Learning Cloud Dynamics to Optimize Spot Instance Bidding Strategies

Misha Khodak

Joint with Liang Zheng, Andrew Lan, Carlee Joe-Wong, and Mung Chiang

Overview

- The popularity of cloud computing services has led to the rise of dual-market pricing schemes:
 - Providers sell some instances at a fixed "on-demand" price.
 - Excess capacity is sold at a variable "spot-price" determined via an auction.
- We propose a nonlinear dynamical system model to understand spot-price behavior in this environment.
- We verify our model using five months of Amazon EC2 data and demonstrate its potential to inform strategic bidding between heterogeneous cloud resources.

The Amazon EC2 Spot Market

1. Select the type of instance

Amazon Linux Free tier eligible	Memory optimized	r3.large	2	15	1 x 32 (SSD)	-	Moderate
	Memory optimized	r3.xlarge	4	30.5	1 x 80 (SSD)	Yes	Moderate
Red Hat Free tier eligible	Memory optimized	r3.2xlarge	8	61	1 x 160 (SSD)	Yes	High
	Memory optimized	r3.4xlarge	16	122	1 x 320 (SSD)	Yes	High
	Memory optimized	r3.8xlarge	32	244	2 x 320 (SSD)	-	10 Gigabit

2. Configure and set a bid price

Number of instances	6	1				
Purchasing option	i	Request Spot Instances				
Current price	i)	us-east-1a	0.1582			
		us-east-1b	0.1587			
		us-east-1d	0.1821			
		us-east-1e	0.1856			
Maximum price	• ()	\$ (e.g. 0.045 = 4.5 cents/hour)				

3. Amazon sets a spot price

4. User receives instance if bid was above spot price

Motivation

- Spot price dynamics are poorly understood, with past economic modeling focusing mainly on global behavior:
 - Zheng et al. (SIGCOMM 2015) study the spot price distribution at equilibrium.
 - Hoy et al. (WINE 2016) explain the optimality of a twomarket design as stemming from variable user risk aversion.
- Understanding temporal dynamics can better inform strategic bidding.

Spot Price Observations

0.10 0.08 0.06 0.04 0.02 0.00 May Jun. Mar. Jul. Apr. Aug.

Sometimes goes above the on-demand price $\overline{\pi}$. Occurs when on-demand users take up too much capacity.

The spot price π_t tends to hover above a constant lower bound price $\underline{\pi}$.

m3.medium spot price over 5 months in 2017

Provider Profit Maximization

Need a constraint on the number of instances (N):

- Profit-Maximizing: $N_t^{(d)} + N_t^{(s)} \le N$
- Usage-Maximizing: $N_t^{(d)} + N_t^{(s)} = N$

Maximize Profit or Usage?

Proposition [KZLJC'18]: If B_t bids are drawn independently from a distribution that weakly stochastically dominates the uniform distribution over $[\underline{\pi}, \overline{\pi}]$, then if the provider uses the profit-maximizing constraint we have

$$\mathbb{P}\left(\pi_t \le \pi^{(\rho)}\right) \le \exp\left(-2\left(\frac{1}{2} - 2\rho\right)^2 B_t\right)$$

for $\rho \in [0, 1/4]$ and $\pi^{(\rho)} = \rho \overline{\pi} + (1 - \rho) \underline{\pi}$.

So a profit-maximizing provider will not set π_t close to $\underline{\pi}$ very often, which contradicts the data and motivates the choice of a usage-maximizing constraint:

Observed Spot Price Model

At time t cloud provider sees B_t bids, which we model as being i.i.d. draws from $\mathcal{U}[\underline{\pi}, \overline{\pi}]$ (Zheng et al., 2015). Then in the limit $B_t \to \infty$ this the spot price is distributed as

$$\pi_t = \begin{cases} \frac{\pi}{\overline{\pi}} - (\overline{\pi} - \underline{\pi}) \frac{1 - n_t}{b_t} + \varepsilon_t & n_t + b_t \leq 1 & \text{(not enough users)} \\ \overline{\pi} & 0 < 1 - n_t < b_t \\ n_t \geq 1 & \text{(too many on-demand users)} \end{cases}$$

where we define:

$$n_{t} = N_{t}^{(d)}/N$$

$$b_{t} = B_{t}/N$$

$$\varepsilon_{t} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{b_{t}}\right)$$

on-demand usage spot usage observation noise

Job Arrival and Departure

We model two hidden variables:

- 1. n_t , the number of running on-demand jobs at time t, normalized by N
- 2. b_t , the number of active spot bids at time t, normalized by N

At each time step, $\Lambda_t^{(d)}$ on-demand jobs arrive, $\Lambda_t^{(s)}$ spot jobs arrive, $\tilde{\Lambda}_t^{(d)}$ ondemand jobs complete, and $\tilde{\Lambda}_t^{(s)}$ spot jobs complete. This yields the dynamical system

$$n_{t+1} = n_t + \lambda_t^{(d)} - \tilde{\lambda}_t^{(d)}$$
$$b_{t+1} = b_t + \lambda_t^{(s)} - \tilde{\lambda}_t^{(s)}$$

for all $\lambda_t = \Lambda_t / N$ modeled as i.i.d. draws from exponential distributions.

Combined Model

Our spot price model is a hidden Markov model (HMM) with hidden state transition governed by the job arrival/departure model:

$$n_{t+1} = n_t + \lambda_t^{(d)} - \tilde{\lambda}_t^{(d)}$$
$$b_{t+1} = b_t + \lambda_t^{(s)} - \tilde{\lambda}_t^{(s)}$$

hidden state

and the spot price distribution:

$$\pi_t = \begin{cases} \frac{\pi}{\overline{\pi}} - (\overline{\pi} - \underline{\pi}) \frac{1 - n_t}{b_t} + \varepsilon_t & \begin{array}{c} n_t + b_t \leq 1 \\ 0 < 1 - n_t < b_t \\ n_t \geq 1 \end{array} \quad \text{observation} \end{cases}$$

Five model parameters: a scale parameter for each exponentially-distributed λ_t for job arrival/departure and variance σ^2 of the Gaussian observation noise ε_t .

Parameter Estimation

- Model parameters and hidden states are jointly estimated using Expectation-Maximization (EM).
- The E-step is conducted using a sequential Monte Carlo ("particle filter") approach:
 - Better suited better than Kalman-type filters for non-smooth, singular models.
 - Can handle hidden state constraints.

m3.medium, spring 2017

g2.2xlarge, spring 2017

Strategic Bidding

- We consider the setting where we want to start a job immediately.
- In the single-instance setting, the optimal strategy is to bid the ondemand price, if one can afford it.
- Instead we can bid within a class of instances by assuming jobs can be easily parallelized.

Region: US East	Unio)	-			
	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage
c4.large	2	8	3.75	EBS Only	\$0.1 per Hour
c4.xlarge	4	16	7.5	EBS Only	\$0.199 per Hour
c4.2xlarge	8	31	15	EBS Only	\$0.398 per Hour
c4.4xlarge	16	62	30	EBS Only	\$0.796 per Hour
c4.8xlarge	36	132	60	EBS Only	\$1.591 per Hour
	c4.large c4.xlarge c4.2xlarge c4.2xlarge c4.4xlarge c4.8xlarge	vCPUc4.large2c4.xlarge4c4.2xlarge8c4.4xlarge16c4.8xlarge36	vCPUECUc4.large28c4.xlarge416c4.2xlarge831c4.4xlarge1662c4.8xlarge36132	vCPU ECU Memory (GiB) c4.large 2 8 3.75 c4.xlarge 4 16 7.5 c4.2xlarge 8 31 15 c4.4xlarge 16 62 30 c4.8xlarge 36 132 60	vCPUECUMemory (GiB)Instance Storage (GB)c4.large283.75EBS Onlyc4.xlarge4167.5EBS Onlyc4.2xlarge83115EBS Onlyc4.4xlarge166230EBS Onlyc4.8xlarge3613260EBS Only

price scales linearly with resources

Choosing Between Instance Families

Given a price $\pi_{\tau}^{(i)}$ at time τ for each instance type *i* in a family \mathcal{I} of instances, we wish to minimize the instance cost:

$$P_{\tau}^{(i)} = \sum_{t=\tau+1}^{t+T_i} \pi_t^{(i)}$$

for T_i the amount of time it takes to finish a job on type *i*.

- Solved by using a spot-price model to find $i_{\tau} = \arg \min \mathbb{E}_{\pi_{\tau}^{(i)}} P_{\tau}^{(i)}$.
- In experiments we assume jobs that can be run completely in parallel.
- Can be extended to bidding on non perfectly-parallel jobs and strategic bidding across geographic regions.

Expected Instance Cost: Leveraging Our Model

- **Simulation:** use learned parameters to compute the expected instance cost by simulating multiple trajectories.
 - Requires a lot of computation for high accuracy.
 - Empirically useful on shorter job lengths.
- **Approximation:** approximate the expected instance cost using a second-order Taylor expansion.
 - Cheap to compute.
 - Empirically useful on longer timescales.
 - Assumes the job arrival/departure rates are about the same in both the on-demand and spot market (empirically true).

Expected Instance Cost: Linear Auto-Regression

- Baseline AR(p) model - the price at each time step is some noisy linear combination of the price at p previous time steps.
- Data does not satisfy standard Gaussian error assumptions and uncorrelated residuals.

AR(17)

AR(1)

Evaluating Bidding Strategies

- The performance of each bidding strategy is evaluated using regret: the difference between the cost of the chosen action and that of the best action in hindsight.
- Model-based methods succeed especially well on shorterterm (e.g. 16-hour) jobs.

16 Hours

64 Hours

Performance and Volatility

- Model is consistently better than AR on more volatile instances.
 - More monetary gain to be had from strategic bidding.
 - More overlap between the realized cost distributions of different instances.

Payment Distribution for Different Instances

Volatile Instances (g2, i3)

Summary

- We model spot-pricing in cloud computing as a nonlinear dynamical system.
- Amazon EC2 data was used to analyze the problem and learn model parameters.
- We describe strategies for strategic bidding between instances that can make use of the model.

Open Questions

- How do we examine the problem in the setting where dynamics can be influenced across instance families or different regions?
- Provide a model for job departure that explicitly depends on the recent job arrival random variables.
- Devise more sophisticated bidding strategies requiring lighter assumptions concerning job parallelism.

Thank you!

Questions?

Contact e-mail: <u>mkhodak@princeton.edu</u>