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Upcoming classes: Research lectures

• 10 Feb – Mariel Pettee: Invisible Cities: Imagining the next era of 
AI-enabled fundamental physics research [abstract online]

• 17 Feb – Qin Li: control in kinetic equations
• 19 Feb – Misha Khodak: learned preconditioners
• 24 Feb – Rogerio Jorge: ML for plasma physics
• 26 Feb – Xuhui Huang + Zige Liu: ML for computational chemistry
• 5 March – Wenxiao Pan: data-driven simulation of complex fluids



Upcoming classes: Participation

• policy outlined on website
• roughly: submit two question during each of half the lectures
• encouraged but not required to ask questions during the talk



Upcoming classes: Student presentations

• first presentation March 3rd

• 2-3 people per presentation

• will send out sign-up sheet soon, but start thinking about what you 
might like to present

• standard approaches:
• deep dive into a single paper
• overview of an area via several papers



Presentation ideas: Reduced-order models

• dynamic mode decomposition

• closure modeling

[Murata-Fukami-Fukagata, 2019]



Presentation ideas: Data-efficiency

• active learning

• foundation models

[Musekamp et al., 2025]



Presentation ideas: learning-augmented 
(scientific computing) algorithms

• neural preconditioners

• neural multigrid

• meta-learned optimizers

• meta-learned optimal transport

[Amos et al., 2022]



Presentation ideas: Advanced architectures

• neural ODEs for PDEs

• GNNs for PDEs

• Transformers for PDEs

• geometry-adaptive architectures

• hybrid (neural and classical) solvers

[Gladstone et al., 2024]



Presentation ideas: Applications

• molecular dynamics

• drug discovery

• materials science

• plasma control

• …
[Seo et al., 2024]



Presentation ideas: Other topics

• theory for neural operators

• uncertainty quantification

• simulation-based inference

[Ho & Parker]
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What Are PINNs? – Core Concept

Figure 1: Cuomo et al. (2022)



How PINNs Are Trained

• Define NN: inputs (coords/params), outputs (field(s)).

• Form composite loss: L = LD + LF + LB.

• Sample collocation points; compute residuals with AutoDiff.

• Optimize (Adam → L-BFGS); monitor residuals/BCs

• Enforce BCs softly (penalty) or hard (by design); validate.



Example: Pendulum - ML

Figure 2: MathWorks: PINNs

https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html


Example: a damped pendulum - ML solution

Figure 3: MathWorks: PINNs

https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html


Example: a damped pendulum - PINN

Figure 4: MathWorks: PINNs

https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html


Example: a damped pendulum - PINN solution

Figure 5: MathWorks: PINNs

https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html


Why PINNs? – Key Advantages

• Mesh-free and flexible; continuous solutions over domain.

• Physics-consistent; integrates sparse data.

• Unified forward and inverse framework.

• Often scales better in higher dimensions; substituting modeling.

October 15, 2025 20/ 29



Trade-off: ML vs. Numerical Methods vs. PINNs

Figure 6: MathWorks: PINNs

https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
https://uk.mathworks.com/discovery/physics-informed-neural-networks.html
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Optimization: actually training the PINN can be very difficult

• ad hoc / non-standardized training approaches 

• convergence not guaranteed

• imbalance between losses (data / residual / BC) can lead to instability

Limited theory: underdeveloped convergence theory relative to classical methods

Higher-order derivatives needed to solve higher-order PDEs become expensive

Computational cost of calculating high-order derivatives

Difficulty expressing high-frequency, large-gradient, or multi-scale PDE solutions

Major challenges of PINNs



Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.
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PINNs can fail to fit a simple convection problem 
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Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.

PINNs can fail to fit a reaction equation



Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.

PINNs can fail to fit a reaction-diffusion equation



Without Physics Loss With Physics Loss

data loss : 𝐿𝑢 = ො𝑢 − 𝑢 2
2

Roman Amici, Mike Kirby

Optimization challenges with PINNs



What does the convection loss landscape look like for different 𝛽?

Characterizing the issue

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



As we reduce weight on the residual loss the optimization gets easier 

but the PINN’s solution has ~100% error

Characterizing the issue

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



Candidate solution: 

Curriculum learning

Gradually increase the 𝛽 starting from an easier-to-fit setting

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



Candidate solution: 

Curriculum learning

Also works for the reaction equation:
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Candidate solution: Fit one step at a time

Regular PINN Training Seq2Seq Training

PINNs try to fit a function over all space and time simultaneously

This may be too hard, but it might be easier to only fit one timestep at a time 

and take timesteps (like a traditional solver…)

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



Candidate solution: Fit one step at a time

Works for reaction-diffusion

Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.
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Neural PDE solver methods: Neural operators

Generate and train on a large amount of data

Pros:

• can learn the operator and apply it without specific constraints on 

mesh/discretization (with enough data)

• train once -> apply to different configurations (with enough data)

• does not need explicit knowledge of the underlying physics

• easy-to-implement

• very fast

Cons:

• often needs a lot of data

• no way to penalize the method



Neural PDE solver methods: Hard constraints

Enforce physics as hard constraints in the architecture or optimization

Pros:

• model will always obey the physics

Cons:

• very difficult to constrain the architecture to obey the laws

• constrained approaches are often really difficult to work with



Neural PDE solver methods: PINNs

Optimize PDE residual, experimental data, and constraints as penalties

Pros

• can vary the strictness of enforcing various constraints

• relatively easy to formulate and compute via autodiff

Cons:

• adding the soft constraint often makes the loss landscape very difficult

• needs to be retrained if PDE configuration is changed



Neural PDE solver methods: PINNs + neural operators

PINO method [Li et al., 2021]

• add empirical data and physics constraints as soft penalties to loss

• trades-off pros and cons of PINNs and neural operators…

X i

ti

û(Xi, ti)



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Marek Cieślar 
and Amir Gholami.
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