
Learning Cloud Dynamics
to Optimize Spot Instance

Bidding Strategies
Misha Khodak

Joint with Liang Zheng, Andrew Lan, Carlee Joe-Wong, and Mung Chiang

Overview
• The popularity of cloud computing services has led to the rise of

dual-market pricing schemes:

• Providers sell some instances at a fixed “on-demand” price.

• Excess capacity is sold at a variable “spot-price” determined
via an auction.

• We propose a nonlinear dynamical system model to understand
spot-price behavior in this environment.

• We verify our model using five months of Amazon EC2 data and
demonstrate its potential to inform strategic bidding between
heterogeneous cloud resources.

The Amazon EC2 Spot Market
1. Select the type of instance

2. Configure and set a bid price

3. Amazon sets a spot price
4. User receives instance if bid was above spot price

Motivation
• Spot price dynamics are poorly understood, with past

economic modeling focusing mainly on global behavior:

• Zheng et al. (SIGCOMM 2015) study the spot price
distribution at equilibrium.

• Hoy et al. (WINE 2016) explain the optimality of a two-
market design as stemming from variable user risk
aversion.

• Understanding temporal dynamics can better inform
strategic bidding.

Spot Price Observations

m3.medium spot price
over 5 months in 2017

The spot price ⇡t tends

to hover above a constant

lower bound price ⇡.

Sometimes goes above the on-demand
price ⇡. Occurs when on-demand users
take up too much capacity.

Provider Profit Maximization
on-demand
instances

spot-market
instances

on-demand profit spot-market profit

(⇡ � ⇡)N (d)
t + (⇡t � ⇡)N (s)

t

Need a constraint on the number of instances (N):

• Profit-Maximizing: N (d)
t +N (s)

t N

• Usage-Maximizing: N (d)
t +N (s)

t = N

Maximize Profit or Usage?

Mar. Apr. May Jun. Jul. Aug.

0.10

0.08

0.06

0.04

0.02

0.00

Proposition [KZLJC’18]: If Bt bids are drawn independently from a distri-

bution that weakly stochastically dominates the uniform distribution over [⇡,⇡],
then if the provider uses the profit-maximizing constraint we have

P
⇣
⇡t ⇡(⇢)

⌘
 exp

�2

✓
1

2

� 2⇢

◆2

Bt

!

for ⇢ 2 [0, 1/4] and ⇡(⇢)
= ⇢⇡ + (1� ⇢)⇡.

So a profit-maximizing provider will not set ⇡t close to ⇡ very often, which

contradicts the data and motivates the choice of a usage-maximizing constraint:

Observed Spot Price Model
At time t cloud provider sees Bt bids, which we model as being i.i.d. draws

from U [⇡,⇡] (Zheng et al., 2015). Then in the limit Bt ! 1 this the spot price

is distributed as

⇡t =

8
<

:

⇡ nt + bt 1 (not enough users)

⇡ � (⇡ � ⇡) 1�nt
bt

+ "t 0 < 1� nt < bt
⇡ nt � 1 (too many on-demand users)

where we define:

nt = N (d)
t /N on-demand usage

bt = Bt/N spot usage

"t ⇠ N
✓
0,

�2

bt

◆
observation noise

Job Arrival and Departure
We model two hidden variables:

1. nt, the number of running on-demand jobs at time t, normalized by N

2. bt, the number of active spot bids at time t, normalized by N

At each time step, ⇤

(d)
t on-demand jobs arrive, ⇤

(s)
t spot jobs arrive,

˜

⇤

(d)
t on-

demand jobs complete, and

˜

⇤

(s)
t spot jobs complete. This yields the dynamical

system

nt+1 = nt + �(d)
t � ˜�(d)

t

bt+1 = bt + �(s)
t � ˜�(s)

t

for all �t = ⇤t/N modeled as i.i.d. draws from exponential distributions.

Combined Model
Our spot price model is a hidden Markov model (HMM) with hidden state
transition governed by the job arrival/departure model:

nt+1 = nt + �(d)
t � �̃(d)

t

bt+1 = bt + �(s)
t � �̃(s)

t

and the spot price distribution:

⇡t =

8
<

:

⇡ nt + bt 1
⇡ � (⇡ � ⇡) 1�nt

bt
+ "t 0 < 1� nt < bt

⇡ nt � 1

Five model parameters: a scale parameter for each exponentially-distributed �t

for job arrival/departure and variance �2 of the Gaussian observation noise "t.

observation

hidden state

Parameter Estimation
• Model parameters and

hidden states are jointly
estimated using
Expectation-Maximization
(EM).

• The E-step is conducted
using a sequential Monte
Carlo (“particle filter”)
approach:
• Better suited better

than Kalman-type
filters for non-smooth,
singular models.

• Can handle hidden
state constraints.

date

do
lla

rs

do
lla

rs
no

.
of

 r
eq

ue
st

 (
pr

op
.

of
 N

)

no
.

of
 r

eq
ue

st
 (

pr
op

.
of

 N
)

prediction
(95% conf.)

prediction
(95% conf.)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.5

2.0

1.5

1.0

0.5

0.0

0.10

0.08

0.06

0.04

0.02

0.00

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

date
Feb. 19 Mar. 19 Apr. 16 Feb. 19 Mar. 19 Apr. 16

date
Feb. 19 Mar. 19 Apr. 16

date
Feb. 19 Mar. 19 Apr. 16

m3.medium,
spring 2017

g2.2xlarge,
spring 2017

Strategic Bidding
• We consider the setting where we want to start a job immediately.

• In the single-instance setting, the optimal strategy is to bid the on-
demand price, if one can afford it.

• Instead we can bid within a class of instances by assuming jobs
can be easily parallelized.

family of
compute-
optimized
instances

price scales linearly
with resources

Choosing Between Instance
Families

Given a price ⇡(i)
⌧ at time ⌧ for each instance type i in a family I of instances,

we wish to minimize the instance cost:

P (i)
⌧ =

t+TiX

t=⌧+1

⇡(i)
t

for Ti the amount of time it takes to finish a job on type i.

• Solved by using a spot-price model to find i⌧ = argminE
⇡(i)
⌧
P (i)
⌧ .

• In experiments we assume jobs that can be run completely in parallel.

• Can be extended to bidding on non perfectly-parallel jobs and strategic

bidding across geographic regions.

Expected Instance Cost:
Leveraging Our Model

• Simulation: use learned parameters to compute the expected
instance cost by simulating multiple trajectories.
• Requires a lot of computation for high accuracy.
• Empirically useful on shorter job lengths.

• Approximation: approximate the expected instance cost
using a second-order Taylor expansion.
• Cheap to compute.
• Empirically useful on longer timescales.
• Assumes the job arrival/departure rates are about the same

in both the on-demand and spot market (empirically true).

Expected Instance Cost:
Linear Auto-Regression

• Baseline AR(p)
model - the price at
each time step is
some noisy linear
combination of the
price at p previous
time steps.

• Data does not satisfy
standard Gaussian
error assumptions
and uncorrelated
residuals.

-0.04 -0.02 0.00 0.02 0.04

0.04

0.02

0.00

-0.02

-0.04

-0.04 -0.02 0.00 0.02 0.04

0.04

0.02

0.00

-0.02

-0.04

-0.005 0.000 0.005

600

500

400

300

200

100

0
-0.005 0.000 0.005 0.010

600

500

400

300

200

100

0

AR(1) AR(17)

Evaluating Bidding
Strategies

• The performance of each bidding strategy is evaluated using
regret: the difference between the cost of the chosen action
and that of the best action in hindsight.

• Model-based methods succeed especially well on shorter-
term (e.g. 16-hour) jobs.

R
eg

re
t (

U
S

C
en

ts
)

0

1

2

3

4

Instance Type
m3 c3 r3 i3 g2(/20)

Monte Carlo
Approximation
Linear Auto-Regression

R
eg

re
t (

U
S

C
en

ts
)

0

2.5

5

7.5

10

Instance Type
m3 c3 r3 i3 g2(/100)

Monte Carlo
Approximation
Linear Auto-Regression

16 Hours 64 Hours

Performance and Volatility
• Model is consistently better than AR on more volatile instances.

• More monetary gain to be had from strategic bidding.
• More overlap between the realized cost distributions of

different instances.

0.3 0.4 0.5 0.6

Pr
ob

ab
ili

ty
 D

en
si

ty

1.0 1.5 2.00.5

Pr
ob

ab
ili

ty
 D

en
si

ty

0.6 0.8 1.0 1.2 1.4

Pr
ob

ab
ili

ty
 D

en
si

ty

0.5 1.0 1.5 2.0

Pr
ob

ab
ili

ty
 D

en
si

ty

0 10 20 30 40 50

Pr
ob

ab
ili

ty
 D

en
si

ty

Volatile Instances (g2, i3)Non-Volatile Instances (m3, c3, r3)

Payment Distribution for Different Instances

Summary

• We model spot-pricing in cloud computing as a
nonlinear dynamical system.

• Amazon EC2 data was used to analyze the
problem and learn model parameters.

• We describe strategies for strategic bidding
between instances that can make use of the model.

Open Questions
• How do we examine the problem in the setting

where dynamics can be influenced across instance
families or different regions?

• Provide a model for job departure that explicitly
depends on the recent job arrival random
variables.

• Devise more sophisticated bidding strategies
requiring lighter assumptions concerning job
parallelism.

Thank you!

Questions?

Contact e-mail: mkhodak@princeton.edu

mailto:mkhodak@princeton.edu?subject=

