

Adaptive Gradient-Based Meta-Learning Methods

Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar Carnegie Mellon University khodak@cmu.edu

Gradient-Based Meta-Learning (GBML)

GBML is a popular way to use multi-task data to learn a personalized model for each task [2, 3, 4]. The goal is to learn a meta-initialization ϕ and learning rate η for gradient descent.

Contribution: ARUBA, a new theoretical framework for analyzing GBML:

- new theoretical guarantees for online and statistical meta-learning.
- better methods for few-shot and federated learning.
- principled and general approach for designing meta-learning algorithms.

<u>Average Regret-Upper-Bound Analysis</u>

Suppose each task t is an online learning problem:

- learner must sequentially decide $\theta_{t,i} \in \mathbb{R}^d$ to pass to adversarial losses $\ell_{t,i} : \mathbb{R}^d \mapsto \mathbb{R}$
- performance of online gradient descent (OGD) measured by its **regret** compared to playing the best fixed action θ_t^* :

$$\mathbf{R}_t = \sum_{i=1}^m \ell_{t,i}(\theta_{t,i}) - \min_{\theta_t^*} \sum_{i=1}^m \ell_{t,i}(\theta_t^*)$$

For convex Lipschitz losses $\ell_{t,i}$ OGD has the following **regret-upper-bound** \mathbf{U}_t [6]:

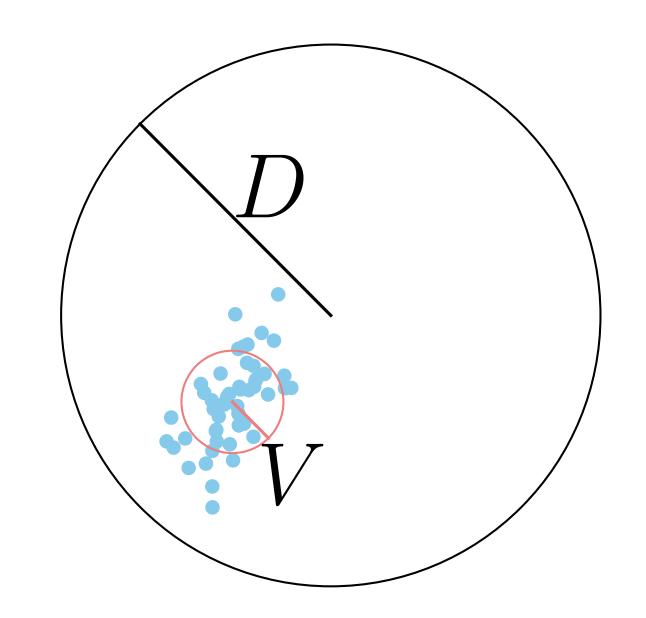
$$\mathbf{R}_{t} \leq \mathbf{U}_{t}(\phi, \eta) = \frac{1}{2n} \|\theta_{t}^{*} - \phi\|_{2}^{2} + \eta m$$

ARUBA exploits the following properties of \mathbf{U}_t :

- ullet data-dependence: strong dependence on the task-data via $heta_t^*$
- ullet niceness: joint convexity in algorithm parameters ϕ and η

The ARUBA Framework:

Run online learning on regret-upper-bounds \mathbf{U}_t to set within-task algorithm parameters (e.g. initialization ϕ , learning rate η of OGD). Use online learning to show data-dependent bounds on the average regret per-task and excess transfer risk.



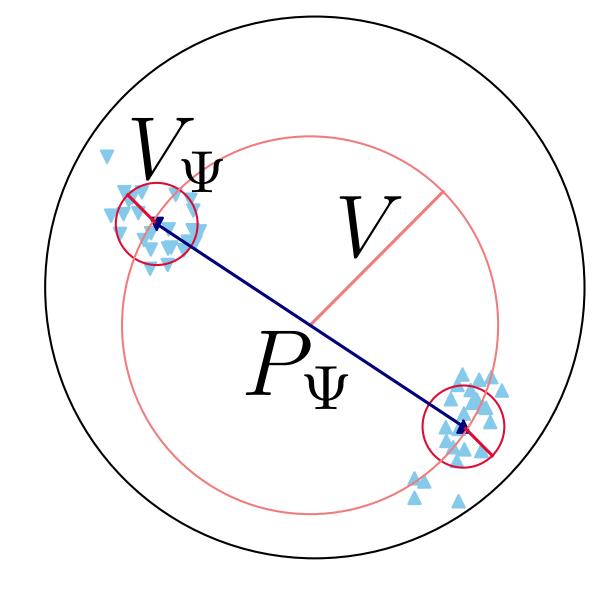


Illustration of task-similarity notions, in the static case (left) and dynamic case (right). The optimal task-parameters θ_t^* are in blue. ARUBA can exploit dynamic regret guarantees to adapt to a dynamic sequence of comparators Φ with small path-length P_{Φ} .

Generic GBML Training:

For task $t = 1, \ldots, T$:

- ullet initialize gradient descent with initialization $\phi_t \in \mathbb{R}^d$, learning rate $\eta_t > 0$
- ullet run gradient descent on task-samples to obtain task model weights $\hat{ heta}_t$
- ullet update ϕ_{t+1}, η_{t+1} using $\widehat{ heta}_t$

Output $\phi = \phi_{T+1}$ and $\eta = \eta_{T+1}$.

Average Regret Guarantees

ARUBA yields average regret bounds of form

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{R}_{t} \leq \frac{1}{T} \sum_{t=1}^{T} \mathbf{U}_{t}(\phi_{t}, \eta_{t}) = o_{T}(1) + \min_{\phi, \eta} \frac{1}{T} \sum_{t=1}^{T} \mathbf{U}_{t}(\phi, \eta)$$

As $T \to \infty$ average regret per-task converges to that of always using the initialization and learning rate that minimizes the regret-upper-bound.

Theorem 1: For convex Lipschitz losses on the unit ball, if OGD is run using $\phi_{t+1} = \phi_t + \frac{1}{t\eta_t}(\theta_s^* - \phi_t)$, one can (efficiently) set η_t so that average regret is

$$\tilde{\mathcal{O}}\left(V\sqrt{m} + D/\sqrt{T}\right)$$

for
$$V^2 = \min_{\phi} \frac{1}{T} \sum_{t=1}^{T} \|\theta_t^* - \phi\|_2^2$$
.

Main Point: single-task regret is $\Omega(D\sqrt{m})$, where D is the diameter of Θ , so this shows that GBML does much better if $V \ll D$.

Statistical Guarantees

In the i.i.d. $\ell_{t,i} \sim \mathcal{P}_t \sim \mathcal{Q}$ setting we also get strong excess transfer risk guarantees:

Theorem 2: The algorithm from Theorem 1 but fixed $\eta_t = \frac{V+1/\sqrt{T}}{\sqrt{m}}$ learns a meta-initialization so that w.p. $1 - \delta$ when OGD is run on samples from a new task distribution $\mathcal{P} \sim \mathcal{Q}$ the learned task-parameter $\bar{\theta}$ satisfies (in expectation):

$$\mathbb{E}_{\mathcal{Q}} \ell_{\mathcal{P}}(\bar{\theta}) \leq \mathbb{E}_{\mathcal{Q}} \ell_{\mathcal{P}}(\theta^*) + \tilde{\mathcal{O}}\left(\frac{V}{\sqrt{m}} + \left(\frac{1}{\sqrt{mT}} + \frac{1}{T}\right) \log \frac{1}{\delta}\right)$$

Main Point: faster task-dependent rates for excess transfer risk bounds. Can also get good rates when the step-size is learned in addition to the initialization.

Other things we can prove using ARUBA:

- per-coordinate and full-matrix learning rates
- dynamic regret for changing task-environments
- high probability bounds in i.i.d. setting

[1] Duchi, Hazan, Singer. Adaptive Sub-Gradient Methods. JMLR 2011.

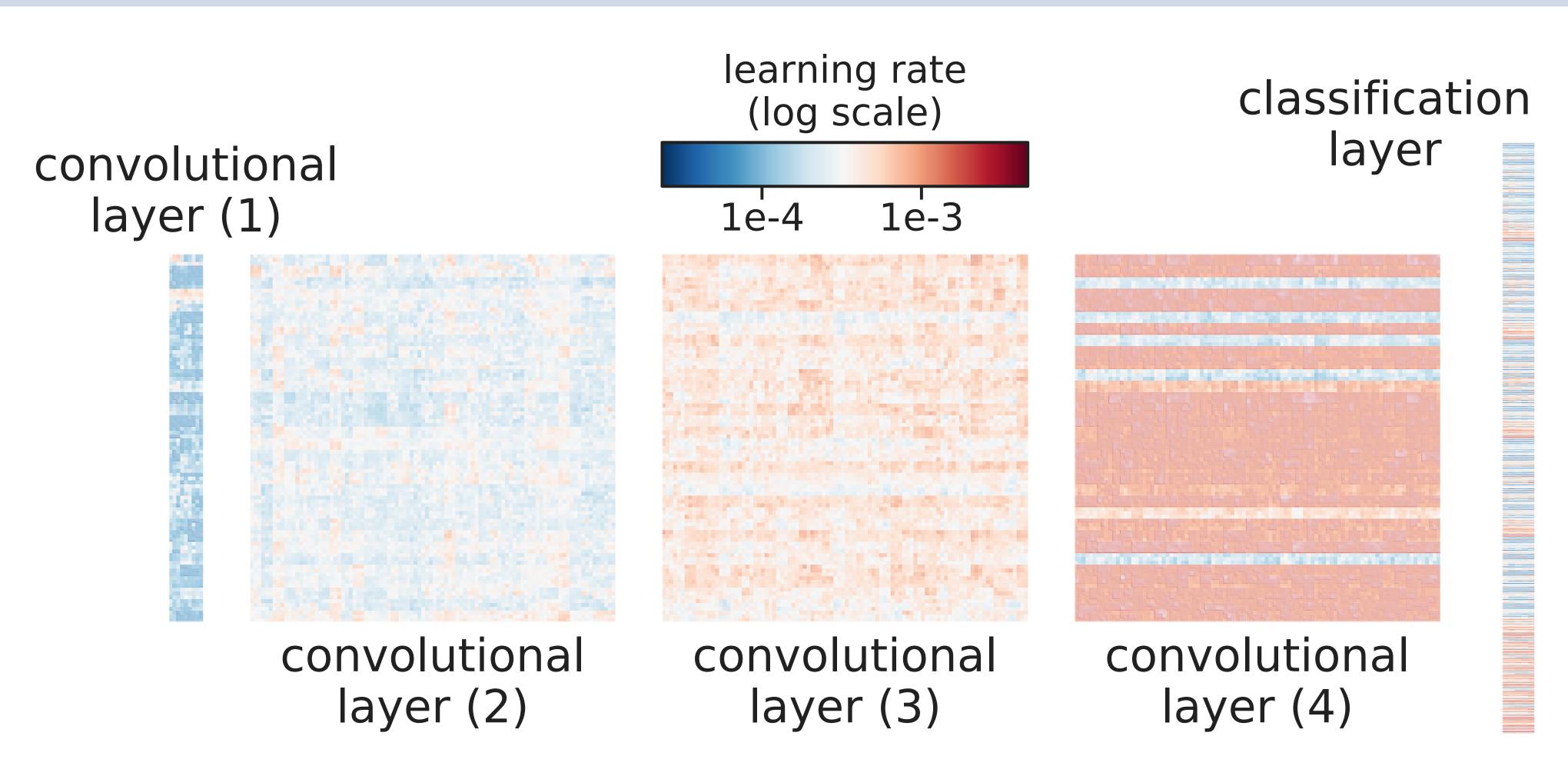
- [2] Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2018.
- [3] McMahan, Moore, Ramage, Hampson, Aguera y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017.
- [4] Nichol, Achiam, Schulman. On First-Order Meta-Learning Algorithms. arXiv 2018.
- [5] Ravi, Larochelle. Optimization as a Model for Few-Shot Learning. ICLR 2017.
- [6] Shalev-Shwartz. Online Learning and Online Convex Optimization. FTML 2011.

ARUBA yields a multi-task per-coordinate learning rate with provable guarantees:

$$\eta_t = \sqrt{\frac{\sum_{s < t} \varepsilon_s + (\theta_s^* - \phi_s)^2}{\sum_{s < t} \zeta_s + \sum_{i=1}^{m_s} \nabla_{s,i}^2}} \quad \text{for } \varepsilon_t, \zeta_t = o_t(1)$$

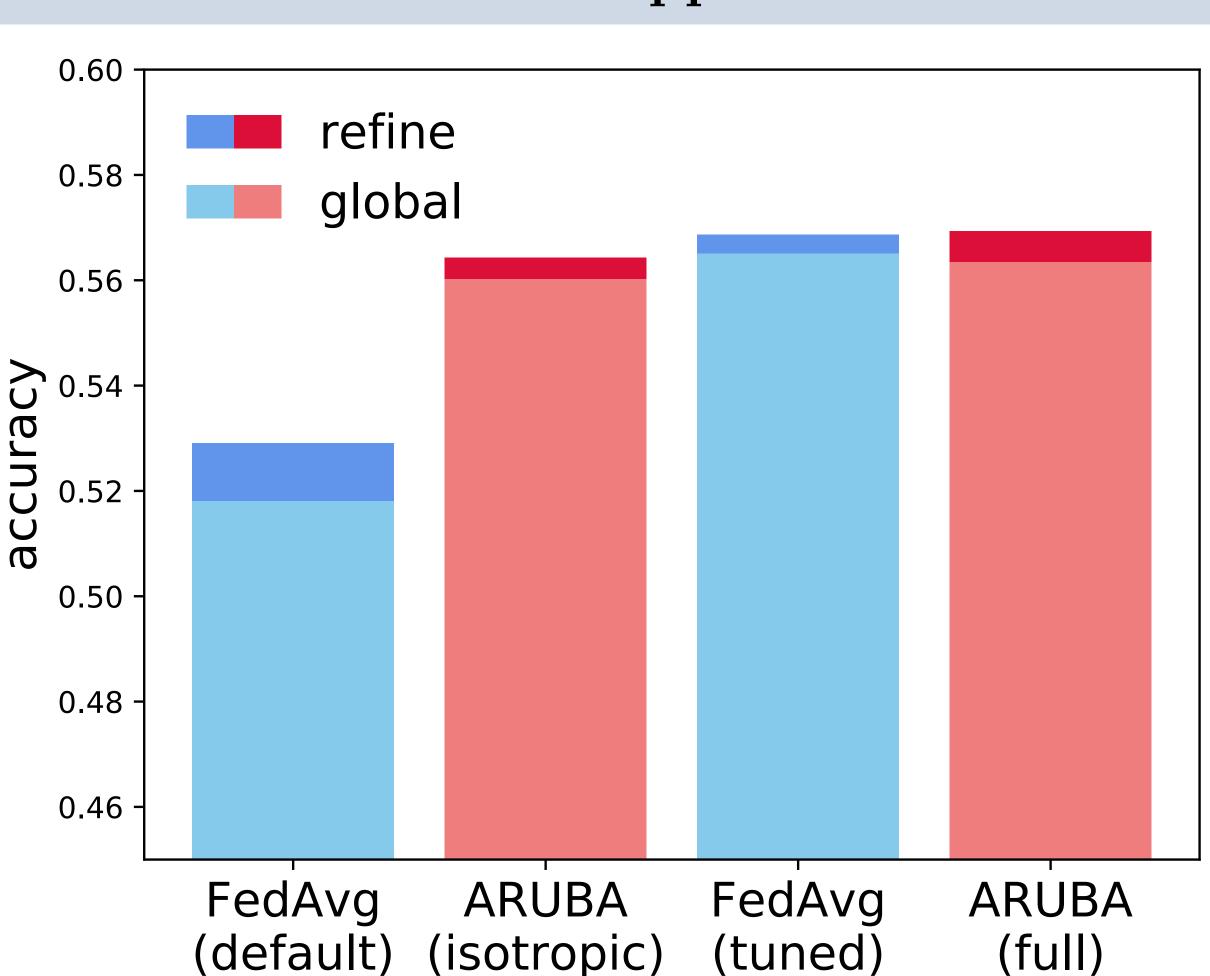
- Comes from regret-upper-bound of preconditioned OGD: $\theta_{t,i+1} = \theta_{t,i} \eta \odot \nabla_{t,i}$.
- Denominator like AdaGrad [1] but numerator corrected using the distance of learned parameter from initialization.
- Can be directly applied to existing meta-learning algorithms.

Application to Few-Shot Meta-Learning



- Our meta-learning theory holds for Reptile [4], a popular GBML method.
- Applying our multi-task per-coordinate learning rate yields the above step-sizes after meta-training a CNN on Mini-ImageNet [5].
- Following common intuition, learning rates are low for lower-level layers (feature extractors) and high for upper layers (classification).

Application to Federated Learning



- FedAvg [3], a popular algorithm for federated learning (learning on a distributed network of heterogeneous devices), is a special case of Reptile [4].
- Applying our multi-task learning rate yields a way to personalize federated models without on-device fine-tuning.