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Optimizing federated hyperparameters

Tuning hyperparameters in federated learning is

difficult:

1. Validation data is federated — cannot easily
compute validation loss

2. Extreme resource limitations — cannot do many
training runs

3.  Evaluating personalization — personalized models
require extra training to validate

Batch 1

e

1 = Loc (T, wy)}

Batch 2
Server g | Pusteoliml)
wt = Agg (wv {Wzi} wr—]
Batch 7

‘ E {W, = Loc (T,,w,_))}

Our contributions:

1. We adapt existing baselines such as random
search and successive halving (SHA) to the
federated setting and study their limitations

2.  We propose a new algorithm called FedEx for
tuning local hyperparameters that ameliorates
the above challenges
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FedEx: Tuning local hyperparameters

Most federated algorithms can be divided into two subroutines:

*  Loc.(T,w) that runs local training (e.g. SGD) on dataset T from initialization w

o Aggp(w,{w;}) that aggregates results {w;} of local training and uses them to
update the initialization w

FedEx tunes the hyperparameters b of Aggp:

* Can be formulated as an application of weight-sharing, a neural architecture
search technique, to meta-learning

* Provably tunes the local step-size in the online convex optimization setting

e Applicable to any algorithm with the above structure
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«  FedProx baseline )¢, total number of steps 7 > 1
initialize §; = 1 /k and shared weights w; € R¢
for comm. roundt =1,...,7 do
* SCAFFOLD for clienti = 1,..., B do
send wy, 6, to client
* Reptile sample ¢;; ~ Do,
wy; < Loce,, (Tii, W)
* FedDyn send Wy, cti, Lv,, (We;) to server

Wil < J;ggb(w, {wi}E,)
*  FedPA va 2im1 Vil (Lvy, (Wh)—)\t)lc“-:Cj .
Vi Es 6u S Ve Vi
Ot+1 01 © exp(—n;V)
Or+1 = Or1/[10z41111
Output model w, hyperparameter distribution 6

* MAML

* Ditto

ELLON
o w,,

—

Hewlett Packard
Enterprise

, N
6, N
7 PENNSYY

Experimental Results

Evaluations on three standard federated benchmarks

* Adapting SHA is a strong hyperparameter tuning baseline

* FedEx wrapped with SHA leads to consistent improvement in online and
final evaluation settings, for both personalization and the global model
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FEMNIST (non-i.i.d.)

FEMNIST online evaluation, fully non-i.i.d. data FEMNIST online evaluation, fully non-i.i.d. data
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CIFAR-10 (i.i.d.)

CIFAR online evaluation, i.i.d. client data CIFAR online evaluation, i.i.d. client data
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