ARUBA: Efficient and Adaptive
Meta-Learning with Provable Guarantees

Misha Khodak
3 December 2019

Based on joint work with: Carnegie
e Nina Balcan, Ameet Talwalkar Mellon
o Jeff Li, Sebastian Caldas, Ameet Talwalkar University

Demanding more from machine learning pipelines

W
o

A,
&)

N
o

-y
O,

-y
o

Human error rate

ImageNet Visual Recognition Error Rate (%)
&)

2010 2011 2012 2013 2014 2015 2016 2017
Year

Demanding more from machine learning pipelines

® |earning deep models with limited data from many tasks

Source: Taboola Engineering

Demanding more from machine learning pipelines

® |earning deep models with limited data from many tasks

® sustained performance in changing environments

Source: Taboola Engineering

Demanding more from machine learning pipelines

® |earning deep models with limited data from many tasks
® sustained performance in changing environments

® fast adaptation to unseen distributions

Source: Taboola Engineering

Demanding more from machine learning pipelines

® |earning deep models with limited data from many tasks
® sustained performance in changing environments

® fast adaptation to unseen distributions

® distributed training and inference

Source: Taboola Engineering

,,,,,,,,,,,,,,
R

Demanding more from machine learning pipelines

® |carning deep models with limited data from many tasks multi-task]
® sustained performance in changing environments lifelong]

® fast adaptation to unseen distributions [transfer]

® distributed training and inference federated]

Source: Taboola Engineering

Demanding more from machine learning pipelines

® |carning deep models with limited data from many tasks multi-task]
® sustained performance in changing environments lifelong]

® fast adaptation to unseen distributions [transfer]

® distributed training and inference [federated|]

Source: Taboola Engineering

Meta-learning:
a popular multi-task formulation of these objectives

Meta-learning:
a popular multi-task formulation of new objectives for ML

® mproves ML by “learning-to-learn” across tasks
® promising performance in a variety of fields

® fast-evolving and poorly understood methodology

Meta-learning:
a popular multi-task formulation of new objectives for ML

® mproves ML by “learning-to-learn” across tasks
® promising performance in a variety of fields

® fast-evolving and poorly understood methodology

This talk:
meta-learning algorithms with provable guarantees.

Standard ML: supervised prediction

Configurable

Function Output y € ¥

Input xe X

Standard ML: supervised prediction

Configurable

Function Output y € ¥

Input xe X

“meta-learning is” “Interesting”

Standard ML: supervised prediction

Configurable

Function Output y € ¥

Input xe X

“meta-learning is” “Interesting”

Goal: find 9 such that f,(x)=y forall (x,y) ~ 9

Standard ML: supervised prediction

Configurable

Function Output y € ¥

Input xe X

“meta-learning is” “Interesting”

Goal: find 9 such that f,(x)=y forall (x,y) ~ 9
How: use training data (x;,y,),....(x,,y,) ~ <

Standard ML: supervised prediction

“meta-learning is” “Interesting”

training data

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “banana”

randomly initialize 6, € ®
training data

Dutenbery

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “banana”

randomly initialize 6, € ®
pick learning rate n > 0 training data

Dutenbery

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “banana”

randomly initialize 6, € ®

pick Iearning rate n >0 training data
for i=1,.

IB“'?" t
Dutenbery

Lo

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “wooden”

randomly initialize 6, € ®

pick Iearning rate n >0 training data
for i=1,. 7
‘o
%

Oip1 < 0, — ﬂVL(fei(x) Vi) -

|

loss function Butenbery

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “boring”
randomly initialize 6, € ®
pick Iearning rate n >0 training data
for i=1,. 7
‘o
I
Oip1 < 0, — ﬂVL(fgi(x) Vi) S

|

loss function Butenbery

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “fine”

randomly initialize 6, € ®
pick Iearning rate n >0 training data
for i =1,. 4 o

sample (x V) - ——— 29’ %

A

91+1 < Hl nv%(ﬁl(XZ) yl) \@h
{Project

loss function Butenbery

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “interesting”
randomly initialize 6, € ®
pick Iearning rate n >0 training data
for i=1,. <§5
— @ QU \3
sample (x V) %\ s; W

91"'1 — Hl ;/]VL(]CH,(XZ) yz) R

return 0 <0 ., {Projert
Dutentiery

Vleta-learning: many tasks, few examples

“meta-learning is” “Interesting”

Vleta-learning: many tasks, few examples

“meta-learning is” “Interesting”

“meta-learning is” “great!”

Vleta-learning: many tasks, few examples

“meta-learning is” “Interesting”
“meta-learning is” “great!”
“meta-learning is” “dope”

Vleta-learning: many tasks, few examples

“meta-learning iIs” “Interesting”
“meta-learning is” “great!”
“meta-learning iIs” “dope”

Can we just use a single global model*

“meta-learning is”

randomly initialize 6, € ®

pick learning rate n > 0 training data
for i=1.....m

01 < 0, — 1 VL(fei(xz), D),
return 0 < 0, _,

Can we just use a single global model*

@ NO personalization

“meta-learning is” “Interesting”
randomly initialize 6, € ®
pick learning rate n > 0 training data
for i=1.....m

01 < 0, — 1 VL(in(xi)a D),
return 0 < 0, _,

Can we train one model per person’?

“meta-learning is”

randomly initialize 6, € ®

pick learning rate n > 0 training data
for i=1.....m
sample (x,y)
001 < 0,— nVL(fg(x)) —

return 6 < 0,11

Can we train one model per person’?

@ not enough data

“meta-learning is” “guarantees”
randomly initialize 6, € ®
pick learning rate n > 0 training data
for i=1.....m
sample (x,y)
i1 < 6; - nVL(fe(x)) D E—

return 0 < 0, ., +1

Can we learn an initialization for SGD?

“meta-learning is”

use learned initialization 6, = ¢

pick learning rate n > 0 training data
for i=1.....m
sample (x,y)

Oip1 < 0, — ﬂVL(fg(X) Yi) >

l

return 6 < 0,11

Can we learn an initialization for SGD?

“meta-learning is” “great!”

use learned initialization 6, = ¢

pick learning rate n > 0 training data
for i=1.....m
sample (x,y)

Oip1 < 0, — ﬂVL(fg(X) Yi) >

l

return 0 < 0, ., +1

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task @t /

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,
initialize 06, = ¢,

pick learning rate 7, > 0 task data

for i=1.,....m

Sample (’xt,i’ yt,i) —
Oriv1 < 0 —1 VL(th,i(xt,i)a Vi)
0, < 0, 41

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

A\

0, — within-task SGD(Z, ¢,)

\ task data

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

A\

0, — within-task SGD(Z, ¢,)

\ task data

G < (1 =), + O‘ét

“meta-update”

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

A\

0, — within-task SGD(Z, ¢,)

\ task data

G < (1 =), + O‘ét

return ¢,

Gradient-Based Meta-Learning

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0

training tasks

fortask r=1,....T

sample task &,

A\

0, — within-task SGD(Z, ¢,)

\ task data

1 < (1 =), + O‘ét
return ¢,

(later called o)

Some successful gradient-based algorithms

randomly meta-initialize ¢, € ©

pick meta-learning rate « > 0 Reptile [Nichol-Achiam-Schulman]
for taSk f — 1,. ., T Training Data Input
sample task 7, X PR A VQ
0, — within-task SGD(Z, ¢,) p— S— -

Few-Shot Learning

G < (1 =), + O‘ét

return ¢,

Some successful gradient-based algorithms

randomly meta-initialize ¢, € ©
pick meta-learning rate a > 0 MAML [Finn-Abbeel-Levine]

fortask r=1,....T

sample task 9,

0, — within-task SGD(Z,, ¢,)

Meta Reinforcement Learning

Dy — (1 —a)p, + ab,

return
P41 replace by (non-stochastic)

gradient descent

Some successful gradient-based algorithms

randomly meta-initialize ¢, € ©

pick meta-learning rate o > 0 FedAvg [McMahan et al.]

fortask r=1,...,T C:\‘ - C.
A.@ 9 (lle]li®|® E] ¢
sample task 9,
|\
0, «— within-task SGD(Z, ¢,) < Be _QQ
B.
hr1 — (1 —a)p, + ab, Federated Learning with Personalization

return
Proi run k tasks in parallel, update

using their average last iterate

Gradient-based meta-learning is simple & flexible...

Input: 7 few-shot training tasks {2};

Algorithm: General; only assumes gradient updates

Output: Initialization gﬁ for few-shot test task

...what is it doing”

Input: 7 few-shot training tasks {2};

Algorithm: General; only assumes gradient updates

Output: Initialization qﬁ for few-shot test task

Why/when do gradient-based methods work?

...what is it doing”

Input: 7 few-shot training tasks {2};

Algorithm: General; only assumes gradient updates

Output: Initialization qﬁ for few-shot test task

Why/when do gradient-based methods work?

» \What provable guarantees do these algorithms have”

» Can we design new algorithms for settings of interest?

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Nina Balcan Ameet Talwalkar

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
Initialization-based meta-learning

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Adapt to changing task-environments

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Obtain faster statistical rates

ARUBA: Our new theoretical
e [FAMEWOrK for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Derive new methods for a broad variety of multi-task settings

ARUBA Framework

» Low-sample learning and gradient-based meta-learning
» An illustrative result for learning an initialization

Vleta-learning through the lens of online learning

Online Learning

Vleta-learning through the lens of online learning

Online Learning

Measure per-task performance via regret

R=) £(0)— (6%
i=1 AN

best fixed action
IN hindsight

Vleta-learning through the lens of online learning

Online Learning

Measure per-task performance via regret

R = ﬁ £.0) — £,0%)
i=1 AN

best fixed action
IN hindsight

Non-lID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

Vleta-learning through the lens of online learning

Online Learning

Measure per-task performance via regret

R = ﬁ £.0) — £,0%)
i=1 AN

best fixed action
IN hindsight

Non-lID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

lID Implications: Online-to-batch conversion results

Vleta-learning through the lens of online learning

Online Learning

Measure per-task performance via regret

R = ﬁ £.0) — £,0%)
i=1 AN

best fixed action
IN hindsight

Non-lID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)
lID Implications: Online-to-batch conversion results

Generality: Can adapt / generalize numerous online learning results to meta-learning

Single-Task Learning

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

L:YXY R

best fixed action

IN hindsight \

R=) £(0)— (6%
=1

Single-Task Learning

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

best fixed action

IN hindsight \

R=) £(0)— (6%
=1

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

best fixed action

IN hindsight \

R=) £(0)— (6%
=1

[Abernethy-Bartlett-Rakhlin-Tewari]

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

best fixed action

IN hindsight \

R=) £(0)— (6%
=1

[Abernethy-Bartlett-Rakhlin-Tewari]

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

Cannot hope to
do well when

m 1S small

[Abernethy-Bartlett-Rakhlin-Tewari]

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

Key Question:
can we do better using
multi-task information?

[Abernethy-Bartlett-Rakhlin-Tewari]

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

Online Gradient Descent (OGD)

Key Question:
can we do better using
on-average across tasks?

[Abernethy-Bartlett-Rakhlin-Tewari]

Single-Task Regret

Training Data Hypothesis Class Loss Function

(X1 Y15 e es (X Vi) fr: L~ %:0€0cR’ £(0) = L(fo(x),y;)

D Online Gradient Descent (OGD)

Learn an initialization
¢ seqguentially from
« previous ¢ tasks 0%

Key Question:
can we do better using

on-average across tasks?

[Abernethy-Bartlett-Rakhlin-Tewari]

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X,)5 V)

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X,)5 V)

1 T m

I
Average Regret R = ? ; Rt — ? Z Z ft,i(et,i) o ft,i(et*)

=1 =1

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X,)5 V)

T

=1 =1

Average Regret: R = ? Z Rt — Z Z ft,i(et,i) o ft,i(et*)

Task Similarity: V2 = min — 0" —
min Z |6 — 113

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X,)5 V)

T

=1 =1

Average Regret: R = ? Z Rt — Z Z ft,i(et,i) o ft,i(et*)

Task Similarity: V2 = min — 0" —
min Z |6 — 113

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function

X YD o O Y1) {fp: T > % 0 €0 CRY ¢ (0) = L(fo(X,)5 V)

Average Regret R = ? ; Rt — ? Z Z ft,i(et,i) o ft,i(et*)

=1 =1

Task Similarity: V2 = mln—z 160 — @113

$pc0 1 V is small when optimal
parameters are close together

ARUBA: An lllustrative Result

Task Similarity V

ARUBA: An lllustrative Result

Task Similarity V

When optimal task parameters are close together,
meta-learning yields much better average performance

Recall: generic gradient-based algorithm (Reptile)

fortask r=1.,....T

sample task 9,

0, < within-task SGD(Z,, ¢,)

A\

update ¢, , using 0,

Recall: generic gradient-based algorithm (Reptile)

fortask r=1,....T replace SGD by
online gradient descent (OGD)

sample task 9,

0, — within-task OGD(Z,, ¢,)

A\

update ¢,., using 0,

Recall: generic gradient-based algorithm (Reptile)

fortask r=1,....,T replace last iterate by
optimum-in-hindsight
sample task 9,

within-task OGD(Z , ¢,)

update ¢, , using 0F

Recall: generic gradient-based algorithm (Reptile)

fortask r=1,....,T replace last iterate by
optimum-in-hindsight
sample task 9,

within-task OGD(Z , ¢,)

(assumes oracle access to last iterate

_ after task completion)
update ¢, ,; using 0*

Recall: generic gradient-based algorithm (Reptile)

fortask r=1,....,T replace last iterate by
optimum-in-hindsight
sample task 9,

within-task OGD(Z , ¢,)

(assumes oracle access to last iterate
_ . after task completion)
update ¢, using 6
(can be relaxed under a
non-degeneracy assumption)

Recall: generic gradient-based algorithm (Reptile)

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1,...,T 1 <L

sample task 9, =1
within-task OGD(Z , ¢,)

update ¢, ; using 0*

Recall: generic gradient-based algorithm (Reptile)

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1,...,T 1 L 1z
? Z K; < ? Z Ul¢,)
sample task &, =1 =1 N

regret-upper-bound

within-task OGD(Z , ¢,)

\.I

update ¢, , using 0* Key ldea: bk

Use online learning to optimize a
sequence of OGD regret bounds.

ARUBA: Key Observation

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

ARUBA: Key Observation

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

for OGD(Z,, ¢) :

R, =) £,/(0)—£,(0%) = O(D\/m)
=1

ARUBA: Key Observation

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

for OGD(Z,, ¢) regret-upper-bound
| H@* ¢||2

R =) ,(0) =05 < U(p) =
i=1 \ \

set ;7_— to get O(D+\/m)

ARUBA: Key Observation

Single-task regret gua

rantees are often nice and

data-dependent functior

s of the algorithm parameters.

for OGD(Z,, ¢) : regret-up]aer-bound
N 16} — 115
Ri= D, 6100) = £,(0) < Ufp) = ————=+nm
=1

21

Average Regret-Upper-Bound Analysis:

reduce the analysis of meta-learning algorithms to
online learning over within-task regret-upper-bounds

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T T T
lZR <lz U(p,)
Tt=1 t_Tt=1 X

sample task &, \
regret-upper-bound
within-task OGD(Z, ¢,)

update ¢, , using 0* Key ldea: bk

Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T T T
lZR <lz U(p,)
Tt=1 t_Tt=1 o

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

sample task 9,

nm

\.I

update ¢, , using 0* Key ldea: bk

Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

sample task 9,

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

nm

update ¢, using 0} Key ldea: apply OGD

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

sample task 9,

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

nm

Key ldea: ly OGD
D1 < O, —anVU(),) ey iaeds apby

\

learning rate an > 0

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

sample task 9,

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

nm

Key Idea: apply OGD
D1 < @, — alP, — o) Y P

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

sample task 9,

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

nm

Key Idea: vy OGD
b1 — (1 —a), + at* ey Idea: apply

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

sample task 9,

16 = @,lI5
o Ulp,) = +
within-task OGD(Z , ¢,) 2n

nm

Key Idea: vy OGD
b1 — (1 —a), + at* ey Idea: apply

T

(almost) same update as Reptile!

Updating the initialization using online learning

Goal: set ¢, to getlow

average regret across tasks.

fortask r=1.,....T

1
—=-strongly-convex

sample task 7, / {

Uh) = 165 — 5 + nm
within-task OGD(Z . ¢,) . 201

Key Idea: apply OGD
] — K
Pri1 < ()P, + O[Ht Regret guarantee:

I T
. log T
(almost) same update as Reptile! Z Ut(¢t) _ gug Z Ut(¢) <0 < &)
< H
=1 =1

3 Key Steps of ARUBA Framework

Step 1: Substitute
Regret-Upper-Bound

1 | «
_ZRt < _Z Ut(¢t)
Tt=1 Tt=1

3 Key Steps of ARUBA Framework

Step 1: Substitute
Regret-Upper-Bound

1 & 1 & 1 [% 1
?Z}Rt < 72} Ul = — (Z} U _%Z} Ut<¢>> +min_) Ug)

Addition/Subtraction

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

1 I 1 I 1 I | I 1
— 2R D Uy = - (2, Ul) —min 3 Ut<¢>> +min_) Ug)
=1 =1 =1 =1
Step 2: Across-task OGD

1 [~ 105 =13 0% — |3
L ol et el A W
T 21 = 2n

=1

3 Key Steps of ARUBA Framework

Step 1: Substitute
Regret-Upper-Bound

1 & 1 & 1 [% 1
?Z}Rt < 72} Ul = — (Z} U _31613;1 Ut<¢>> +min_) Ug)

=1

Addition/Subtraction

regret of OGD over T

L _ strongly-convex functions +

n

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

1 L 1 I 1 I I 1
— Z} R <— Z:, Ul = — (2, U@, - min Z:‘ Ut<¢>> +min_) Ug)

=1

Step 2: Across-task OGD

1 [~ 105 =13 0% — |3
L ol et el A W
T 21 = 2n

=1
log T
@(Og) +
nl

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

&, 1 ¢ [« X]
?tzlet < 7; Ulp,) = ? (Z U@, — glelgtzzl Ut(¢)> + glel({)l? - U @)

=1

Step 2: Across-task OGD Step 3: Impact of Task Relatedness
T T 2
1 Z 10 —plls . N6F = ll3 1 167 = @ll3
- — min + min— - nm
T = 21 = 2n pco T = 2n

loo T
@(Og) +
nl

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

&, 1 ¢ [« X]
?tzlet < 7; Ulp,) = ? (Z U@, — glelgtzzl Ut(¢)> + glel({)l? - U @)

=1

Step 2: Across-task OGD Step 3: Impact of Task Relatedness
T T 2
1 Z 10 —plls . N6F = ll3 1 167 = @ll3
- — min + min— - nm
T = 21 = 2n pco T = 2n

loo T
@(Og) +
nl

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

1 L 1 I 1 I L 1
? tzzl R, < ? tzzl Ulp,) = ? (Z U@, — %3 tzzl Ut(¢)> + glel({)l? - U @)

=1

Step 2: Across-task OGD definition of task-similarity

1 [& 05— a,113 165 — I3 i
— 1 + 2 — i S 2
- (Z » min—— V= min 3167 - 11

1 =,

loo T
@(Og) +
nl

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

&, 1 ¢ [« X]
?tzlet < 7; Ulp,) = ? (Z U@, — glelgtzzl Ut(¢)> + 2161({)1? - U @)

=1

Step 2: Across-task OGD Step 3: Impact of Task Relatedness
T T 2
1 Z 10 —plls . N6F = ll3 1 167 = @ll3
- — min + min— - nm
T = 21 = 2n pco T = 2n

log T %
= @(o8) + O — +nm
nl n

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

&, 1 ¢ [« X]
?tzlet < 7; Ulp,) = ? (Z U@, — glelgtzzl Ut(¢)> + 2161({)1? - U @)

=1

Step 2: Across-task OGD Step 3: Impact of Task Relatedness
T T 2
1 Z 10 —plls . N6F = ll3 1 167 = @ll3
- — min + min— - nm
T = 21 = 2n pco T = 2n

(10g T) substitute 7] = V/ \/% < V2 >
= O + O — +nm

nl 7

3 Key Steps of ARUBA Framework

Step 1: Substitute

Regret-Upper-Bound Addition/Subtraction

T

1 L 1 I 1 I L 1
? tzzl R, < ? tzzl Ulp,) = ? (Z U@, — %3 tzzl Ut(¢)> + 2161({)1? - U @)

=1

Step 2: Across-task OGD Step 3: Impact of Task Relatedness
T T
1 3 167 =gl . 1167 - 9lI3 15 16F - 9115
- — min + min— - nm
T = 21 =) 2n pc0 T = 2n

substitute 7] = V/ \/%

- () o)

|74

Recap: what have we achieved?

Task Similarity V

When optimal task parameters are close together,
meta-learning yields much better average performance

Our results in context

Online learning of multi-task representations:

* Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-
Kalai-Livni, ALT 2019]

Our results in context

Online learning of multi-task representations:

* Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-
Kalai-Livni, ALT 2019]

Online meta-initialization learning:

 Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

e Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-
Grazzi-Pontil, ICML 2019]

* | earnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

Our results in context

Online learning of multi-task representations:

* Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-
Kalai-Livni, ALT 2019]

Online meta-initialization learning:

 Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

e Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-
Grazzi-Pontil, ICML 2019]

* | earnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
e ARUBA [K-Balcan-Talwalkar, NeurlPS 2019]
* Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurlPS 2019]

Our results in context

Online learning of multi-task representations:

* Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-
Kalai-Livni, ALT 2019]

Online meta-initialization learning:
 Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

e Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-
Grazzi-Pontil, ICML 2019]

* | earnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
e ARUBA [K-Balcan-Talwalkar, NeurlPS 2019]
* Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurlPS 2019]

Non-convex stochastic optimization for meta-initialization:
e Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]
e Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurlPS 2019]

What else can we get by applying ARUBA"

Adaptivity
» Learn any base-learner parameter from data

» e.9., improved training algorithms for learning ¢ and n simultaneously

What else can we get by applying ARUBA"

Adaptivity

» Learn any base-learner parameter from data

» e.9., improved training algorithms for learning ¢ and n simultaneously
Generality

» Low-dynamic-regret algorithms for changing task-environments

» Stronger online-to-batch conversions for faster statistical rates

» Specialized within-task algorithms, e.g., satisfying privacy guarantees

Applications

» Adaptivity for improved few-shot learning
» Federated learning & private meta-learning

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 — ‘gt,i —1,; O Vt,i

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 — ‘gt,i —1,; O Vt,i

When is pre-conditioned online gradient descent useful”

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The convex case:

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The convex case:

non-isotropic
task-similarity

—_—

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The neural network case:

/ 1 _ car
— TRUCK

I

\ (R
e
' S — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o:qurqlgrso SOFTMAX
FEATURE LEARNING CLASSIFICATION

Source: Towards Data Science

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The neural network case:

— CAR
— TRUCK

> | -

— BICYCLE

TN\

INPUT FLATTEN FULLY SOFTMAX
feature extractors K R ml
shared across tasks Y

CLASSIFICATION

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The neural network case:

— CAR
— TRUCK
— VAN

— BICYCLE

INPUT

o
LA

feature extractors
shared across tasks

classification weights

adapted for each task

s learning an initialization good enough?

per-coordinate gradient on sample i
learning rate from task t

N/

Ht,i+1 =0,;—1;,; O Vt,i

When is pre-conditioned online gradient descent useful”
The neural network case:

| = |

— TRUCK

A -

' -

INPUT

— BICYCLE

low learning rate high learning rate

Updating the initialization using online learning

fortask r=1.,....T

sample task &,
within-task OGD(9, ¢,)

update ¢, ; using 0*

Updating the Initialization and the learning rate
using online learning

fortask r=1.,....T

sample task &,
within-task OGD(Z, ¢,, 1)

update ¢, ; using 0*

update 7,

Updating the Initialization and the learning rate
using online learning

Goal: set ¢,n to getlow

average regret across tasks.

fortask r=1.,....T | 7

sample task &,
within-task OGD(<Z , ¢, 1)

update ¢, ; using 0*

update 7, .,

Updating the Initialization and the learning rate
using online learning

Goal: set ¢,n to getlow

average regret across tasks.

fortask r=1,...,.T | 7 |z
?ZlRtS?ZIUt@bt’m)

sample task &, \
regret-upper-bound
within-task OGD(Z . ¢, ,)

update ¢, ; using 0*

update 7, .,

Applying ARUBA: the regret-upper-bound

Single-task regret gua

rantees are often nice and

data-dependent functior

1
Ulp.n) = Ellé’t*

s of the algorithm parameters.

—12 +) NV
! i=1
\ /

Mahalanobis horm

Applying ARUBA: the regret-upper-bound

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

Ulgp.) = —||e* Bl + 2 IVl
=1
d ¢)2 d m
B 2 T Z”JZVHJ
j=1 j=1 =1

/

summation over coordinates

Setting the learning rate along coordinate |

optimal learning rate

_ Bj 1 S % 2
77] — E] B] — 5 2 (Hl‘,j T ¢S,j)
=1

sum of squared distances
from initialization

T m

G = Z Z Vrz,i,j

=1 i=1

sum of squared gradients

Setting the learning rate along coordinate |

learned learning rate

|
s<t
sum of squared distances

track quantities from initialization

across tasks
m
— 2
Gy= X 2V

s<t 1=1

sum of squared gradients

Setting the learning rate along coordinate |

learned learning rate

Bt T € - 1)
Nij = > _ add smoothing terms Bt, i~ Z (HS*] — ¢S,j)
Crj+ &« 2 s<t

sum of squared distances
from initialization

Gj= 2, 2. Vi,

s<t 1=1

sum of squared gradients

Setting the learning rate along coordinate |

learned learning rate

Bt,j + &; o l % o)
Nej = \/Gt,j 4 Ct Bt,j _ N Z (es,j ¢S,j>

§<t

sum of squared distances
from initialization

Gj= 2, 2. Vi,

s<t 1=1

Theorem: O(T-?°) convergence to optimal per-coordinate 7

sum of squared gradients

Setting the learning rate along coordinate |

learned learning rate

B .+ € 1 o~ o)
Nij = \/GU. : Bt,j — 5 Z (es,j _ ¢s,j)

/ s<t
sum of squared distances

from initialization

Gj= 2, 2. Vi,

s<t 1=1

to obtain a practical
algorithm, use last-iterate

sum of squared gradients

Setting the learning rate along coordinate |

learned learning rate

B .+ € 1 o~ o)
Nij = \/GU. : Bt,j — 5 Z (es,j _ ¢s,j)

§<t

sum of squared distances
from initialization

m
— 2
;/] ' — }/]O Gt’] o Z Z Vsaiaj

sum of squared gradients

Applying this meta-learned learning rate on
few-shot Image classification

Applying this meta-learned learning rate on
few-shot Image classification

Mini-iImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot Image classification

Meta-Training Data

Mini-iImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot Image classification

Meta-Training Data

Mini-iImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot Image classification

Meta-Training Data

Mini-iImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Goal:

A\

learn to initialize (@)
and adapt (7) a four-
layer convolutional
neural network

Applying this meta-learned learning rate on
few-shot Image classification

Mini-lmageNet dataset

[Ravi-Larochelle]:

generate n-shot 5-way >

classification tasks by [l 5-shot
sampling n images from B 1-shot
each of 5 classes 52
Goal:
learn to initialize (¢) .
and adapt (7/’7) a four- MAML Meta-SGD Reptile Reptile

layer convolutional w.Adam w. ARUBA

neural network

Applying this meta-learned learning rate on
few-shot Image classification

Mini-lmageNet dataset

[Ravi-Larochelle]:

generate n-shot 5-way >

classification tasks by
sampling n images from
each of 5 classes 52

learn to initialize (¢) .

and adapt (7/’7) a four- MAML Meta-SGD Reptile Reptile
layer convolutional / w.Adam w. ARUBA

neural network MAML with per-coordinate
learning rate [Li et al.]

B 5-shot
B 1-shot

Applying this meta-learned learning rate on
few-shot Image classification

Mini-lmageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way >
classification tasks by [l 5-shot
sampling n images from B 1-shot
each of 5 classes 52
learn to initialize (@) .
and adapt (7/’7) a four- MAML Meta-SGD Reptile Reptile
layer convolutional / w.Adam w. ARUBA
neural network MAML with per-coordinate \
learning rate [Li et al.] popular per-coordinate

learning rate [Kingma-Ba]

Our adaptive learning rate after meta-training

learning rate

(log scale) classification

convolutional layer

layer (1) le-4 1le-3

- %

B
-r

'i

N |
_Em . || |
=l = ‘
-]
‘ ||

S s 4
E:B SRR S |
gl 5o B : .
7-4 | Er‘# E \;:I? ?J]!I—-D—[
[. n ﬁ .: l I

"4

| | .;7 N BN
_:l [.>I:|-:| | ‘ 5
| OfE. || h. | |
= [T
|| [l | L

g

e

e Lt G

Bl s

convolutional convolutional cc;nvolutinal |
layer (2) layer (3) layer (4)

QT R

IVRIRATT

JT

[T TENT

|
|

U

|
|

il

Applications

» Adaptivity for improved few-shot learning
» Federated learning & private meta-learning

Personalized rederated Learning

» Massively distributed

» Small sample sizes

» Privacy concerns

» Non-lID data and tasks

» Underlying task similarity

FedAvg ~ Rept”e 'with a batch-averaged meta-update]

FedAVQ ~ Rept”e 'with a batch-averaged meta-update]

» Most popular algorithm in federated learning

» Usually run without personalization - just use
the meta-initialization within-task

Personalization In Federated
|_earning via Adaptive ARUBA

» Meta-training: run FedAvg
with ARUBA optimizer
within-task

Personalization In Federated
|_earning via Adaptive ARUBA

» Meta-training: run FedAvg
with ARUBA optimizer
within-task

» Meta-testing - use
(preconditioned) OGD to
learn a personalized
model for each user

Personalization In Federated
|_earning via Adaptive ARUBA

Results on Shakespeare next-

» Meta-training: run FedAvg
with ARUBA optimizer
within-task

» Meta-testing - use
(preconditioned) OGD to
learn a personalized
model for each user

0.60

0.58 A

accuracy
o o o
U Ul Ul
N H o

o
U
o

0.48 -

0.46 -

character prediction task

Il refine
i global

FedAvg ARUBA FedAvg
(default) (isotropic) (tuned)

ARUBA
(full)

Differentially Private Federated
_earning via ARUBA

Sebastian Caldas Ameet Talwalkar

Differentially Private Federated
_earning via ARUBA

Motivation:

® protect user data from untrusted
central server - the meta-learner

® avoid utility loss associated with
local differential privacy

Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted
fortask r=1_ T central server - the meta-learner
T ® avoid utility loss associated with

sample task J, local differential privacy

0, — within-task SGD(Z,, ¢,)

h1 — (1 —a)p, + aé’t

return ¢ = ¢,

Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted
fortask r=1_ T central server - the meta-learner
T ® avoid utility loss associated with

sample task J, local differential privacy

A\

0, — within-task SGD(Z,, ¢,)

not private to
central server

h1 — (1 —a)p, + aé’t

return ¢ = ¢,

Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted
fortask r=1_ . T central server - the meta-learner
T ® avoid utility loss associated with

sample task J, local differential privacy

A\

f, — within-task noisy SGD(2, ¢,)

$1 — (1 —a)p, + aé’t

return ¢ = ¢,

Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted
fortask r=1_ T central server - the meta-learner
T ® avoid utility loss associated with

sample task 9, local differential privacy

A\

0, < within-task noisy SGD(Z, ¢,) Our results:

A ® mmediate user-record-level
G < (I =), + ab, privacy guarantee for any model

return ¢ = ¢,

Differentially Private Federated
_earning via ARUBA

Motivation:
® protect user data from untrusted

central server - the meta-learner
® avoid utllity loss associated with
local differential privacy

fortask r=1,....T

sample task &,

A\

0, «— within-task noisy SGD(Z, ¢,) Our results:
A ® Immediate user-record-level
G < (I =), + ab, privacy guarantee for any model
® In the convex case: bound on
return ¢ = ¢, excess transfer risk that improves
with task-similarity

Differentially Private Next-Character Prediction

Shakespeare-800 Accuracy (Reptile)

b
-

p—t
on

p—t
o

local differential privacy
(for three different
privacy budgets)

AccuracyTopl (%)

0 250 500 750 1000 1250 1500 1750 2000
Clients Seen

Differentially Private Next-Character Prediction

[
o =

AccuracyTopl (%)

Shakespeare-800 Accuracy (Reptile)

o

250

500

750 1000 1250
Clients Seen

1500

1750

2000

our approach
(for three different
privacy budgets)

local differential privacy
(for three different
privacy budgets)

Differentially Private Next-Character Prediction

b
-

AccuracyTopl (%)

Shakespeare-800 Accuracy (Reptile)

—
on

—
-

o

250

500

750 1000 1250
Clients Seen

1500

1750

2000

non-private

/ learning

our approach
(for three different
privacy budgets)

local differential privacy
(for three different
privacy budgets)

lakeaways

ARUBA: a theoretical framework for analyzing and designing meta-learning
algorithms via reduction to online learning:

e First guarantees for initialization-based meta-learning methods showing
provable improvement over single-task learning

e New principled algorithm for meta-learning the learning rate in addition to
the Initialization

 Novel practical algorithm for differentially private meta-learning

Next steps

Future directions:

e Beyond adversarial analysis within-task — can the base-learners be
statistical or reinforcement learning algorithms?

e Better multi-task optimizers for regimes beyond few-shot learning.

e Non-convex losses and non-linear representations

Thank You!

ARUBA: https://arxiv.org/abs/1906.02717

More Info: http://www.cs.cmu.edu/~mkhodak/

Blog: https://blog.ml.cmu.edu/2019/11/22/aruba

http://www.cs.cmu.edu/~mkhodak/
https://arxiv.org/abs/1906.02717
https://blog.ml.cmu.edu/2019/11/22/aruba

