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Overview
• The popularity of cloud computing services has led to the rise of 

dual-market pricing schemes: 

• Providers sell some instances at a fixed “on-demand” price. 

• Excess capacity is sold at a variable “spot-price” determined 
via an auction. 

• We propose a nonlinear dynamical system model to understand 
spot-price behavior in this environment. 

• We verify our model using five months of Amazon EC2 data and 
demonstrate its potential to inform strategic bidding between 
heterogeneous cloud resources.



The Amazon EC2 Spot Market
1. Select the type of instance 

2. Configure and set a bid price 

3. Amazon sets a spot price 
4. User receives instance if bid was above spot price



Motivation
• Spot price dynamics are poorly understood, with past 

economic modeling focusing mainly on global behavior: 

• Zheng et al. (SIGCOMM 2015) study the spot price 
distribution at equilibrium. 

• Hoy et al. (WINE 2016) explain the optimality of a two-
market design as stemming from variable user risk 
aversion. 

• Understanding temporal dynamics can better inform 
strategic bidding.



Spot Price Observations

m3.medium spot price 
over 5 months in 2017

The spot price ⇡t tends

to hover above a constant

lower bound price ⇡.

Sometimes goes above the on-demand
price ⇡. Occurs when on-demand users
take up too much capacity.



Provider Profit Maximization
on-demand 
instances

spot-market 
instances

on-demand profit spot-market profit

(⇡ � ⇡)N (d)
t + (⇡t � ⇡)N (s)

t

Need a constraint on the number of instances (N):

• Profit-Maximizing: N (d)
t +N (s)

t  N

• Usage-Maximizing: N (d)
t +N (s)

t = N



Maximize Profit or Usage?
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Proposition [KZLJC’18]: If Bt bids are drawn independently from a distri-

bution that weakly stochastically dominates the uniform distribution over [⇡,⇡],
then if the provider uses the profit-maximizing constraint we have
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for ⇢ 2 [0, 1/4] and ⇡(⇢)
= ⇢⇡ + (1� ⇢)⇡.

So a profit-maximizing provider will not set ⇡t close to ⇡ very often, which

contradicts the data and motivates the choice of a usage-maximizing constraint:



Observed Spot Price Model
At time t cloud provider sees Bt bids, which we model as being i.i.d. draws

from U [⇡,⇡] (Zheng et al., 2015). Then in the limit Bt ! 1 this the spot price

is distributed as

⇡t =

8
<

:

⇡ nt + bt  1 (not enough users)

⇡ � (⇡ � ⇡) 1�nt
bt

+ "t 0 < 1� nt < bt
⇡ nt � 1 (too many on-demand users)

where we define:

nt = N (d)
t /N on-demand usage

bt = Bt/N spot usage
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Job Arrival and Departure
We model two hidden variables:

1. nt, the number of running on-demand jobs at time t, normalized by N

2. bt, the number of active spot bids at time t, normalized by N

At each time step, ⇤

(d)
t on-demand jobs arrive, ⇤

(s)
t spot jobs arrive,

˜

⇤

(d)
t on-

demand jobs complete, and

˜

⇤

(s)
t spot jobs complete. This yields the dynamical

system

nt+1 = nt + �(d)
t � ˜�(d)

t

bt+1 = bt + �(s)
t � ˜�(s)

t

for all �t = ⇤t/N modeled as i.i.d. draws from exponential distributions.



Combined Model
Our spot price model is a hidden Markov model (HMM) with hidden state
transition governed by the job arrival/departure model:

nt+1 = nt + �(d)
t � �̃(d)

t

bt+1 = bt + �(s)
t � �̃(s)

t

and the spot price distribution:

⇡t =

8
<

:

⇡ nt + bt  1
⇡ � (⇡ � ⇡) 1�nt

bt
+ "t 0 < 1� nt < bt

⇡ nt � 1

Five model parameters: a scale parameter for each exponentially-distributed �t

for job arrival/departure and variance �2 of the Gaussian observation noise "t.

observation

hidden state



Parameter Estimation
• Model parameters and 

hidden states are jointly 
estimated using 
Expectation-Maximization 
(EM). 

• The E-step is conducted 
using a sequential Monte 
Carlo (“particle filter”) 
approach: 
• Better suited better 

than Kalman-type 
filters for non-smooth, 
singular models. 

• Can handle hidden 
state constraints.
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Strategic Bidding
• We consider the setting where we want to start a job immediately. 

• In the single-instance setting, the optimal strategy is to bid the on-
demand price, if one can afford it. 

• Instead we can bid within a class of instances by assuming jobs 
can be easily parallelized.

family of 
compute-
optimized 
instances

price scales linearly 
with resources



Choosing Between Instance 
Families

Given a price ⇡(i)
⌧ at time ⌧ for each instance type i in a family I of instances,

we wish to minimize the instance cost:

P (i)
⌧ =

t+TiX

t=⌧+1

⇡(i)
t

for Ti the amount of time it takes to finish a job on type i.

• Solved by using a spot-price model to find i⌧ = argminE
⇡(i)
⌧
P (i)
⌧ .

• In experiments we assume jobs that can be run completely in parallel.

• Can be extended to bidding on non perfectly-parallel jobs and strategic

bidding across geographic regions.



Expected Instance Cost: 
Leveraging Our Model

• Simulation: use learned parameters to compute the expected 
instance cost by simulating multiple trajectories. 
• Requires a lot of computation for high accuracy. 
• Empirically useful on shorter job lengths. 

• Approximation: approximate the expected instance cost 
using a second-order Taylor expansion. 
• Cheap to compute. 
• Empirically useful on longer timescales. 
• Assumes the job arrival/departure rates are about the same 

in both the on-demand and spot market (empirically true).



Expected Instance Cost: 
Linear Auto-Regression

• Baseline AR(p) 
model - the price at 
each time step is 
some noisy linear 
combination of the 
price at p previous 
time steps. 

• Data does not satisfy 
standard Gaussian 
error assumptions 
and uncorrelated 
residuals.
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Evaluating Bidding 
Strategies

• The performance of each bidding strategy is evaluated using 
regret: the difference between the cost of the chosen action 
and that of the best action in hindsight. 

• Model-based methods succeed especially well on shorter-
term (e.g. 16-hour) jobs.
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Performance and Volatility
• Model is consistently better than AR on more volatile instances. 

• More monetary gain to be had from strategic bidding. 
• More overlap between the realized cost distributions of 

different instances.
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Summary

• We model spot-pricing in cloud computing as a 
nonlinear dynamical system. 

• Amazon EC2 data was used to analyze the 
problem and learn model parameters. 

• We describe strategies for strategic bidding 
between instances that can make use of the model.



Open Questions
• How do we examine the problem in the setting 

where dynamics can be influenced across instance 
families or different regions? 

• Provide a model for job departure that explicitly 
depends on the recent job arrival random 
variables. 

• Devise more sophisticated bidding strategies 
requiring lighter assumptions concerning job 
parallelism.



Thank you!

Questions? 

Contact e-mail: mkhodak@princeton.edu

mailto:mkhodak@princeton.edu?subject=

