CS839: Al for Scientific Computing
Physics-Informed Neural Networks

Misha Khodak

University of Wisconsin-Madison
5 February 2026



Outline

* Upcoming classes: guest lectures and student presentations
* Introduction to PINNs

* Challenges of PINNs

* Recap of neural PDE solvers



Outline

* Upcoming classes: guest lectures and student presentations



Upcoming classes: Research lectures

* 10 Feb — Mariel Pettee: Invisible Cities: Imagining the next era of
Al-enabled fundamental physics research [abstract online]

* 17 Feb — Qin Li: control in kinetic equations

* 19 Feb - Misha Khodak: learned preconditioners

* 24 Feb - Rogerio Jorge: ML for plasma physics

* 26 Feb — Xuhui Huang + Zige Liu: ML for computational chemistry

* 5 March — Wenxiao Pan: data-driven simulation of complex fluids



Upcoming classes: Participation

* policy outlined on website
* roughly: submit two question during each of half the lectures
* encouraged but not required to ask questions during the talk
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Grade

Peopl Quiz Type Graded Quiz

- Points 2

Pages ? . .
Assignment Group  Assignments

Files @ Shuffle Answers No

Syllabus Time Limit  No Time Limit

Outcomes & Multiple Attempts No

View Responses

One Question at a Time

Modules & Due For Available from Until

Collaborations Feb 10 at 2:15pm Everyone Feb 10 at 1pm Feb 10 at 2:15pm



Upcoming classes: Student presentations

* first presentation March 3
» 2-3 people per presentation

* will send out sign-up sheet soon, but start thinking about what you
might like to present

* standard approaches:
* deep dive into a single paper
* overview of an area via several papers



Presentation ideas: Reduced-order models

* dynamic mode decomposition
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[Murata-Fukami-Fukagata, 2019]



Presentation ideas: Data-efficiency

* active learning

e foundation models
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Presentation ideas: learning-augmented
(scientific computing) algorithms

* neural preconditioners

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)
+ neural multigrid 4 f""’é’@@@@agﬂf’f oo it

[Amos et al., 2022]

* meta-learned optimizers

* meta-learned optimal transport



Presentation ideas: Advanced architectures

* neural ODEs for PDEs

e GNNSs for PDEs

* Transformers for PDEs

* geometry-adaptive architectures [Gladstone etal., 2024]

* hybrid (neural and classical) solvers



Presentation ideas: Applications

* molecular dynamics
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Presentation ideas: Other topics

feature summary neural inference
extraction statistic training
A SIMBIG

* theory for neural operators
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 Introduction to PINNs



What Are PINNs? — Core Concept
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Figure 1: Cuomo et al. (2022)




How PINNSs Are Trained

Define NN: inputs (coords/params), outputs (field(s)).

 Form composite loss: L =Lp+Lg + Lg.

e Sample collocation points; compute residuals with AutoDiff.

e Optimize (Adam = L-BFGS); monitor residuals/BCs

* Enforce BCs softly (penalty) or hard (by design); validate.



Example: Pendulum - ML
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Figure 2: MathWorks: PINNs



https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html

Example: a damped pendulum - ML solution

Epoch 2000
“A
\ © noisy measurement data
1.5t ——ground truth
1 nn prediction
— 057
S of |
1
-05F %
{RY
0 0.2 0.4 0.6 0.8 1

Figure 3: MathWorks: PINNs



https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html

Example: a damped pendulum - PINN
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Figure 4: MathWorks: PINNs



https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html

Example: a damped pendulum - PINN solution

Epoch 20000

2
<\ © noisy measurement data
151\ * physics loss points
L ——ground truth
T PINN prediction

Figure 5: MathWorks: PINNs



https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html

Why PINNs? — Key Advantages

Mesh-free and flexible; continuous solutions over domain.

Physics-consistent; integrates sparse data.

Unified forward and inverse framework.

Often scales better in higher dimensions; substituting modeling.



Trade-off: ML vs. Numerical Methods vs. PINNs

Purely Data-Driven Approaches Traditional Numerical PINNs
Methods

Incorporate known physics b 4 v v
Generalize well with limited or noisy b 4 b 4 v
training data
Solve forward and inverse problems v X v
simultaneously
Solve high-dimensional PDEs X b 4 v
Enable fast “online” prediction v X v
Are mesh-free v p 4 v
Have well-understood convergence b 4 v X
theory
Scale well to high-frequency and b 4 v X

multiscale PDEs

Figure 6: MathWorks: PINNs



https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
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* Challenges of PINNs



Major challenges of PINNs

Optimization: actually training the PINN can be very difficult
e ad hoc/ non-standardized training approaches
e convergence not guaranteed

* imbalance between losses (data / residual / BC) can lead to instability

Limited theory: underdeveloped convergence theory relative to classical methods

Higher-order derivatives needed to solve higher-order PDEs become expensive
Computational cost of calculating high-order derivatives

Difficulty expressing high-frequency, large-gradient, or multi-scale PDE solutions



PINNs can fail to fit a simple convection problem

Problem formulation. We first consider a one-dimensional convection problem, a hyperbolic PDE
which is commonly used to model transport phenomena:
8
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



PINNs can fail to fit a simple convection problem
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



PINNs can fail to fit a simple convection problem

Exact solution Predicted solution Difference in exact and predicted solution
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



PINNs can fail to fit a reaction equation

Learning reaction with PINNs

_ (z=m)2
% —pu(l—u) =0,z € Q,t € [0,T], Initial condition: ~ u(x,0) = e 2(/H? |
1 Periodic boundary conditions: 'U,(O, t) = ’U,(27T, t)

u(z,0) = h(z),z € Q

reaction coefficient

Exact solution Predicted solution

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



PINNs can fail to fit a reaction-diffusion equation

Learning reaction-diffusion with PINNs

ou _fe—m)?
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Optimization challenges with PINNs

data loss : L, = || — ull5

Without Physics Loss With Physics Loss

Roman Amici, Mike Kirby



Characterizing the issue M50 sen teT)

u(z,0) = h(zx), x €.

What does the convection loss landscape look like for different 57?

(b) B =10.0 (c) B=20.0 (d) 8= 30.0 (e) B =40.0
B 1 10 20 30 40
Relative error | 7.84 x 1073 | 1.08 x 1072 | 7.50 x 10~! | 8.97 x 107! | 9.61 x 1071
Absolute error | 3.17 x 1072 | 6.03 x 1072 | 4.32 x 107! | 5.42 x 107! | 5.82 x 10!

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Characterizing the issue M p2 o0, aen e,
u(x,0) = h(z), ze€.

As we reduce weight on the residual loss the optimization gets easier
but the PINN'’s solution has ~100% error

(@) A=1%10% B)A=1%10° f(c)A=1%10"2 (dr=1%10"1 (e)A=1x10

A | 1x107% | 1x107° | 1x1073 | 1x 107! | 1 x 10! |

Relative error | 1.69 | 165 | 100 | 1.08 | 0.982 |
Absolute error | 0987 | 0.987 | 0.623 | 0.647 | 0.595 |

min £ = Azl + Bia |

+la(z,0) — sin(z)|3
+a(z = 2m) — a(z = 0)|3

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Candidate solution: ou o

o — = Q) T
8t+ O 0, ze€Q, tel0,T],

Curriculum learning u(@,0) = hiz), @€ Q.
Gradually increase the S starting from an easier-to-fit setting
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Regular tmz'n;:ng PINN solution Curriculum l;‘,7"(1,z'm'ng PINN
for B =30 solution for B = 30
Regular PINN | Curriculum training
1D convection: 8 = 20 | Relative error 7.50 x 1071 9.84 x 103
Absolute error | 4.32 x 10! 5.42 X 103
1D convection: 8 = 30 | Relative error 8.97 x 1071 2.02 X 102
Absolute error | 5.42 x 10! 1.10 X 10—%
1D convection: 8 =40 | Relative error 9.61 x 101 5.33 x 102
Absolute error | 5.82 x 101 2.69 x 104

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Candidate solution:
Curriculum learning

Also works for the reaction equation:

- Regular training relative error - Curriculum training relative error
—» Regular training absolute error .- Curriculum training absolute error
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Candidate solution: Fit one step at a time

PINNSs try to fit a function over all space and time simultaneously

This may be too hard, but it might be easier to only fit one timestep at a time
and take timesteps (like a traditional solver...)
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



Candidate solution: Fit one step at a time

Works for reaction-diffusion

2
%_Vﬂ_pu(l—’u,)zo, il?EQ,tE(OaT]a

ot Ox?
u(xz,0) = h(x), = €.

0.4 0.6 0.8

t

Exact solution for p = 5, v=3 Regular PINN solution for p = 5, v=3 seg2seq PINN solution for p = 5, v=3

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.
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Neural PDE solver methods: Neural operators

Generate and train on a large amount of data

Pros:

 can learn the operator and apply it without specific constraints on
mesh/discretization (with enough data)

* train once -> apply to different configurations (with enough data)

» does not need explicit knowledge of the underlying physics

» easy-to-implement

* very fast

target
120

() 0.6 N b

v 100

7 N
5 0.4 80 ( A\ .
/

source target

Cons:
e often needs a lot of data
* no way to penalize the method

0
25 50 75 100 125 25 50 75 100 125



Neural PDE solver methods: Hard constraints

Enforce physics as hard constraints in the architecture or optimization

Pros:

« model will always obey the physics

Cons:
* very difficult to constrain the architecture to obey the laws

« constrained approaches are often really difficult to work with



Neural PDE solver methods: PINNs

Optimize PDE residual, experimental data, and constraints as penalties

Pros
« can vary the strictness of enforcing various constraints

* relatively easy to formulate and compute via autodiff

Cons:
» adding the soft constraint often makes the loss landscape very difficult

* needs to be retrained if PDE configuration is changed



Neural PDE solver methods: PINNs + neural operators

PINO method [Li et al., 2021]
« add empirical data and physics constraints as soft penalties to loss

 trades-off pros and cons of PINNs and neural operators...

N\ // &, ;‘%@:‘:
» 'é.’ )\“s“
/ N




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Marek Cieslar
and Amir Gholami.
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