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Why privacy in meta-learning?

Problem: Meta-learning shares knowledge across tasks, leaving task-
owners’ (e.g. mobile users, hospitals) data vulnerable to inference

Questions:
1. What are appropriate notions of privacy for meta-learning?
What are applications of these various notions?

Can we sufficiently privatize common methods while retaining utility?
How does our proposed approach work empirically?
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Gradient-Based Meta-Learning

Algorithms alternate between within-task queries and meta-level queries
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A task’s data can potentially be inferred by any downstream agent.



What data is
protected?

What are appropriate notions of
privacy in meta-learning?

less private

Who are the adversaries?

Other task-owners

Task-owners and the
meta-learner

Global DP

__________________________________________________________________

(assumes trust in server)

Task-Global DP

Local DP
(difficult to retain utility)

more private




What does this mean practically?

Q Mobile Users g Hospitals

Global Whole SMS history private Whole database private
to only other users to only other hospitals
L | Whole SMS history private Whole database private
. to everyone to everyone
Task- Individual messages Each patient’s record
Global private to everyone private to everyone




Can we privatize Reptile! while still
retaining the utility of meta-learning?

Results: Applying a noisy SGD procedure within-task, we can guarantee both
e Task-global DP in all settings
e Bound for the transfer-risk in convex settings
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Federated Language Modeling
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Our Contributions

. What are appropriate notions of privacy in meta-learning?
Formalized task-global DP as useful relaxation of local DP

. What are applications of these various notions?

We show natural applications to personalized federated learning
. Can we sufficiently privatize common methods while retaining utility?
Reptile-like method with both privacy and learning guarantees

. How does our approach work empirically?

Showed usefulness of task-global DP in non-convex experiments



Find out more!

* Full paper: https://openreview.net/forum?id=rJggMRVYvr

e Contact me: jwl3@andrew.cmu.edu
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