Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing

Misha Khodak, Renbo Tu, Tian Li, Liam Li, Nina Balcan, Virginia Smith, Ameet Talwalkar khodak@cmu.edu

Optimizing federated hyperparameters

Tuning hyperparameters in federated learning is difficult:

- Validation data is federated cannot easily compute validation loss
- 2. Extreme resource limitations cannot do many training runs
- 3. Evaluating personalization personalized models require extra training to validate

Our contributions:

- We adapt existing baselines such as random search and successive halving (SHA) to the federated setting and study their limitations
- 2. We propose a new algorithm called FedEx for tuning local hyperparameters that ameliorates the above challenges

FedEx: Tuning local hyperparameters

Most federated algorithms can be divided into two subroutines:

- $Loc_c(T, \mathbf{w})$ that runs local training (e.g. SGD) on dataset T from initialization \mathbf{w}
- $Agg_b(\mathbf{w}, \{\mathbf{w}_i\})$ that aggregates results $\{\mathbf{w}_i\}$ of local training and uses them to update the initialization \mathbf{w}

FedEx tunes the hyperparameters b of Agg_b :

- Can be formulated as an application of weight-sharing, a neural architecture search technique, to meta-learning
- Provably tunes the local step-size in the online convex optimization setting
- Applicable to any algorithm with the above structure
 - FedAvg
 - FedProx
 - SCAFFOLD
 - Reptile
 - FedDyn
 - FedPA
 - MAML

Ditto

L

Input: configurations $c_1, \ldots, c_k \in \mathcal{C}$, setting b for Agg_b, schemes for setting step-size η_t and baseline λ_t , total number of steps $\tau \geq 1$ initialize $\theta_1 = \mathbf{1}_k/k$ and shared weights $\mathbf{w}_1 \in \mathbb{R}^d$ for comm. round $t = 1, \ldots, \tau$ do

 $\begin{aligned} & \text{for } client \ i = 1, \dots, B \ \textbf{do} \\ & \quad \text{send } \mathbf{w}_t, \theta_t \ \text{to client} \\ & \quad \text{sample } c_{ti} \sim \mathcal{D}_{\theta_t} \\ & \quad \mathbf{w}_{ti} \leftarrow \mathsf{Loc}_{c_{ti}}(T_{ti}, \mathbf{w}_t) \\ & \quad \text{send } \mathbf{w}_{ti}, c_{ti}, L_{V_{ti}}(\mathbf{w}_{ti}) \ \text{to server} \end{aligned}$ $& \quad \mathbf{w}_{t+1} \leftarrow \mathsf{Agg}_b(\mathbf{w}, \{\mathbf{w}_{ti}\}_{i=1}^B) \\ & \quad \tilde{\nabla}_j \leftarrow \frac{\sum_{i=1}^B |V_{ti}|(L_{V_{ti}}(\mathbf{w}_{ti}) - \lambda_t) \mathbf{1}_{c_{ti} = c_j}}{\theta_{t|j|} \sum_{i=1}^B |V_{ti}|} \ \forall j$ $& \quad \theta_{t+1} \leftarrow \theta_t \odot \exp(-\eta_t \tilde{\nabla}) \\ & \quad \theta_{t+1} \leftarrow \theta_{t+1}/\|\theta_{t+1}\|_1 \end{aligned}$

Output: model w, hyperparameter distribution θ

Experimental Results

Evaluations on three standard federated benchmarks

- Adapting SHA is a strong hyperparameter tuning baseline
- FedEx wrapped with SHA leads to consistent improvement in online and final evaluation settings, for both personalization and the global model

Shakespeare (non-i.i.d.)

FEMNIST (non-i.i.d.)

CIFAR-10 (i.i.d.)

