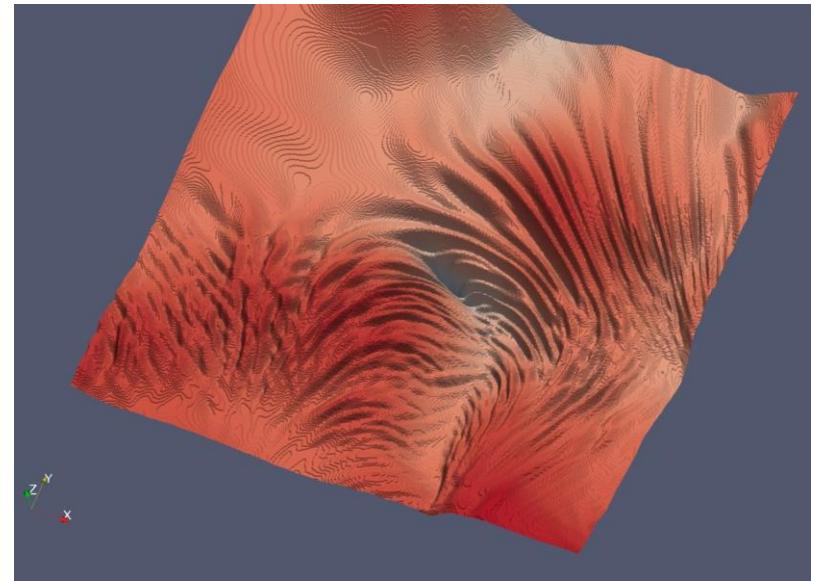


Optimization challenges with PINNs

$$\text{data loss : } L_u = \|\hat{u} - u\|_2^2$$



Without Physics Loss



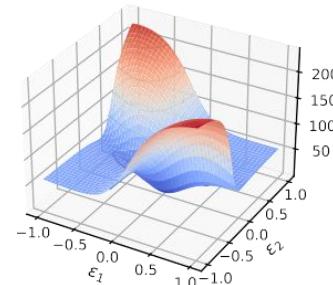
With Physics Loss

Roman Amici, Mike Kirby

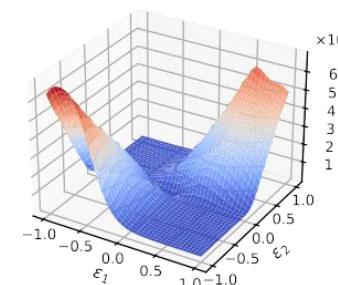
Characterizing the issue

$$\begin{aligned}\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} &= 0, \quad x \in \Omega, t \in [0, T], \\ u(x, 0) &= h(x), \quad x \in \Omega.\end{aligned}$$

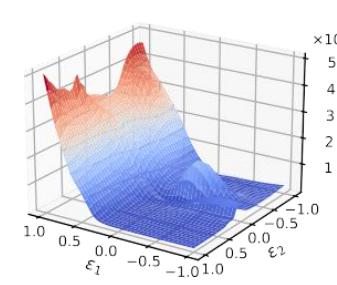
What does the convection loss landscape look like for different β ?



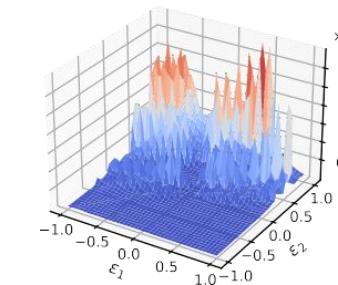
(a) $\beta = 1.0$



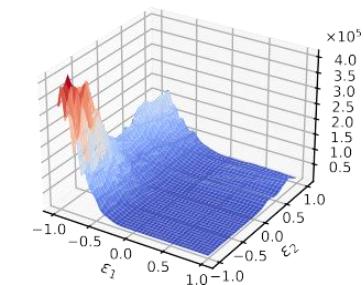
(b) $\beta = 10.0$



(c) $\beta = 20.0$



(d) $\beta = 30.0$



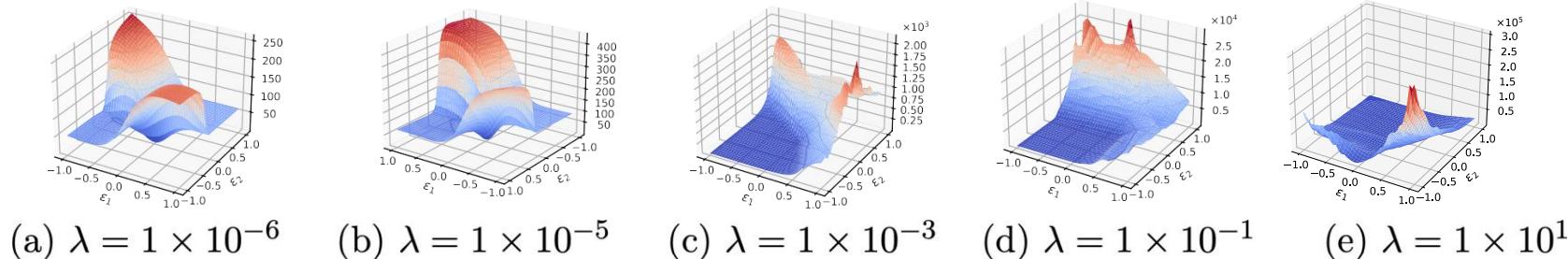
(e) $\beta = 40.0$

β	1	10	20	30	40
Relative error	7.84×10^{-3}	1.08×10^{-2}	7.50×10^{-1}	8.97×10^{-1}	9.61×10^{-1}
Absolute error	3.17×10^{-3}	6.03×10^{-3}	4.32×10^{-1}	5.42×10^{-1}	5.82×10^{-1}

Characterizing the issue

$$\begin{aligned} \frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} &= 0, \quad x \in \Omega, t \in [0, T], \\ u(x, 0) &= h(x), \quad x \in \Omega. \end{aligned}$$

As we reduce weight on the residual loss the optimization gets easier but the PINN's solution has ~100% error



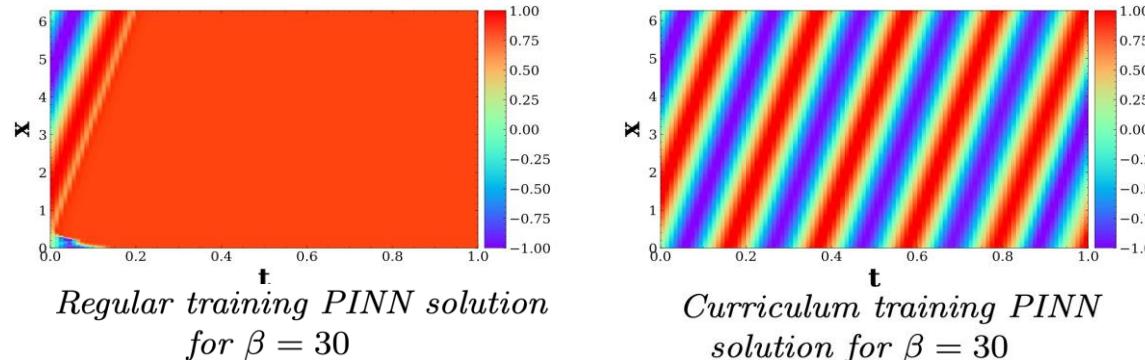
λ	1×10^{-6}	1×10^{-5}	1×10^{-3}	1×10^{-1}	1×10^1
Relative error	1.69	1.65	1.00	1.08	0.982
Absolute error	0.987	0.987	0.623	0.647	0.595

$$\begin{aligned} \min_{\theta} \mathcal{L} &= \lambda_{\mathcal{F}} \|\hat{u}_t + \beta \hat{u}_x\|_2^2 && \text{PDE Residual} \\ &+ \|\hat{u}(x, 0) - \sin(x)\|_2^2 && \text{Initial Condition} \\ &+ \|\hat{u}(x = 2\pi) - \hat{u}(x = 0)\|_2^2 && \text{Boundary Condition} \end{aligned}$$

Candidate solution: Curriculum learning

$$\begin{aligned}\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} &= 0, \quad x \in \Omega, t \in [0, T], \\ u(x, 0) &= h(x), \quad x \in \Omega.\end{aligned}$$

Gradually increase the β starting from an easier-to-fit setting



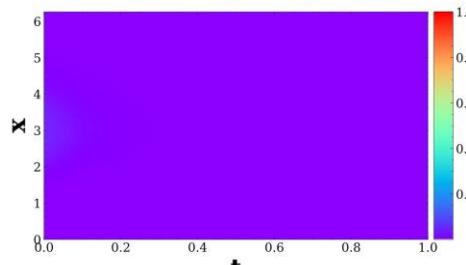
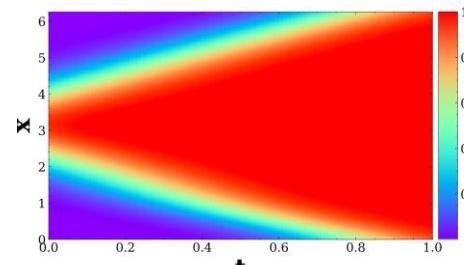
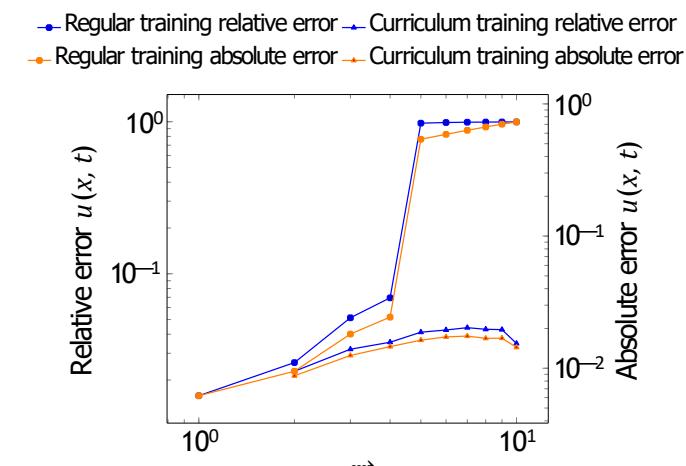
		Regular PINN	Curriculum training
1D convection: $\beta = 20$	Relative error	7.50×10^{-1}	9.84×10^{-3}
	Absolute error	4.32×10^{-1}	5.42×10^{-3}
1D convection: $\beta = 30$	Relative error	8.97×10^{-1}	2.02×10^{-2}
	Absolute error	5.42×10^{-1}	1.10×10^{-2}
1D convection: $\beta = 40$	Relative error	9.61×10^{-1}	5.33×10^{-2}
	Absolute error	5.82×10^{-1}	2.69×10^{-2}

Candidate solution: Curriculum learning

Also works for the reaction equation:

$$\frac{\partial u}{\partial t} - \rho u(1 - u) = 0, \quad x \in \Omega, \quad t \in (0, T],$$

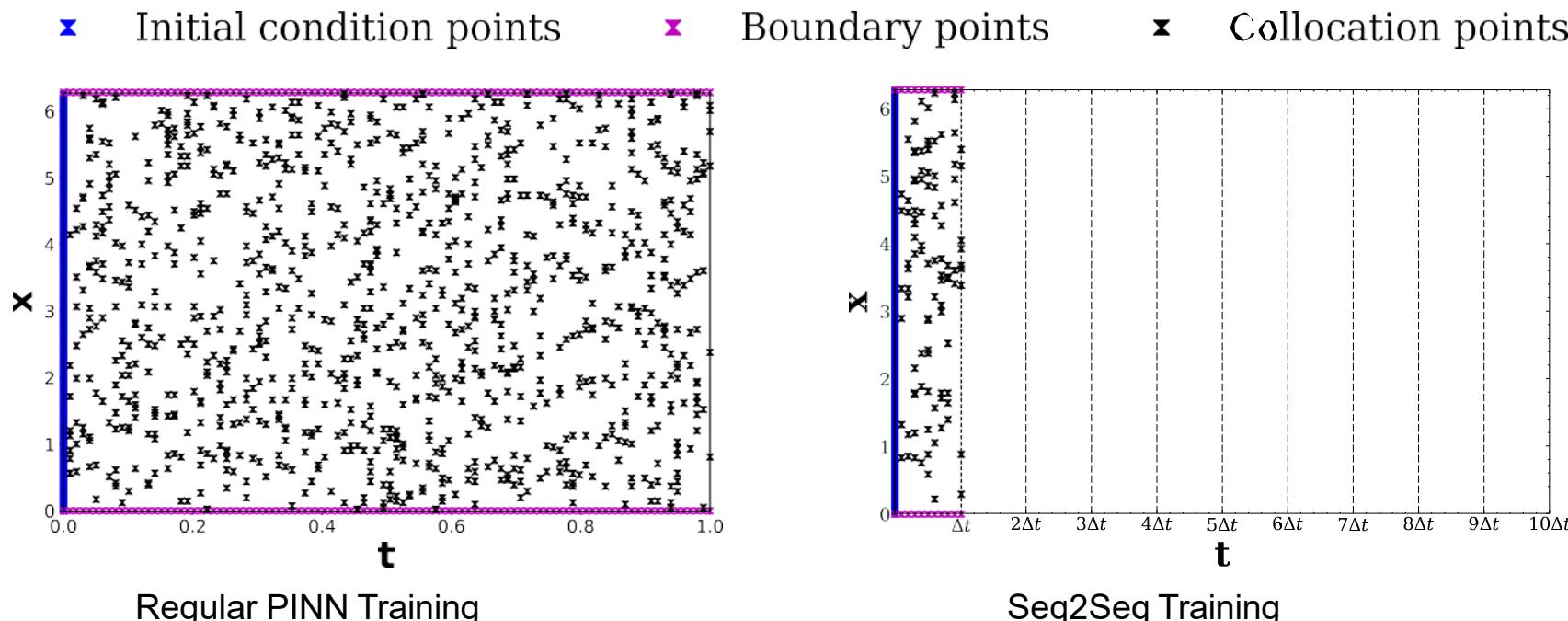
$$u(x, 0) = h(x), \quad x \in \Omega.$$



Candidate solution: Fit one step at a time

PINNs try to fit a function over all space and time simultaneously

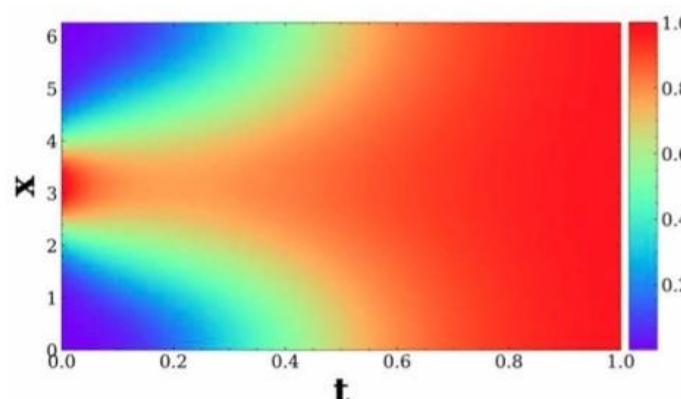
This may be too hard, but it might be easier to only fit one timestep at a time and take timesteps (like a traditional solver...)



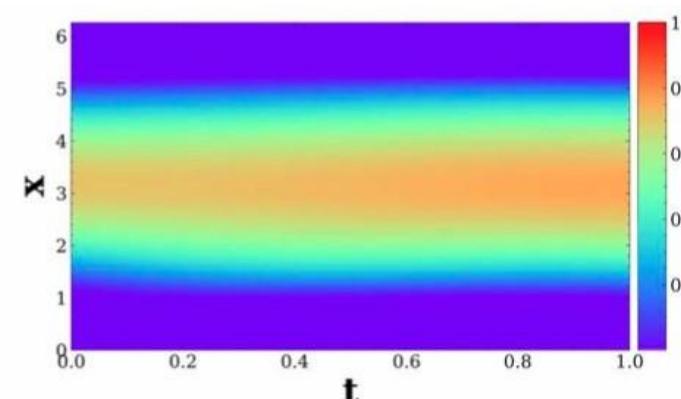
Candidate solution: Fit one step at a time

Works for reaction-diffusion

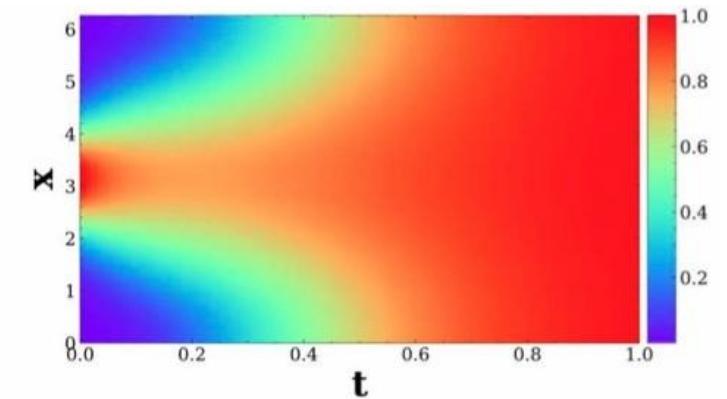
$$\begin{aligned} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} - \rho u(1-u) &= 0, \quad x \in \Omega, \quad t \in (0, T], \\ u(x, 0) &= h(x), \quad x \in \Omega. \end{aligned}$$



Exact solution for $\rho = 5, v=3$



Regular PINN solution for $\rho = 5, v=3$



seq2seq PINN solution for $\rho = 5, v=3$

Outline

- Upcoming classes: guest lectures and student presentations
- Introduction to PINNs
- Challenges of PINNs
- **Recap of neural PDE solvers**

Neural PDE solver methods: Neural operators

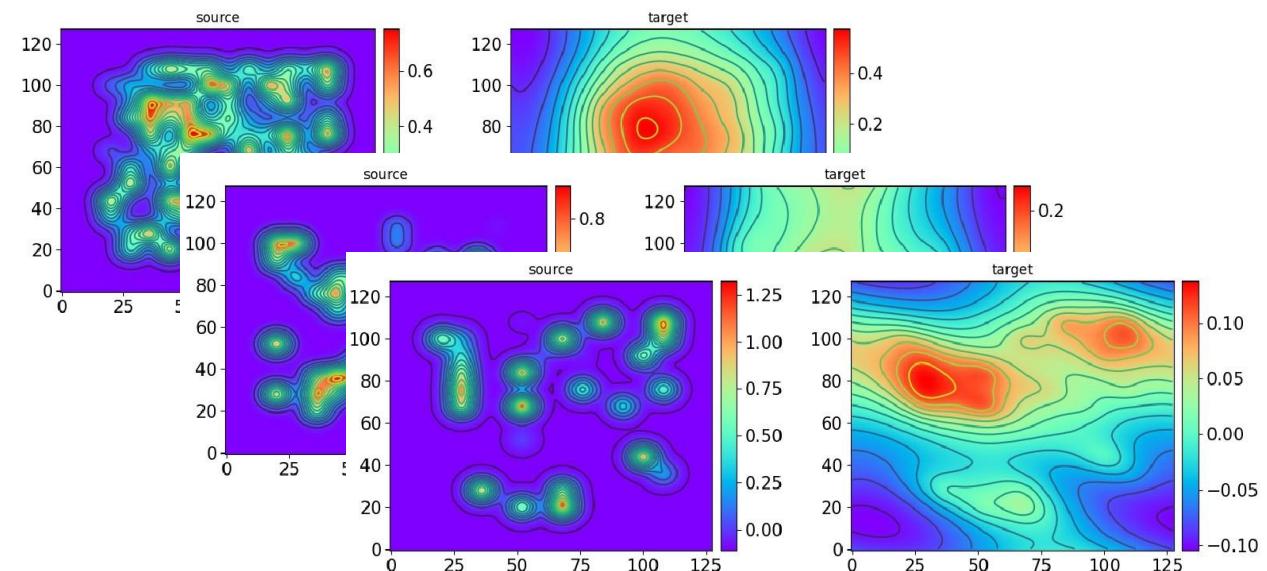
Generate and train on a large amount of data

Pros:

- can learn the operator and apply it without specific constraints on mesh/discretization (with enough data)
- train once -> apply to different configurations (with enough data)
- does not need explicit knowledge of the underlying physics
- easy-to-implement
- very fast

Cons:

- often needs a lot of data
- no way to penalize the method



Neural PDE solver methods: Hard constraints

Enforce physics as hard constraints in the architecture or optimization

Pros:

- model will always obey the physics

Cons:

- very difficult to constrain the architecture to obey the laws
- constrained approaches are often really difficult to work with

Neural PDE solver methods: PINNs

Optimize PDE residual, experimental data, and constraints as penalties

Pros

- can vary the strictness of enforcing various constraints
- relatively easy to formulate and compute via autodiff

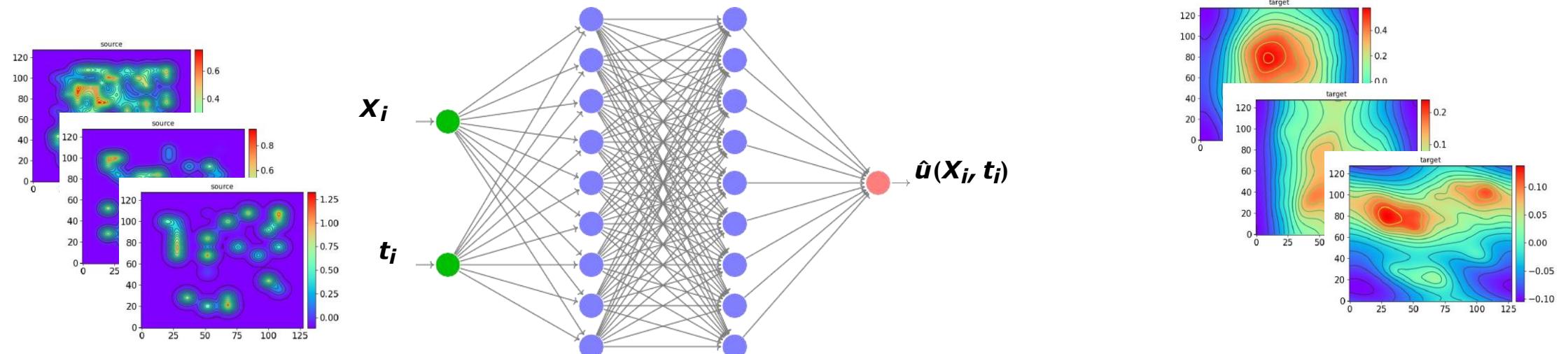
Cons:

- adding the soft constraint often makes the loss landscape very difficult
- needs to be retrained if PDE configuration is changed

Neural PDE solver methods: PINNs + neural operators

PINO method [Li et al., 2021]

- add empirical data and physics constraints as soft penalties to loss
- trades-off pros and cons of PINNs and neural operators...



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Marek Cieślar and Amir Gholami.