Learning to Relax: Setting solver parameters across a sequence of linear system instances Misha Khodak, Edmond Chow, Nina Balcan, Ameet Talwalkar

khodak@cmu.edu

Online learning to solve linear systems

Goal: solve T s.p.d. linear systems

- for each matrix-vector pair $(\mathbf{A}_1, \mathbf{b}_1), \dots, (\mathbf{A}_T, \mathbf{b}_T)$ find **x** s.t. $\|\mathbf{A}_t \mathbf{x} - \mathbf{b}_t\|_2 \le \varepsilon \|\mathbf{b}_t\|_2$ for $\varepsilon \ll 1$
- solve each using a solver **parameterized** by $\omega \in \Omega$ that takes $I(\mathbf{A}, \mathbf{b}, \omega)$ iterations.
- 1. Can we find the best $\omega^* \in \Omega$ using only the iteration cost as feedback? In other words, can we minimize regret

$$Reg(\omega^*) = \sum_{t=1}^{T} I(\mathbf{A}_t, \mathbf{b}_t, \omega_t) - \sum_{t=1}^{T} I(\mathbf{A}_t, \mathbf{b}_t, \omega_t)$$

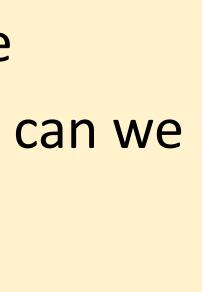
2. If we have structural info, e.g. $A_t = A + c_t I$, can we learn the **instance-optimal policy** π^* : $\mathbb{R} \mapsto \Omega$

$$Reg(\pi^*) = \sum_{t=1}^{T} I(\mathbf{A}_t, \mathbf{b}_t, \omega_t) - \sum_{t=1}^{T} I(\mathbf{A}_t, \mathbf{b}_t, \omega_t)$$

References:

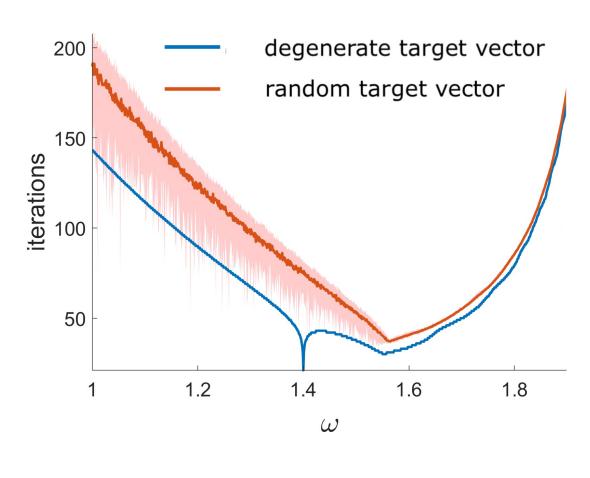
[1] Abernethy, Lee, Tewari. NeurIPS 2015.

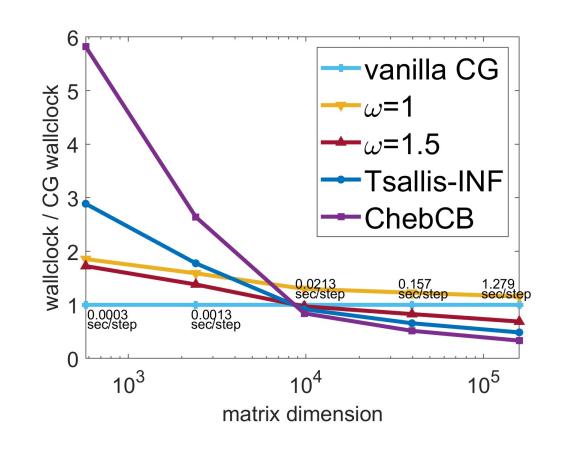
- [2] Auer, Cesa-Bianchi, Freund, Schapire. SIAM J. Computing.
- [3] Foster, Rakhlin. ICML 2020.



 $t, \omega^*)$

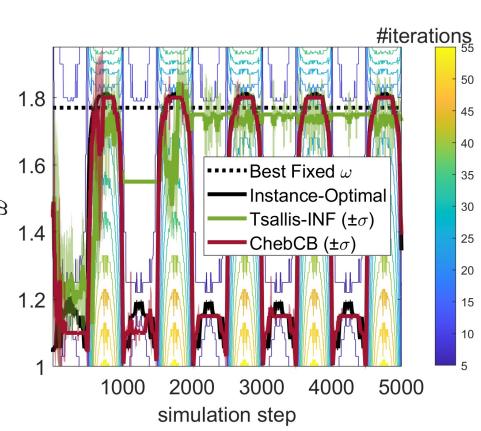
 $_t,\pi^*(c_t))$





Applications:

- numerical simulation
- solving nonlinear systems
- many graphics subroutines •



For example:

solving the heat equation with conductivity κ_t involves matrices $\mathbf{A}_t = \frac{c}{\kappa_t} \mathbf{I} - \nabla^2$, where c is a constant and ∇ is a discrete Laplacian

ChebCB algorithm:

set uniform discretization $\mathbf{g} \in \Omega^d$ for instance t = 1, ..., T

- fit truncated Chebyshev series to costs $I(\mathbf{A}_s, b_s, \mathbf{g}_{[i_s]})$ at context, parameters pairs $(c_s, \mathbf{g}_{[i_s]})$
- sample i_t via inverse gap-weighting with weights determined by applying the fitted regressors to $(c_t, \mathbf{g}_{[i_t]})$
- solve $\mathbf{A}_t \mathbf{x} = \mathbf{b}_t$ using parameter $\mathbf{g}_{[i_t]}$

Learning the relaxation parameter ω of SOR

We study successive over-relaxation (SOR), a linear solver parameterized by $\omega \in [1,2)$ often used as a preconditioner for conjugate gradient (CG) or as a multigrid smoother. To prevent degeneracy, we assume \mathbf{b}_t are drawn i.i.d. from a truncated Gaussian.

Standard bandit algos (e.g. Exp3 [2] / Tsallis-INF [1]) attain sublinear regret w.r.t. a fixed relaxation parameter:

$$Reg(\omega^*) = O(T^2)$$

2. We introduce **ChebCB**, which incorporates Chebyshev regression into a standard contextual bandit algo [3]. It attains sublinear regret w.r.t. the instance optimal parameters:

 $Reg(\pi^*) = O\left(\sqrt{nT^{9/11}\log\frac{1}{\epsilon}}\right)$

See paper for non-stochastic analysis, SOR-preconditioned CG results, and new proof techniques for data-driven algos. **Future:** multi-parameter preconditioners, non-s.p.d. solvers

 $\frac{2}{3}\log\frac{1}{\epsilon}$