Gradient-Based Meta-Learning (GBML)

GBML is a popular way to use multi-task data to learn a personalized model for each task

2, 3, 4]. The goal is to learn a meta-initialization ¢ and learning rate n for gradient descent.

Contribution: ARUBA, a new theoretical framework for analyzing GBML:
e new theoretical guarantees for online and statistical meta-learning.

e better methods for few-shot and federated learning.

e principled and general approach for designing meta-learning algorithms.

Average Regret-Upper-Bound Analysis
Suppose each task t is an online learning problem:

e lcarner must sequentially decide 6, ; € RY to pass to adversarial losses Ce i : R — R

e performance of online gradient descent (OGD) measured by its regret compared to

playing the best fixed action 6;:

Ry = ) Gilb) — min)  6i(0))
i=1 "=l

For convex Lipschitz losses ¢;; OGD has the following regret-upper-bound U, [6]:

1 >k
R, < Uyo,n) = %H(gt — ¢l + nm

ARUBA exploits the following properties of Uy:

¢ data-dependence: strong dependence on the task-data via 6}

® niceness: joint convexity in algorithm parameters ¢ and n

The ARUBA Framework:

Run online learning on regret-upper-bounds U; to set within-task algorithm parameters

(e.g. initialization ¢, learning rate n of OGD). Use online learning to show
data-dependent bounds on the average regret per-task and excess transfer risk.

llustration of task-similarity notions, in the static case (left) and dynamic case (right). The optimal task-parameters 6; are in blue.
ARUBA can exploit dynamic regret guarantees to adapt to a dynamic sequence of comparators ® with small path-length Ps.
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Generic GBML Training:
Fortaskt =1,....,17T":

e initialize gradient descent with initialization ¢; € R?, learning rate 1, > (
® run gradient descent on task-samples to obtain task model weights 6,

® update ¢y, 741 uSing ét

Output ¢ = @71 and n = Ny

Average Regret Guarantees

ARUBA yields average regret bounds of form

T T T
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T; ;< ; {(dnm) = or(1) rg}??nT; (6, 1)
As T — oo average regret per-task converges to that of always using

the initialization and learning rate that minimizes the regret-upper-bound.

Theorem 1: For convex Lipschitz losses on the unit ball, if OGD is run using

Gri1 = Pt t}%(@;‘ — ¢4), one can (efficiently) set 7; so that average regret is

O (V\/E + D/\/T)

. T *
for V2 = ming = -7, 1167 — o3

Main Point: single-task regret is €2(D+/m), where D is the diameter of ©, so this shows
that GBML does much better it V< D.

Statistical Guarantees

In the iid. 6; ~ P ~ Q setting we also get strong excess transfer risk guarantees:

Theorem 2: The algorithm from Theorem 1 but fixed 7; = Vj/mﬁ learns a
meta-initialization so that w.p. 1 — 0 when OGD is run on samples from a new task

distribution P ~ Q the learned task-parameter 6 satisfies (in expectation):
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Main Point: faster task-dependent rates for excess transfer risk bounds. Can also get good
rates when the step-size is learned in addition to the initialization.

Other things we can prove using ARUBA:

e per-coordinate and full-matrix learning rates

e dynamic regret for changing task-environments
e high probability bounds in i.i.d. setting
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e Comes from regret-upper-bound of preconditioned OGD: 0; ;.1 = 0;; — 1 © Vy;.

® Denominator like AdaGrad [1] but numerator corrected using the distance of learned

parameter from initialization.

e Can be directly applied to existing meta-learning algorithms.

Application to Few-Shot Meta-Learning
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e Our meta-learning theory holds for Reptile 4], a popular GBML method.

e Applying our multi-task per-coordinate learning rate yields the above step-sizes after
meta-training a CNN on Mini-ImageNet [5].

e Following common intuition, learning rates are low for lower-level layers (feature

extractors) and high for upper layers (classification).
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Application to Federated Learning
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e FedAvg (3], a popular algorithm

for federated learning (learning on
a distributed network of
heterogeneous devices), is a special

case of Reptile [4].

e Applying our multi-task learning
rate yields a way to personalize

federated models without
on-device fine-tuning.



