
Learning to Relax: 
Setting solver parameters across a sequence of linear system instances
Misha Khodak, Edmond Chow, Nina Balcan, Ameet Talwalkar
khodak@cmu.edu

Online learning to solve linear systems

Goal: solve 𝑇 s.p.d. linear systems
• for each matrix-vector pair 𝐀!, 𝐛! , … , 𝐀", 𝐛"

find 𝐱 s.t. 𝐀#𝐱 − 𝐛# $ ≤ 𝜀 𝐛# $ for 𝜀 ≪ 1
• solve each using a solver parameterized by 𝜔 ∈ Ω

that takes 𝐼(𝐀, 𝐛, 𝜔) iterations.

1. Can we find the best 𝜔∗ ∈ Ω using only the 
iteration cost as feedback? In other words, can we 
minimize regret

𝑅𝑒𝑔(𝜔∗) =6
#&!

"

𝐼(𝐀#, 𝐛#, 𝜔#) −6
#&!

"

𝐼(𝐀#, 𝐛#, 𝜔∗)

2. If we have structural info, e.g. 𝐀# = 𝐀 + 𝑐#𝐈, can we 
learn the instance-optimal policy 𝜋∗: ℝ ↦ Ω

𝑅𝑒𝑔(𝜋∗) =6
#&!

"

𝐼(𝐀#, 𝐛#, 𝜔#) −6
#&!

"

𝐼(𝐀#, 𝐛#, 𝜋∗(𝑐#))

Applications:
• numerical simulation 
• solving nonlinear systems 
• many graphics subroutines
• …

For example: 
solving the heat equation with conductivity 𝜅#
involves matrices 𝐀# =

'
(!
𝐈 − 𝛁$ , where 𝑐 is a 

constant and 𝛁 is a discrete Laplacian

Learning the relaxation parameter 𝝎 of SOR

We study successive over-relaxation (SOR), a linear solver 
parameterized by 𝜔 ∈ [1,2) often used as a preconditioner 
for conjugate gradient (CG) or as a multigrid smoother. To 
prevent degeneracy, we assume 𝐛# are drawn i.i.d. from a 
truncated Gaussian.

1. Standard bandit algos (e.g. Exp3 [2] / Tsallis-INF [1]) 
attain sublinear regret w.r.t. a fixed relaxation 
parameter:

𝑅𝑒𝑔 𝜔∗ = 𝑂 𝑇$/* log !+

2. We introduce ChebCB, which incorporates Chebyshev 
regression into a standard contextual bandit algo [3]. It 
attains sublinear regret w.r.t. the instance optimal 
parameters:

𝑅𝑒𝑔 (𝜋∗) = 𝑂 𝑛𝑇,/!! log !+

See paper for non-stochastic analysis, SOR-preconditioned 
CG results, and new proof techniques for data-driven algos.
Future: multi-parameter preconditioners, non-s.p.d. solvers

ChebCB algorithm:
set uniform discretization 𝐠 ∈ Ω!
for instance 𝑡 = 1,… , 𝑇
• fit truncated Chebyshev series to costs 𝐼(𝐀", 𝑏", 𝐠[$!]) at 

context, parameters pairs (𝑐", 𝐠[$!])
• sample 𝑖& via inverse gap-weighting with weights 

determined by applying the fitted regressors to (𝑐&, 𝐠[$"])
• solve 𝐀&𝐱 = 𝐛& using parameter 𝐠[$"]

References:
[1] Abernethy, Lee, Tewari. NeurIPS 2015.
[2] Auer, Cesa-Bianchi, Freund, Schapire. SIAM J. Computing.
[3] Foster, Rakhlin. ICML 2020.


