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® promising performance in a variety of fields

® fast-evolving and poorly understood methodology

This talk:
meta-learning algorithms with provable guarantees.
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Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “interesting”
randomly initialize 6, € ®
pick Iearning rate n >0 training data
for i=1,. <§5
— @ QU \3
sample (x V) %\ s; W

91"'1 — Hl ;/]VL(]CH,(XZ) yz) R

return 0 <0 ., {Projert
Dutentiery
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Can we train one model per person’?

@ not enough data

“meta-learning is” “guarantees”
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pick learning rate n > 0 training data
for i=1.....m
sample (x,y)
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Can we learn an initialization for SGD?

“meta-learning is” “great!”

use learned initialization 6, = ¢

pick learning rate n > 0 training data
for i=1.....m
sample (x,y)

Oip1 < 0, — ﬂVL(fg(X) Yi) >

l

return 0 < 0, ., +1
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Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

A\

0, — within-task SGD(Z, ¢,)

\ task data

1 < (1 =), + O‘ét
return ¢,

(later called o)



Some successful gradient-based algorithms
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Some successful gradient-based algorithms

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0 MAML [Finn-Abbeel-Levine]

fortask r=1,....T

sample task 9,

0, — within-task SGD(Z,, ¢,)

Meta Reinforcement Learning

Dy — (1 —a)p, + ab,

return
P41 replace by (non-stochastic)

gradient descent



Some successful gradient-based algorithms

randomly meta-initialize ¢, € ©

pick meta-learning rate o > 0 FedAvg [McMahan et al.]

fortask r=1,...,T C:\‘ - C.
A.@ 9 (lle]li®|® E] ¢
sample task 9,
|\
0, «— within-task SGD(Z, ¢,) < Be _QQ
B.
hr1 — (1 —a)p, + ab, Federated Learning with Personalization

return
Proi run k tasks in parallel, update

using their average last iterate
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...what is it doing”

Input: 7 few-shot training tasks {2};

Algorithm: General; only assumes gradient updates

Output: Initialization qﬁ for few-shot test task

Why/when do gradient-based methods work?

» \What provable guarantees do these algorithms have”

» Can we design new algorithms for settings of interest?
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ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Derive new methods for a broad variety of multi-task settings



ARUBA Framework

» Low-sample learning and gradient-based meta-learning
» An illustrative result for learning an initialization
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Online Learning

Measure per-task performance via regret

R = ﬁ £.0) — £,0%)
i=1 AN

best fixed action
IN hindsight

Non-lID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)
lID Implications: Online-to-batch conversion results

Generality: Can adapt / generalize numerous online learning results to meta-learning
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Training Data Hypothesis Class Loss Function
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Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

D Online Gradient Descent (OGD)

Learn an initialization
¢ seqguentially from
« previous ¢ tasks 0%

Key Question:
can we do better using

on-average across tasks?

[Abernethy-Bartlett-Rakhlin-Tewari]
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Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X, )5 V)

Average Regret R = ? ; Rt — ? Z Z ft,i(et,i) o ft,i(et*)

=1 =1

Task Similarity: V2 = mln—z 160 — @113

$pc0 1 V is small when optimal
parameters are close together
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ARUBA: An lllustrative Result

Task Similarity V

When optimal task parameters are close together,
meta-learning yields much better average performance
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fortask r=1,....,T replace last iterate by
optimum-in-hindsight
sample task 9,

within-task OGD(Z , ¢,)

(assumes oracle access to last iterate
_ . after task completion)
update ¢, using 6
(can be relaxed under a
non-degeneracy assumption)
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Recall: generic gradient-based algorithm (Reptile)

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1,...,T 1 L 1z
? Z K; < ? Z Ul¢,)
sample task &, =1 =1 N

regret-upper-bound

within-task OGD(Z , ¢,)

\.I

update ¢, , using 0* Key ldea: bk

Use online learning to optimize a
sequence of OGD regret bounds.
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ARUBA: Key Observation

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

for OGD(Z,, ¢) regret-upper-bound
| H@* ¢||2

R =) ,(0) =05 < U(p) =
i=1 \ \

set ;7_— to get O(D+\/m)



ARUBA: Key Observation

Single-task regret gua

rantees are often nice and

data-dependent functior

s of the algorithm parameters.

for OGD(Z,, ¢) : regret-up]aer-bound
N 16} — 115
Ri= D, 6100) = £,(0) < Ufp) = ————=+nm
=1

21

Average Regret-Upper-Bound Analysis:

reduce the analysis of meta-learning algorithms to
online learning over within-task regret-upper-bounds
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Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

1
—=-strongly-convex

sample task 7, / {

Uh) = 165 — 5 + nm
within-task OGD(Z . ¢,) . 201

Key Idea: apply OGD
] — K
Pri1 < ( )P, + O[Ht Regret guarantee:

I T
. log T
(almost) same update as Reptile! Z Ut(¢t) _ gug Z Ut( ¢) <0 < & )
< H
=1 =1
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Step 1: Substitute
Regret-Upper-Bound

1 & 1 & 1 [ % 1
?Z}Rt < 72} Ul = — (Z} U _31613;1 Ut<¢>> +min_ ) Ug)

=1

Addition/Subtraction

regret of OGD over T

L _ strongly-convex functions +

n



3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

1 L 1 I 1 I I 1
— Z} R <— Z:, Ul = — ( 2, U@, - min Z:‘ Ut<¢>> +min_ ) Ug)

=1

Step 2: Across-task OGD

1 [~ 105 =13 0% — |3
L ol et el A W
T 21 = 2n

=1
log T
@(Og ) +
nl
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3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

1 L 1 I 1 I L 1
? tzzl R, < ? tzzl Ulp,) = ? (Z U@, — %3 tzzl Ut(¢)> + glel({)l? - U @)

=1

Step 2: Across-task OGD definition of task-similarity
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Recap: what have we achieved?

Task Similarity V

When optimal task parameters are close together,
meta-learning yields much better average performance
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Our results in context

Online learning of multi-task representations:

* Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-
Kalai-Livni, ALT 2019]

Online meta-initialization learning:
 Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

e Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-
Grazzi-Pontil, ICML 2019]

* | earnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
e ARUBA [K-Balcan-Talwalkar, NeurlPS 2019]
* Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurlPS 2019]

Non-convex stochastic optimization for meta-initialization:
e Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]
e Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurlPS 2019]
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What else can we get by applying ARUBA"

Adaptivity

» Learn any base-learner parameter from data

» e.9., improved training algorithms for learning ¢ and n simultaneously
Generality

» Low-dynamic-regret algorithms for changing task-environments

» Stronger online-to-batch conversions for faster statistical rates

» Specialized within-task algorithms, e.g., satisfying privacy guarantees




Applications

» Adaptivity for improved few-shot learning
» Federated learning & private meta-learning
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per-coordinate gradient on sample i
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s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/
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When is pre-conditioned online gradient descent useful”
The neural network case:
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s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t
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When is pre-conditioned online gradient descent useful”
The neural network case:
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Updating the Initialization and the learning rate
using online learning

Goal: set ¢,n to getlow

average regret across tasks.

fortask r=1,...,.T | 7 |z
?ZlRtS?ZIUt@bt’m)

sample task &, \
regret-upper-bound
within-task OGD(Z . ¢, ,)

update ¢, ; using 0*

update 7, .,



Applying ARUBA: the regret-upper-bound

Single-task regret gua

rantees are often nice and

data-dependent functior

1
Ulp.n) = Ellé’t*

s of the algorithm parameters.

—12 + ) NV
! i=1
\ /

Mahalanobis horm



Applying ARUBA: the regret-upper-bound

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.
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summation over coordinates



Setting the learning rate along coordinate |

optimal learning rate
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Setting the learning rate along coordinate |

learned learning rate
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learned learning rate
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Setting the learning rate along coordinate |

learned learning rate
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B .+ € 1 o~ o)
Nij = \/GU. : Bt,j — 5 Z (es,j _ ¢s,j)

/ s<t
sum of squared distances

from initialization
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Setting the learning rate along coordinate |

learned learning rate
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Applying this meta-learned learning rate on
few-shot Image classification

Mini-lmageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way >
classification tasks by [l 5-shot
sampling n images from B 1-shot
each of 5 classes 52
learn to initialize (@ ) .
and adapt (7/’7 ) a four- MAML Meta-SGD Reptile Reptile
layer convolutional / w.Adam  w. ARUBA
neural network MAML with per-coordinate \
learning rate [Li et al.] popular per-coordinate

learning rate [Kingma-Ba]



Our adaptive learning rate after meta-training

learning rate

(log scale) classification
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Applications

» Adaptivity for improved few-shot learning
» Federated learning & private meta-learning



Personalized rederated Learning

» Massively distributed

» Small sample sizes

» Privacy concerns

» Non-lID data and tasks

» Underlying task similarity
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FedAVQ ~ Rept”e 'with a batch-averaged meta-update]

» Most popular algorithm in federated learning

» Usually run without personalization - just use
the meta-initialization within-task
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Personalization In Federated
|_earning via Adaptive ARUBA

Results on Shakespeare next-

» Meta-training: run FedAvg
with ARUBA optimizer
within-task

» Meta-testing - use
(preconditioned) OGD to
learn a personalized
model for each user
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Sebastian Caldas Ameet Talwalkar
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Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted

central server - the meta-learner
® avoid utllity loss associated with
local differential privacy

fortask r=1,....T

sample task &,

A\

0, «— within-task noisy SGD(Z, ¢,) Our results:
A ® Immediate user-record-level
G < (I =), + ab, privacy guarantee for any model
® In the convex case: bound on
return ¢ = ¢, excess transfer risk that improves
with task-similarity
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lakeaways

ARUBA: a theoretical framework for analyzing and designing meta-learning
algorithms via reduction to online learning:

e First guarantees for initialization-based meta-learning methods showing
provable improvement over single-task learning

e New principled algorithm for meta-learning the learning rate in addition to
the Initialization

 Novel practical algorithm for differentially private meta-learning



Next steps

Future directions:

e Beyond adversarial analysis within-task — can the base-learners be
statistical or reinforcement learning algorithms?

e Better multi-task optimizers for regimes beyond few-shot learning.

e Non-convex losses and non-linear representations



Thank You!

ARUBA: https://arxiv.org/abs/1906.02717

More Info: http://www.cs.cmu.edu/~mkhodak/

Blog: https://blog.ml.cmu.edu/2019/11/22/aruba
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