
Learning Cloud Dynamics to Optimize Spot
Instance Bidding Strategies

Mikhail Khodak∗, Liang Zheng∗, Andrew S. Lan∗, Carlee Joe-Wong†, and Mung Chiang‡
∗Princeton University, †Carnegie Mellon University, ‡Purdue University

∗{mkhodak,liangz,andrew.lan}@princeton.edu, †cjoewong@andrew.cmu.edu, ‡chiang@purdue.edu

Abstract—As infrastructure-as-a-service clouds become more
popular, cloud providers face the complicated problem of max-
imizing their resource utilization by handling the dynamics of
user demand. Auction-based pricing, such as Amazon EC2 spot
pricing, provides an option for users to use idle resources at
highly reduced yet dynamic prices; under such a pricing scheme,
users place bids for cloud resources, and the provider chooses
a threshold “spot” price above which bids are admitted. In
this paper, we propose a nonlinear dynamical system model
for the time-evolution of the spot price as a function of latent
states that characterize user demand in the spot and on-demand
markets. This model enables us to adaptively predict future spot
prices given past spot price observations, allowing us to derive
user bidding strategies for heterogeneous cloud resources that
minimize the cost to complete a job with negligible probability
of interruption. Along the way, the model also yields novel,
empirically verifiable insights into cloud provider behavior. We
experimentally validate our model and bidding strategy on two
months of Amazon EC2 spot price data and find that our
proposed bidding strategy is up to 4 times closer to the optimal
strategy in hindsight compared to a baseline regression approach
while incurring the same negligible probability of interruption.

I. INTRODUCTION

As businesses increasingly utilize cloud infrastructure to run
their applications, cloud providers (CPs) have begun to offer
them a variety of cloud-based services [1]–[3]. Infrastructure-
as-a-service (IaaS), as its name suggests, provides users with
time on virtualized compute resources that are hosted on
the CP’s physical servers. Since users can freely choose the
amount of compute resources that they rent from the CP,
IaaS can provide them with on-demand resource elasticity,
i.e., virtualization of computing resources that can expand
or contract to meet real-time user demands. For instance,
a business running data analytics on its webpage browsing
patterns might decide to rent more compute resources at times
when many users are accessing its website.

However, this resource elasticity comes with a signifi-
cant challenge as IaaS becomes more popular: how can the
CP simultaneously meet the resource needs of many jobs,
each of which may experience large, possibly unpredictable
fluctuations in their resource needs? Many works on cloud
operations have attempted to address this issue, e.g., through
job scheduling [4], [5] or optimized virtual machine placement

The work in this paper was in part supported by DARPA DCOMP Program
under Contract No. HR001117C0052 and No. HR001117C0048, NSF grants
CCF-1302518 and CCF-1527371, and ONR-N00014-16-1-2329.

[6], [7]. In this work, we propose another solution: using
pricing policies to shape resource demands.

A. Cloud Pricing and Resource Utilization

CPs today offer a variety of different IaaS pricing policies
that can incentivize different types of user behavior. For
instance, volume-discounted pricing charges users at a reduced
unit price per instance if their usage exceeds a given threshold;
such a pricing policy then incentivizes users to submit larger,
longer-lived jobs that can take advantage of the volume
discount. Examples of such pricing include Google Cloud Plat-
form’s sustained-use discount [1] and Amazon EC2’s reserved
instances [2]. However, while CPs can help to stabilize their
resource demands with volume discounts, they cannot entirely
avoid fluctuations in users’ resource needs. Since datacenters
have a fixed physical capacity at an hour-to-hour or day-to-day
timescale, the CP must provision their infrastructure to users’
peak demands, leaving some idle resources at off-peak times.

To improve off-peak utilization, CPs can offer their users re-
duced prices at these times, e.g., Google’s preemptible virtual
machines’ [8] and Amazon EC2 spot instances’ auction-based
spot pricing [3]. Since it would be difficult for the CP to predict
its amount of idle resources at any given time, neither of
these schemes guarantees their users access to cloud resources;
instead, they promise to provide resources to users if they
are available in the future. Users then accept a lower price in
exchange for unpredictable resource availability. Spot instance
auctions in particular, however, allow users to optimize their
bids so as to reduce the amount of job interruptions due
to resources being unavailable. Indeed, by modeling spot
dynamics, we can derive insights into not only spot instance
markets but the operations of the cloud itself.

B. Our Contributions

In the cloud spot market, the CP dynamically sets “spot”
prices according to changes in supply, i.e., available spare
resources in the on-demand market, and demand, i.e., bid
arrivals and departures. Users submit bids at their chosen bid
prices; their jobs start running if their bid prices exceed the
current spot price, until the spot price exceeds their bid prices.
When that occurs, their jobs are interrupted and resume once
their bid prices again exceed the given spot price. Users are
always charged at the current spot price when their jobs are
running. By predicting the future spot prices, they can predict

the number of times their jobs will be interrupted, using this
knowledge to optimize their bids.

Predicting future spot price dynamics, however, is difficult,
as the value of the spot price is impacted by many factors.
Generally, more demand for on-demand resources means
there are fewer spare resources available for the spot market,
resulting in higher spot prices. Job arrivals and departures can
also impact the spot prices. For example, a large number of
new bids in one time slot can significantly affect the spot price
at the next time slot; since user bids are reconsidered in every
time slot until their associated jobs complete, current bids can
affect the future spot prices, introducing temporal correlations
between the spot prices at different times.

It is unclear how the CP uses these factors to determine the
spot prices. On the one hand, the CP may set high spot prices
to increase their per-job profit at the expense of idle cloud
resources; on the other hand, the CP may set low, “clearance”
spot prices to fully utilize their available resources. CPs in
general do not reveal their pricing strategies publicly, but
Amazon EC2 does allow users to view its spot price history
for the past two months. In this paper, we use these historical
traces to answer two key questions: first, how should we model
demand dynamics in both the on-demand market and the spot
market so as to predict future spot prices? Second, given this
predictive ability, how should a user bid in order to complete
a job at minimal cost? In answering these questions, we make
the following research contributions:

Prediction of spot prices (Section III): We first prove
under very general assumptions that the statistics of Amazon
EC2’s spot price history do not correspond to a CP profit-
maximizing approach for setting spot prices. This confirms
observations made in [9] and justifies an assumption that
the CP sets spot prices to fully utilize cloud capacity. We
proceed to develop a hidden Markov model that views the spot
price as a stochastic function of latent states corresponding to
user demand in both the on-demand and spot models, which
themselves evolve stochastically as cloud users arrive and
depart the bidding queue. This model is posed as a nonlinear
dynamical system parameterized by variables associated with
the supply and demand for cloud resources. Thus, unlike
prior works on bidding optimization [10], our model not only
explicitly accounts for the interplay between the on-demand
and spot markets under a resource capacity constraint but also
handles time correlations between spot prices.

Optimal bidding strategies (Section IV): To lowers users’
costs of using spot instances while maintaining a low prob-
ability of job interruption, we next consider bidding among
heterogeneous machine types. Amazon EC2 offers general
purpose m3.∗ instances, compute optimized c3.∗ instances,
memory optimized r3.∗ instances, and storage optimized
i3.∗ instances, with different configurations for different re-
sources. Given a family of instance types (e.g., c3.∗), we use
our spot price prediction model to optimally choose the type of
instance to bid for in this family. For example, c3.2xlarge
has double the vCPU of c3.xlarge and thus can reduce
a CPU-constrained job’s runtime. Although the spot price for

a higher-configuration instance like c3.2xlarge is usually
higher than for a lower-configuration instance, the shorter job
runtime on the higher-configuration instance combined with
the price fluctuations captured by our model may make it more
cost-effective to bid for this instance. Additionally, jobs may
experience less variance in spot prices across a shorter runtime.

To experimentally verify both of these results, we download
the Amazon EC2 spot price history from 16 February to 26
July, 2017. We divide this dataset into training and testing
sets of equal size, with the former comprising the data up to
7 May. The test set is used to evaluate our optimal bidding
strategies using a spot price model trained on the training set,
and we show that it fits the empirical spot prices well. We
also compare the bidding results to an auto regressive baseline
[9], showing that bidding strategies made with our prediction
method outperforms, especially for volatile instances. We
conclude the paper in Section V. All proofs and technical
details can be found in the technical report [11].

II. RELATED WORK

Since the advent of Amazon EC2 spot pricing in 2009,
many works [9], [12]–[14] have characterized spot prices
from a statistical perspective. These approaches, however,
have limited predictive power, as they do not consider the
dynamics between the supply and demand of cloud instances.
As we discuss above, spot pricing reflects fluctuations in
cloud resource utilization, requiring a model that considers
these dynamics. Moreoever, the assumptions of uncorrelated
Gaussian noise needed by auto-regressive models, such as used
by [9], do not hold on 2017 spot data (see Figure 3).

The authors of [10] used a profit-maximization model to
understand spot price distributions; however, they considered
only the asymptotic (time-invariant) user demand regime and
made fairly restrictive assumptions on spot user arrival and
bid distributions. Moreover, there has been evidence showing
that the CP may not use the profit-maximizing spot prices [9].
Since a purely statistical understanding of spot prices may not
capture their true origins, we model spot prices as a function
of supply and demand by characterizing the dynamics of both
the on-demand and spot markets.

A few works have argued that the cost benefits brought by
spot offerings can be realized with intuitive bidding strate-
gies [15]. However, choosing between spot instances and bid
levels affects both the cost and interruptibility of users’ jobs
and may allow users to realize significant cost savings, making
the bidding problem non-trivial. Other works have derived
more in-depth bidding strategies for resources in the cloud
spot market by explicitly considering job deadlines [16], cost
minimization [10], [17], and task dependency [18], [19]. Some
works have attempted to bid across different geographical
regions and instance types [20]. To limit the variance in the
allocated resources, [21], [22] suggest that users rent resources
in both the on-demand market and the spot market. However,
the spot price models used in these works are fairly simplistic
and achieve limited predictive power, limiting the performance
achieved by their proposed bidding strategies. Our work differs

TABLE I
KEY TERMS AND SYMBOLS

Symbol Definition
N The number of instances of the same VM type.
π, π On-demand price and instance operation cost (π < π).
πt Spot price at time slot t (πt ≥ π)

N
(d)
t , N(s)

t Number of running on-demand and spot instances.
Bt ⊂ R+ Set of spot bids, with cardinality Bt = |Bt|.
Λ
(d)
t , Λ̃

(d)
t Number of request arrivals and job departures in the

on-demand market over time interval t; assumed to
follow independent time-invariant Poisson distributions
with parameters θd and θ̃d.

Λ
(s)
t , Λ̃

(s)
t Number of bid arrivals and job departures in the spot

market over time interval t. Assumed to follow indepen-
dent time-invariant Poisson distributions with parameters
θs and θ̃s.

from these past efforts by first learning a spot price model
that is rooted in understanding CPs’ decision criteria, and then
devising a bidding strategy that considers cost minimization
in the more natural setting of heterogeneous cloud resources.

III. A DYNAMICAL MODEL FOR SPOT PRICES

In this section, we develop a dynamical model for the
way in which a CP sets spot prices by considering both its
cloud computing resources and user demand in the on-demand
and spot markets. These cloud resources are sold in the unit
of instances, which are remote virtual machines (VMs) with
specified amounts of CPU, memory, storage, etc. We suppose
that there are in total N instances of the same VM type that
are offered to all users requesting it over discrete time slots
t ∈ {0, 1, . . .}. Each instance is assumed to have operational
cost π incurred by the CP per unit per hour. At each time
slot t, user requests for on-demand instances are satisfied
instantaneously and charged at the on-demand price π > π,
while user requests for spot instances at their bid prices are
allocated to spare resources. Bids with bid prices higher than
the current spot price πt ≥ π are regarded as successful and
can start running. We summarize our notation in Table I.

When setting the spot price, the CP needs to take into
account both the N (d)

t currently running on-demand instances
and a set Bt ⊂ R+ of bids from Bt = |Bt| spot instance
requests. Many works [10], [23], [24] assume that the CP’s
objective is to maximize its own profit under some capacity
constraint, which we show is inconsistent with empirical spot
price distributions in Section III-A. Since unsuccessful bids are
pushed into a queue and considered together with new bids
in the next time slot, there will be auto-correlation for spot
instance demand across time. By formalizing the relationship
between user demands and spot prices in Section III-B, we
characterize this time correlation and its effect on spot prices
via a dynamical system. We then describe an approach to
solving the dual problem of estimating both the hidden states
and the parameters characterizing request arrival and job com-
pletion rates via the expectation-maximization (EM) algorithm
in Section III-C. Learning this cloud dynamics model will
facilitate our bidding strategy design in Section IV.

A. Provider Profit Optimization

We first construct a model for how the CP sets the price.
At a given time slot t, the CP determines the spot price πt
given the on-demand usage N

(d)
t and the set of bids Bt. It

then receives profit

(π − π)N
(d)
t + (πt − π)N

(s)
t , (1)

where we define the spot market usage as

N
(s)
t = |{b ∈ Bt : b ≥ πt}| , (2)

i.e., the number of successful bids at time t. Since π and
π are fixed (as long as the timescale is not too large) and
N

(d)
t is determined exogenously by user demand, the CP’s

spot price decision affects only the second term, which is thus
the objective of the maximization problem.

We now need to determine the constraint on this maximiza-
tion problem. Since for certain Bt the CP can potentially make
more profit selling fewer instances at a higher spot price, the
profit-maximizing constraint is N (d)

t + N
(s)
t ≤ N . However,

the CP may wish to sell all of its excess capacity, e.g., to have a
larger market share or for other economic considerations, even
if this means a lower profit. Assuming N

(d)
t + Bt ≥ N the

corresponding full capacity constraint is N (d)
t + N

(s)
t = N .

Although both settings are economically interesting, we next
show that under some reasonable assumptions, Amazon EC2
spot price data indicates that Amazon is not using the profit-
maximizing constraint with high probability (in Bt), justifying
our use of the full capacity constraint instead.

To motivate this decision, we first make the assumption that
each spot bid b ∈ Bt is drawn independently from a (possibly
time-varying) distribution that weakly stochastically dominates
the uniform distribution over the interval [π, π] (henceforth
denoted U [π, π]), where we employ the following definition:

Definition 1: The distribution of a real-valued random vari-
able X with cumulative density function FX is said to weakly
stochastically dominate (WSD) the distribution of a real-
valued random variable Y with cumulative density function
FY if FX(x) ≤ FY (x) ∀ x ∈ R.
WSD implies that for any x ∈ R, a random variable drawn
from the dominating distribution is more likely to take a value
above x than one drawn from the dominated distribution.
Distributions with support in [π, π] that dominate U [π, π] are
more concentrated on the upper half of the interval (in general
any distribution whose density function is supported and non-
decreasing on [π, π], including U [π, π] itself, satisfies our
assumption).

Our use of this weak assumption has basis in both previous
analyses of spot markets and other auctions (e.g. [10] assumes
bids are drawn from U [π, π]) as well in the simple bidding
strategy of bidding the on-demand price since the user only
pays the spot price anyway, as is commonly advocated (e.g.
in [15]) and used in practice. Under the given model, the
WSD assumption yields the following proposition, which,
informally, shows that if the CP is using a profit-maximizing

constraint then the spot price is bounded away from π with
high probability:

Proposition 1: Suppose at time slot t, all bids b ∈ Bt are
drawn independently from a distribution that weakly stochas-
tically dominates U [π, π]. Then, defining π(ρ) = ρπ+(1−ρ)π
for ρ ∈ [0, 1], if the CP sets the spot price πt so as
to maximize (1) subject to the profit-maximizing constraint
N

(d)
t +N

(s)
t ≤ N , then for any ρ ≤ 1

4 we have that

P
(
πt ≤ π(ρ)

)
≤ exp

(
−2

(
1

2
− 2ρ

)2

Bt

)
. (3)

Under the WSD assumption this proposition gives us the
following explicit condition that must be satisfied in order to
assume that a CP operating under our model sets a profit-
maximizing constraint: given some ρ, if there are always
at least B spot users for each instance, then the proportion
of all time slots at which we have πt ≤ π(ρ) must be
less than exp

(
−2
(

1
2 − 2ρ

)2
B
)

. We start by examining the
spot price history of the general purpose computing instance
m3.medium in the US-East-1 region (zone a). We find that
the condition is violated even if B = 1: choosing π to be the
minimum price, for ρ = 0.15, we find that πt ≤ π(ρ) around
96% of the time (Figure 1) while the condition predicts this
event to occur at most 92% of the time.

More generally, letting B = 10 we find that 81% of the
spot price histories of all active instance types in the US-
East-1 region (zone a) violate the condition (Figure 1). Since
the bound in Proposition 1 is not tight and since the number
of spot users B may be much larger than 10, this is strong
empirical evidence that Amazon EC2 spot prices are not set
using a profit-maximizing constraint; instead, we postulate that
they are using the spot market only to use up excess capacity,
i.e. they set the full capacity-utilizing constraint. Such a
strategy may be driven by longer term profit maximization,
e.g. if the CP expects that risk-averse users will not use the
spot market if the spot price is often very close to the on-
demand price, or by the desire for a larger market share.

Following these observations and assuming Bt ≥ N−N (d)
t

(i.e. there is always enough spot-demand to fill capacity), we
formulate the CP profit optimization problem as:

maximize
πt

(πt − π)N
(s)
t

subject to N
(d)
t +N

(s)
t = N.

(4)

Assuming the CP knows Bt, the solution to this optimization
problem is given by

πt = max
|{b∈Bt:b≥π}|=N−N(d)

t

π. (5)

Our goal is to model the evolution of the spot price as
an observed variable depending on hidden stochastic state
variables N

(d)
t and Bt. To simplify terminology we first

normalize these variables by the total number of instances,
i.e. define nt = N

(d)
t /N and bt = Bt/N . Then, to reduce

the dimensionality (in order to build a model where we infer

Mar. Apr. May Jun. Jul. Aug.

0.10

0.08

0.06

0.04

0.02

0.00

Fig. 1. Left: Time evolution of m3.medium spot price over 5 months in
2017. Note how the spot price πt is usually less than π(ρ) for ρ = 0.15.
Right: Histogram of spot prices gathered from all instance types (normalized
to lie within the same price range) from the US-East-1 region (zone a). Most
of the mass is below π(ρ) for ρ = 0.15.

bt instead of Bt), we follow [10] and assume that all bids
b ∈ Bt are drawn independently from the uniform distribution
on [π, π]. We can then view πt as a noisy observation of a
function of nt and bt, as stated in the following Lemma:

Lemma 1: Fixing N−N(d)
t

Bt
= Ct for some constant Ct ≤ 1,

as Bt → ∞ the distribution of πt conditioned on nt and bt
converges in distribution to N

(
π − (π − π) 1−nt

bt
, (π−π)2

4Nbt

)
.

Thus, assuming there are always enough spot bids to fill up
excess capacity, this lemma implies that for large enough Bt
the spot price πt will be approximately normally distributed
with mean π− (π−π) 1−nt

bt
. However, since this is an asymp-

totic limit and in practice there may not be enough spot bids to
cover unused instances (i.e. Bt < N−N (d)

t ⇐⇒ 1−nt
bt

> 1),
we use Lemma 1 to inform the construction of the following
conditional model for the observed spot price:

πt =

π nt + bt ≤ 1
π − (π − π) 1−nt

bt
+ εt 0 < 1− nt < bt

π nt ≥ 1
(6)

where εt ∼ N
(

0, σ
2

bt

)
is normally distributed with learnable

variance parameter σ2 corresponding to the noise in Lemma 1.
Note that in this expression, the spot price rises to the on-
demand price when the on-demand requests take up all the
cloud capacity (nt = 1) and is the minimum possible price
when there is not enough spot demand to take up fill up excess
capacity (nt+bt ≤ 1). We next discuss how to model the time
evolution of nt and bt in order to understand the temporal
dynamics of πt.

B. Job Arrival and Departure

To capture the temporal evolution of the spot price, we
now model the dynamics of cloud instance utilization. The
dynamics consists of two parts: job arrival, which stems from
user requests in the on-demand market and user bids in the
spot market, and job departure, which occurs when jobs in
either market are completed.

Over the course of one time slot t, a number, Λ
(d)
t , of users’

jobs will arrive in the on-demand market to start running,
while a number, Λ̃

(d)
t , of currently-running on-demand jobs

will finish and exit the system. Thus, the number of running
on-demand jobs evolves as Nt+1 = Nt + Λ

(d)
t − Λ̃

(d)
t .

For spot instances, we model the dynamics of the number
of active bids Bt, i.e., a queue of jobs competing with each
other over spot instances via their bids. Over each time slot t,
a number, Λ

(s)
t , of new users will submit bids, and a number,

Λ̃
(s)
t , of existing bids will leave, either due to job completion

or manual termination by users. Thus, the number of active
bids evolves as Bt+1 = Bt+Λ

(s)
t −Λ̃

(s)
t . We note that these Bt

bids also include the jobs that are running on spot instances,
since they will be interrupted by the system once their bid
prices fall below future spot prices.

As before, we normalize all variables by the total amount
of instances, i.e., define λ̃

(d)
t = Λ̃

(d)
t /N , bt = Bt/N ,

λ
(s)
t = Λ

(s)
t /N , and λ̃

(s)
t = Λ̃

(s)
t /N , and use these notations

throughout the rest of the paper. Hence, we arrive at the
following dynamical system:

nt+1 = nt + λ
(d)
t − λ̃

(d)
t

bt+1 = bt + λ
(s)
t − λ̃

(s)
t .

(7)

Since the unnormalized arrival-departure random variables are
likely best captured by Poisson distributions [25]–[27], we
find the closest counterparts for λ(d)

t , λ̃
(d)
t , λ

(s)
t , and λ̃(s)

t and
model them as independent time-invariant exponential random
variables with parameters θd, θ̃d, θs, and θ̃s, respectively.

C. State and Parameter Estimation

Our proposed model on hidden state evolution (7) and spot
price observation (6) defines a nonlinear dynamical system
(NDS) parametrized by Θ = {θd, θ̃d, θs, θ̃s, σ2}. In this
section, we provide a more detailed discussion of our model
setup and describe how to jointly infer the hidden states and
parameters of the model using EM.

First, we note that the spot prices of many types of cloud
instances have a unique but fairly consistent lower bound, e.g.
as shown in Figure 1. It is thus reasonable to regard the lowest
spot price for each instance type as the operation cost π for that
instance. More notably, there are times at which the spot price
goes above the on-demand price; for example the spot price
time series shown in Figure 1 experienced two such peaks,
once in mid-March and once in late June. These events are
likely caused by all cloud capacity being taken up by on-
demand use, i.e. nt = 1. At such times, the arrival-departure
model is no longer valid, since no more on-demand instances
can be started and no spot jobs can be completed. However,
our model does handle the probability of arriving at such a
state – it is P

(
λ

(d)
t − λ̃

(d)
t ≥ 1− nt

)
– and the spot prices in

the duration between such outliers are our data of interest.
We thus divide the data into a series of m timespans

{{τ (j)
0 , . . . , τ

(j)
0 + Tj}}mj=1 where τ

(j)
0 is the last time slot

of a period when πt ≥ π occurs and τ
(j)
0 + Tj is the next

time slot of observing such an extreme price, which serves
as the end of this timespan but the beginning of the next
timespan, i.e., τ (j+1)

0 = τ
(j)
0 + Ti (the very first and last time

slots are excluded). We use Tj to denote the length of the

jth timespan, so we index the numbers of running on-demand
instances nt and active spot bids bt within each timespan by
t = 0, 1, . . . , Tj . With the above notation, we can denote the
observed spot prices by

Π =

{{
π

(j)
t

}Tj
t=0

}m
j=1

(8)

and the hidden states by

X =

{(

n
(j)
t

b
(j)
t

)}Tj
t=0

m

j=1

, (9)

where the states and prices during each timespan j are indi-
cated by the superscript (j). Note that we must have ∀ j > 1

that π(j)
0 = π, n

(j)
0 = 1 and ∀ j < m that π(j)

Tj
= π, n

(j)
Tj

= 1.

Together with nonnegativity constraints on n
(j)
t and b

(j)
t , we

thus have the linear inequalities defining the feasible set of
hidden states:

n
(j)
t ≥ 0 ∀ j, t b

(j)
t ≥ 0 ∀ j, t

n
(j)
0 = 1 ∀ j > 1 n

(j)
Tj

= 1 ∀ j < m.
(10)

We solve the problem of jointly estimating the hidden states
X and the model parameters Θ using the EM algorithm,
which is a two step iterative algorithm that is guaranteed to
converge to a (possibly sub-optimal) solution in terms of the
expected log-likelihood [28]. In the E-step, we estimate the
distribution over hidden states given the current estimates of
the model parameters Θ; in the M-step, we use these estimated
distributions to update the parameter estimates by maximizing
the expected log-likelihood. If the estimated state distribution
is given as an empirical distribution by sets of samples, the
M-step parameter update admits a closed-form solution, as
detailed in the Appendix of the technical report [11].

Estimating the distributions of these hidden states is a more
challenging task. Although one can extend the Kalman filter
to nonlinear dynamical systems via linearization, i.e., using
the Extended Kalman Filter [29] or the Unscented Kalman
Filter [30], they are likely to perform poorly on our model.
The reason is that our spot price observation function (6)
is non-smooth and possibly ill-posed (it tends to −∞ as
bt → 0), and the fact that we have constraints on the state
space (10). Therefore, we need to resort to algorithms that
support more modeling flexibility. We make use of Sequential
Monte Carlo (SMC) methods (i.e. particle filters), which use
sample trajectories (particle paths) over time to approximate
the hidden state distributions; each sample is weighted by the
probability that it generates the observed data [31].

While SMC has been most widely and successfully used in
robotics, the low dimensionality of our model means that we
only need a small number of particles to well-approximate
the hidden state distributions. In Algorithm 1 we describe
an SMC algorithm that takes as input an observed series
of spot prices at each time slot t and returns K particles
that are used to approximate the hidden states X̂(k)

t ∈ R2.
The filter computes K trajectories in state space of length

Algorithm 1: Partial Trajectory Particle Filter
Data: spot prices π0, . . . , πT , model parameters Θ,

particle count K, trajectory length L, threshold ε
Result: state distribution samples X̂(1)

0 , . . . , X̂
(K)
T ∈ R2

begin
draw state X̂(k)

0 ∈ R2 with probability P
(
π0

∣∣X̂(k)
0

)
set trajectory start time t0 = 0
while t0 < T do

initialize probabilities p(k) ∝ P
(
πt0
∣∣X̂(k)

t0

)
for t = t0 + 1, . . . , t0 + 2L do

sample state update X̂(k)
t

∣∣X̂(k)
t−1 using (7)

update probabilities p(k) ∝ p(k) · P
(
πt
∣∣X̂(k)

t

)
if p(k) < ε then

with probability p(k′) assign
X̂

(k)
t0:t = X̂

(k′)
t0:t and p(k) = p(k′)

with probability p(k′) assign X̂(k)
t0:t0+L = X̂

(k′)
t0:t0+L

set new trajectory start time t0 = t0 + L

L using the dynamical equations (7) and replaces those with
negligible probability (below a threshold ε� 1) of generating
the observed data with more likely trajectories. To mitigate
the sample degeneracy problem in SMC methods, in which
eventually only one trajectory is left after resampling, we do
not resample the full state history but only up to the past L
time slots. Although in the general case this may cause low-
probability transitions between trajectories, this is mitigated in
our case by the (usually) slow evolution of the spot price.

Figure 2 shows the results of our spot price prediction
algorithm and the associated hidden states nt and bt for
two instance types in the g2 family. For particle filtering
we use K = 104 particles, a trajectory length L = 16,
and machine precision for ε. The left figures show the re-
sults for a less-volatile general purpose computing instance
(m3.medium) while the right figures are those for a GPU in-
stance (g2.2xlarge) with a highly variable spot price From
the bottom two figures, we see that our predictions for both
configurations closely track the actual spot prices; from the top
figures, we observe that the hidden states also track changes
in the spot prices. For instance, the spike around March 1 for
m3.medium is accompanied by similarly dramatic changes
in nt and bt. We further observe that g2.2xlarge has
much greater fluctuation in the spot prices with corresponding
higher fluctuations in the hidden states, possibly due to a
smaller total capacity compared to exogenous demand. Overall
these numerical results combined with the dicussion on full
capacity-utilization in Section III-A suggest that much of the
cloud is usually used by spot users.

IV. BIDDING STRATEGIES FOR INSTANCE FAMILIES

For many spot users, simply bidding the on-demand price is
a reasonable strategy; the spot price is usually lower than the
on-demand price, so this limits the number of job interruptions

date

d
ol

la
rs

d
ol

la
rs

n
o
.

o
f

re
q
u
es

t
(p

ro
p
.

o
f

N
)

n
o
.

o
f

re
q
u
es

t
(p

ro
p
.

o
f

N
)

prediction
(95% conf.)

prediction
(95% conf.)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.5

2.0

1.5

1.0

0.5

0.0

0.10

0.08

0.06

0.04

0.02

0.00

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

date
Feb. 19 Mar. 19 Apr. 16 Feb. 19 Mar. 19 Apr. 16

date
Feb. 19 Mar. 19 Apr. 16

date
Feb. 19 Mar. 19 Apr. 16

Fig. 2. Evolution of the hidden state estimates (top) and predicted spot price
(bottom) for instance types m3.medium (left) and g2.2xlarge (right) in
the US-East-1 region (zone a) over 3 months in 2017. Parameter estimates
for m3.medium: θd = 98.6, θ̃d = 94.8, θs = 79.1, θ̃s = 82.2, σ2 =
3.15 × 10−6; parameter estimates for instance type g2.2xlarge: θd =
13.0, θ̃d = 12.2, θs = 11.4, θ̃s = 13.1, σ2 = 2.83 × 10−3. The larger
values of the exponential distribution parameters (θ) for the first instance
reflect the lower volatility of the m3.medium instance, which as can be seen
from the bottom plots reaches its on-demand price ($0.067) much less than
g2.2xlarge reaches its own ($0.65). The spot price observation noise (σ2)
is also much lower. The similarity of the arrival and departure parameters (θ
v.s. θ̃), which implies that requests arrive and jobs complete at roughly similar
rates, will be important for the bidding strategies discussed in Section IV.

while ensuring that completing the job costs less than in the
on-demand market. However, this strategy does not necessarily
minimize users’ costs, particularly if users myopically bid on a
given instance type instead of optimizing over other instances
in the same family. A better strategy would be to consider the
collective behavior of the spot prices over time [10], which we
do in this section by accounting for their temporal dynamics.

In this section, we propose bidding strategies that leverage
the cloud dynamics model from Section III in a practical
setting. We then compare the cost achieved by our approach
to that of an auto-regressive baseline approach [9] and show
superior performance across different instance families. Since
minimizing the cost of a job is highly dependent on the
ability to predict several time slots into the future, these results
are indicative of the superior predictive power of our model,
compared to the auto-regressive baseline.

A. Choosing Between Instances

We consider the following task. Suppose we have instance
types indexed by i ∈ [I] for I > 1, each with on-demand price
π(i), and a user at time τ with a job that runs in time Ti on
instance i.1 Throughout this section, we use the superscript
(i) to index the instance. For simplicity, we assume that the
user wishes to start a job immediately, incurs a negligible
probability of job interruption (as can be assured by bidding

1Clearly, jobs on different instance types have different completion times.
The exact relationship of time Ti on different instances depends on a job’s
particular resource requirements and the instances’ resource configurations.

the on-demand price), and has a loose deadline, i.e., the job
should be completed by some time > τ + max

i∈I
Ti. The user

then wishes to minimize the cost

P (i)
τ =

t+Ti∑
t=τ+1

π
(i)
t (11)

needed to complete his job. Given the spot price π(i)
τ for each

instance type i at time τ , we assume a conditional distribution
on the future prices π(i)

τ+1, . . . , π
(i)
τ+Ti

. The optimal strategy is
then to choose instance

i∗τ = arg min
i∈I

E
π
(i)
τ

(
P (i)
τ

)
(12)

and bid the on-demand price π(i∗). Here the subscript π(i)
τ

denotes the conditional expectation.
This bidding scenario can readily be applied to a realistic

setting in which Amazon EC2 offers a family of machines
in the same region2. We define a “family” of instances as
a set of instance types that emphasize a certain aspect of
performance, such as compute optimized c3.∗ instances,
memory optimized r3.∗ instances, and storage optimized
i3.∗ instances. Instance types in each family offer different
amounts of compute, memory, and storage resources in the
same ratio, e.g., micro, small, medium, large, xlarge,
and 2xlarge. For example, the m3.∗ family of general com-
puting instances includes types medium, large, xlarge,
and 2xlarge, offering 1, 2, 4, and 8 vCPUs, respectively.
We can then suppose that jobs’ running times increase linearly
in the scale of the resources offered, e.g., that we have a
perfectly parallelizable job that does not require more memory
than available in any m3.∗ instance. If the job runs in time
T on the m3.medium instance, it can be expected to run in
times T

2 , T
4 , and T

8 , respectively, on the other instance types
in the m3 family. The linear scaling of the on-demand price
for these instances with the number of vCPUs (0.067, 0.133,
0.266, and 0.532 US cents, respectively) is consistent with this
assumption [32].

More formally, consider a family of instance types indexed
by i ∈ [I] in ascending order by number of CPUs the
instance contains, where Ci ∀ i denotes the scaling of instance
i compared to instance 1. Then, if a perfectly parallelizable job
runs in time T on instance 1, the cost minimization problem
is to find an instance in the family yielding the least cost:

i∗τ = arg min
i∈[I]

E
π
(i)
τ

(
P (i)
τ

)
= arg min

i∈[I]

τ+ T
Ci∑

t=τ+1

E
π
(i)
τ

(
π

(i)
t

)
(13)

We now consider three approaches to solving this problem
given the spot prices π(i)

τ . The first two are based on the cloud
dynamics model introduced in Section III, while the second is
a baseline auto-regression model used for comparison.

2Bidding across regions can lead to high communication latency, which is
out of the scope of this paper. If we neglect communication latency, we can
optimize across regions by finding the optimal bid and associated expected
payment in each region and choosing the one with the least expected payment.

Monte Carlo Simulation: After we have used EM as in
Section III to learn parameter estimates Θ̂i for each instance
i, we can directly estimate the distribution of the hidden states
n

(i)
τ , b

(i)
τ at time τ as in Algorithm 1 and then approximate the

expectation of each future price E
π
(i)
τ

(
π

(i)
t

)
by simple Monte

Carlo simulation. (13) can then be solved by substituting these
simulated expectations.

Taylor Approximation: While the above approach most
closely follows the cloud dynamics model, under reasonable
assumptions on the parameters Θi that can be empirically
observed, we can construct a second-order approximation
to E

π
(i)
τ

(
π

(i)
t

)
that is less noisy and less computationally

complex than the Monte Carlo approach:
Lemma 2: Suppose for some instance i (where with slight

abuse of notation, we drop the superscript (i) for simplifi-
cation) the parameters of the arrival-departure model satisfy
θd ≈ θ̃d and θs ≈ θ ≈ θ̃s and that the spot price πτ is in the
interval (π, π). If we have unbiased estimates n̄τ of nτ , b̄τ of
bτ , and S2

τ of (bτ − Eπτ (bτ))
2 then for small enough δ we

can approximate the expected spot price at time t = τ + δ by

Eπτ (πt) ≈ π − (π − π)
1− n̄τ
b̄τ

(
1 +

S2
τ + 2δ

θ2

b̄2τ

)
(14)

The unbiased estimates of n̄τ , b̄τ , and S2
τ can be found by

drawing samples using the approach in Algorithm 1 and taking
the first and second sample moments. Furthermore, as noted
in Figure 2, the values of θ and θ̃ that parameterize the
arrival and departure rates, respectively, in the model were
found to be roughly the same for tested instances, allowing
the approximation for this bidding strategy to be made.

Since we do not want to bid below the lower bound π, when
estimating the expected payment we correct (14) by taking the
maximum of it and π, yielding the following approximation:

E
π
(i)
τ

(
P (i)
τ

)
≈

t+ T
Ci∑

t=τ+1

max
{
π(i),E

π
(i)
τ

(
π

(i)
t

)}
(15)

This approximation can then be substituted into (13) in order
to easily find the lowest-cost instance type to pick.

Linear Auto-Regression: Linear auto-regression (AR)
models assume that at all times t, the spot price π(i)

t is a linear
function of the previous price points along with a mean-zero
independent noise term. In our case, given π(i)

τ the next step
forecast is

π
(i)
τ+1 = c(i) + φ(i)π(i)

τ + ε
(i)
t (16)

where c(i) and φ(i) are learnable parameters and ε
(i)
t is

white noise. Using this approach, the expected spot price
E
π
(i)
τ

(
π

(i)
τ+δ

)
at time τ + δ can be found by iteratively ap-

plying (16) (removing the noise term) to successive estimates

πτ , . . . , πτ+δ−1, and the expected payment E
π
(i)
τ

(
P

(i)
T
Ci

)
is

then the sum of the resulting estimates.
Although the assumptions of this AR model do not hold

when the model is applied to spot price data (see Figure 3), the

-0.005 0.000 0.005

600

500

400

300

200

100

0
-0.04 -0.02 0.00 0.02 0.04

0.04

0.02

0.00

-0.02

-0.04

-0.005 0.000 0.005 0.010

600

500

400

300

200

100

0
-0.04 -0.02 0.00 0.02 0.04

0.04

0.02

0.00

-0.02

-0.04

Fig. 3. Plots of residual distribution (left) and auto-correlation (right) of an
AR(1) (top) and an AR(17) (bottom), where the latter is chosen via the Akaike
Information Criterion [33]. Both models were fit on m3.medium data from
the US-East-1 region (zone a). The distributions are clearly skewed and there
is correlation between residuals at different timesteps, thus violating two main
assumptions on the errors in auto-regression models.

model is widely used, including to predict spot prices (notably
in [9]) and thus serves as useful baseline for comparison.

B. Bidding Strategy Evaluation

We evaluate each of the three bidding strategies introduced
in the previous section on 160 days of spot price data. First
we train a separate model (either the one in Section III or an
AR model) for each instance i in a family of instance [I] on
the first half of the spot price data. Then at each timestep τ in
the second half of the data, we solve (13) by computing the
expected payment needed to finish the job for each instance
in the family and taking the one with the lowest value (i.e.
i∗τ). Then to compare the cost of the selected instance with
that of the best strategy to use in hindsight we look T

Ci
steps

ahead and compute the a posteriori payment (11) for each
instance type i. Finally, we compare the job completion cost
of our bidding strategy compared to that of the best strategy
by computing the regret

Rτ = P
(i∗τ)
τ −min

i∈[I]
P (i)
τ =

Ti∗τ∑
t=τ+1

π
(i∗τ)
t −min

i∈[I]

Ti∑
t=τ+1

π
(i)
t . (17)

Note that Rτ = 0 when our bidding strategy succesfully
selects the optimal instance type to use hindsight, i.e. when
i∗τ = arg min

i∈[I]

P
(i)
τ , and is positive otherwise.

We evaluate all three bidding strategies on five popular
instance familes and report the average regret over the test data
in Table II, along with plots of relative error for several settings
in Figure 4. From the results we observe that either Monte
Carlo simulation or Taylor approximation almost always out-
performs the auto regressive baseline (i.e., yields lower average
regret), especially on longer timescales (bigger T). The poor
forecasting performance on many instance families by the
auto-regression model confirms the analysis in Figure 3 that
it is a poor approximation for the evolution of spot prices.

Our evaluation considers jobs with lowest-configuration
runtimes T = 8, 16, 32, and 64. As expected, regret increases

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-0.5 0.0 0.5

-0.5 0.0 0.5

Pr
ob

ab
ili

ty
 D

en
si

ty
Pr

ob
ab

ili
ty

 D
en

si
ty

Pr
ob

ab
ili

ty
 D

en
si

ty
Pr

ob
ab

ili
ty

 D
en

si
ty

Fig. 4. Relative error of payment estimate on 80 days of spot price data for
i3.∗ (left) and m3.∗ (right) families and T = 8 (top) and T = 16 (bottom).
Note that despite the spot price of the former family being much more volatile
the error is still quite small and sharply concentrated around zero.

TABLE II
AVERAGE REGRET (IN US CENTS). THE LOWEST REGRET IN EACH

INSTANCE FAMILY FOR EACH JOB LENGTH IS BOLDED.

T ∗ Bidding Strategy Instance Family
m3 c3 r3 i3 g2

8
Monte Carlo Simulation 0.68 0.25 0.18 0.21 11.09
Taylor Approximation 0.97 0.20 0.59 0.26 12.91
Auto-Regression [9] 0.95 0.25 0.33 0.18 17.2

16
Monte Carlo Simulation 1.49 0.43 0.40 0.50 26.20
Taylor Approximation 1.89 0.39 1.11 0.55 52.40
Auto-Regression [9] 1.89 0.43 1.00 0.51 77.64

32
Monte Carlo Simulation 2.95 0.55 1.28 1.53 78.94
Taylor Approximation 3.76 0.54 2.42 0.87 69.88
Auto-Regression [9] 3.76 0.55 1.89 1.52 328.10

64
Monte Carlo Simulation 5.86 0.49 9.78 4.50 234.02
Taylor Approximation 7.32 0.53 4.77 2.23 180.85
Auto-Regression [9] 7.32 0.49 3.11 2.72 663.39

∗ Time (in hours) required to run the job to completion on the lowest-
configuration instance in the family.

with larger T , when overall payments are also higher. More
notably, we find that while Monte Carlo simulation performs
well at lower T , at higher T it is usually better to use the Taylor
approximation strategy. This is likely because probabilistic
simulation becomes more noisy with each additional timestep.
Since longer timescales provide more return due to strategic
bidding and the Taylor approximation approach requires less
computation, it is likely to be preferred for most users.

To gain a deeper understanding of why our model performs
similarly to auto-regression on some instance families (e.g.
c3.∗) but consistently better on others (e.g. i3.∗,g2.∗), we
plot in Figure 5 kernel density estimates of the distributions
over all time of the realized payment for each instance in
each of the five families. We see that instance families on
which our bidding strategies perform especially well are
those with significant overlap in the payment distributions of
different instances, in which case there is no single instance
type that consistently yields the lowest cost in that family.
Unsurprisingly, these instance families also tend to be those
whose spot price dynamics are more volatile (see for example

0.3 0.4 0.5 0.6

Pr
ob

ab
ili

ty
 D

en
si

ty

(a) m3.∗.
0.6 0.8 1.0 1.2 1.4

Pr
ob

ab
ili

ty
 D

en
si

ty

(b) c3.∗.
1.0 1.5 2.00.5

Pr
ob

ab
ili

ty
 D

en
si

ty

(c) r3.∗.
0.5 1.0 1.5 2.0

Pr
ob

ab
ili

ty
 D

en
si

ty

(d) i3.∗.
0 10 20 30 40 50

Pr
ob

ab
ili

ty
 D

en
si

ty

(e) g2.∗.
Fig. 5. Distribution of payments for different instance types in five instance families.

the history of g2.2xlarge in Figure 2), which are thus
also more likely to experience price fluctuations that allow
for strategic selection between instances. The fact that our
model is especially good at payment prediction in such cases,
achieiving 1.7 and 4.7 times lower regret on i.3∗ and g.2∗,
respectively, is further indication of the forecasting power
of the cloud dynamics model as well as the importance
of accurate spot price predictions for optimizing user cost,
particularly when the spot prices are volatile.

V. CONCLUSION

Cloud spot pricing, as a mechanism for CPs to auction off
spare resources at highly reduced prices, creates opportunities
not only for CPs to improve resource utilization but also for
users to minimize the cost of their jobs with sophisticated
bidding strategies. In this work, we first developed a nonlinear
dynamical system model to capture the dynamics of spot
pricing, by formulating the spot price as a function of latent
states characterizing user demands in both on-demand and spot
markets. Our model enables us to predict future spot prices
conditioned on observations of past spot prices.

Then, we designed user bidding strategies by leveraging
these predictions and trading off between completion time and
price dynamics across all instances in the same instance family.
These strategies can further lower user costs, as compared to
bidding on a single instance type. We validated our dynamic
spot price model on 80 days of Amazon EC2’s spot price
data and simulated our bidding strategies on another 80 days
of data. An analysis of our bidding strategies shows that for
difficult-to-predict volatile instances we are able to a 4 times
larger user cost reduction than auto-regressive forecasting.

REFERENCES

[1] Google Cloud Platform, “Compute Engine Pricing,” 2017.
https://cloud.google.com/compute/.

[2] Amazon EC2, “Reserved Instances,” 2017.
https://aws.amazon.com/ec2/purchasing-options/reserved-instances/.

[3] Amazon EC2, “Spot Instances,” 2017.
https://aws.amazon.com/ec2/spot/.

[4] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in Proc. of ACM
SIGCOMM, 2014.

[5] Z. Huang, S. M. Weinberg, L. Zheng, C. Joe-Wong, and M. Chiang,
“Discovering valuations and enforcing truthfulness in a deadline-aware
scheduler,” in Proc. of IEEE INFOCOM, 2017.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of IEEE INFOCOM, 2010.

[7] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in vir-
tualized data center environments,” in Proc. of IEEE/ACM GREENCOM-
CPSCOM, 2010.

[8] Google Cloud Platform, “Preemptible Virtual Machines,” 2017.
https://cloud.google.com/preemptible-vms/.

[9] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing Amazon EC2 spot instance pricing,” ACM Trans. on
Economics and Computation, vol. 1, no. 3, p. 16, 2013.

[10] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proc. of ACM SIGCOMM, 2015.

[11] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang, “Learn-
ing and leveraging spot price dynamics for bidding strategy optimiza-
tion: Technical report,” 2018. https://1drv.ms/b/s!Aise2pW0Yvrda7t-
8QQHaJiJxDc.

[12] B. Javadi, R. K. Thulasiramy, and R. Buyya, “Statistical modeling of
spot instance prices in public cloud environments,” in Proc. of IEEE
UCC, 2011.

[13] S. Wee, “Debunking real-time pricing in cloud computing,” in Proc. of
IEEE/ACM CCGrid, 2011.

[14] Z. Amekraz and M. Y. Hadi, “Prediction of Amazon spot price based
on chaos theory using ANFIS model,” in Proc. of IEEE/ACS AICCSA,
2016.

[15] P. Sharma, D. Irwin, and P. Shenoy, “How not to bid the cloud,” in Proc.
of HotCloud, 2016.

[16] M. Zafer, Y. Song, and K.-W. Lee, “Optimal bids for spot VMs in a
cloud for deadline constrained jobs,” in Proc. of IEEE CLOUD, 2012.

[17] M. Lumpe, M. B. Chhetri, Q. B. Vo, and R. Kowalczyk, “On estimating
minimum bids for Amazon EC2 spot instances,” in Proc. of IEEE/ACM
CCGrid, 2017.

[18] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud com-
puting under SLA constraints,” in Proc. of IEEE MASCOTS, 2010.

[19] M. Taifi and J. Y. Shi, “Performance and reliability effects of multi-
tier bidding on MapReduce in auction-based clouds,” in Proc. of IEEE
SOSE, 2013.

[20] X. Ouyang, D. Irwin, and P. Shenoy, “Spotlight: An information service
for the cloud,” in Proc. of IEEE ICDCS, 2016.

[21] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud.,”
in Proc. of IEEE ICAC, 2014.

[22] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting deadlines
of delay tolerant jobs in the cloud with dynamic pricing,” in Proc. of
IEEE ICDCS, 2016.

[23] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: Welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[24] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “A truthful (1-ε)-optimal
mechanism for on-demand cloud resource provisioning,” in Proc. of
IEEE INFOCOM, 2015.

[25] G. Sakellari and G. Loukas, “A survey of mathematical models, simu-
lation approaches and testbeds used for research in cloud computing,”
Simulation Modelling Practice and Theory, vol. 39, pp. 92–103, 2013.

[26] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang,
“On the viability of a cloud virtual service provider,” in Proc. of ACM
SIGMETRICS, 2016.

[27] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: A two time scale approach for delay tolerant
workloads,” in Proc. of IEEE INFOCOM, 2012.

[28] A. P. Demster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[29] Z. Ghahramani and S. T. Roweis, “Learning nonlinear dynamical sys-
tems using an EM algorithm,” in Proc. of NIPS, 1999.

[30] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. of IEEE AS-SPCC, 2000.

[31] S. Thrun, “Particle filters in robotics,” in Proc. of UAI, 2002.
[32] A. EC2, “Pricing for amazon emr and amazon ec2 (on-demand),” 2017.

https://aws.amazon.com/emr/pricing.
[33] H. Akaike, “Information theory and an extension of the maximum

likelihood principle,” in Proc. of ISIT, 1973.

APPENDIX

Throughout the appendix we will be assuming the cloud provider model as described in Section III. We define the indicator
function 1b≥π = 1 ⇐⇒ b ≥ π and will make use of the following identity that follows from (2):

N
(s)
t = |{b ∈ Bt : b ≥ πt}| =

∑
b∈Bt

1b≥π

A. Proof of Proposition 1
Proof: By Definition 1 we have ∀ b ∈ Bt and any π that if b′ ∼ U [π, π] then

P (1b≥π = 1) = 1− P (b < π) ≥ 1− P (b′ < π) = P (1b′≥π = 1)

and so it follows that

P

(πt − π)
∑

b∼UBt [π,π]

1b≥πt ≥ x

 ≤ P

(
(πt − π)

∑
b∈Bt

1b≥πt ≥ x

)
for any πt and x. Combining this with the fact that Bt = |Bt| ≥

∑
b∈Bt

1b≥π(ρ) yields

P
(
πt ≤ π(ρ)

)
= P

(
arg max

N
(d)
t +N

(s)
t ≤N

(πt − π)N
(s)
t ≤ π(ρ)

)

= P

 max
N

(d)
t +N

(s)
t ≤N

πt≤π(ρ)

(πt − π)
∑
b∈Bt

1b≥πt ≥ max
N

(d)
t +N

(s)
t ≤N

πt>π
(ρ)

(πt − π)
∑
b∈Bt

1b≥πt

≤ P

 max
N

(d)
t +N

(s)
t ≤N

πt≤π(ρ)

(πt − π)
∑
b∈Bt

1b≥πt ≥ max
N

(d)
t +N

(s)
t ≤N

πt>π
(ρ)

(πt − π)
∑

b∼UBt [π,π]

1b≥πt

≤ P

(π(ρ) − π) min
{
Bt, N −N (d)

t

}
≥
(
π(1

2) − π
)

min

 ∑
b∼UBt [π,π]

1
b≥π(1

2) , N −N
(d)
t

= P

(π(ρ) − π)Bt ≥ (π(1
2) − π)

∑
b∼UBt [π,π]

1
b≥π(1

2)

∣∣∣∣Xt

P (Xt)

+ P

(π(ρ) − π)
(
N −N (d)

t

)
≥ (π(1

2) − π)
∑

b∼UBt [π,π]

1
b≥π(1

2)

∣∣∣∣Yt
P (Yt)

+ P
(

(π(ρ) − π)
(
N −N (d)

t

)
≥ (π(1

2) − π)(N −N (d)
t)

∣∣∣∣Zt)P (Zt)

for Xt the event that N − N
(d)
t ≥ Bt, Yt the event that

∑
b∼UBt [π,π]

1
b≥π(1

2) ≤ N − N
(d)
t < Bt, and Zt the event that

N − N (d)
t <

∑
b∼UBt [π,π]

1
b≥π(1

2) . Now the last conditional probability is zero since π(ρ) − π < π(1
2) − π. Then from Yt we

have Bt > N −N (d)
t so the second conditional probability is bounded by the first. Combining terms and applying Hoeffding’s

inequality gives

P
(
πt ≤ π(ρ)

)
≤ P

(π(ρ) − π)Bt ≥ (π(1
2) − π)

∑
b∼UBt [π,π]

1
b≥π(1

2)

= P

2ρBt ≥
∑

b∼UBt [π,π]

1
b≥π(1

2)

≤ exp

(
−2

(
1

2
− 2ρ

)2

Bt

)

B. Proof of Lemma 1

Proof: Given N
(d)
t and Bt, define the random variables Xt = 1

Bt

∑
b∈Bt

1b≥π and Yt = 1
Bt

∑
b∈Bt

π−π
π−π −

1
2 + 1b≥π+π

2
for

π ∈ [π, π], and let fXt and fYt be their respective probability density functions. Now since

EXt = E1b≥π =
π − π
π − π

= E
(
π − π
π − π

− 1

2
+ 1b≥π+π

2

)
= EYt

we have by the Strong Law of Large Numbers that Xt and Yt converge almost surely to the same limit as Bt →∞. Therefore
using the Bounded Convergence Theorem we have that ∀ x

lim
Bt→∞

P(Xt ≤ x) =

x∫
0

lim
Bt→∞

fXt =

x∫
0

lim
Bt→∞

fYt = lim
Bt→∞

P(Yt ≤ x)

Following Equation 5 and using the above identity we have

lim
Bt→∞

N−N(d)
t

Bt
=Ct

P
(
πt ≤ π

∣∣N (d)
t , Bt

)
= lim

Bt→∞
N−N(d)

t
Bt

=C

P

(∑
b∈Bt

1b≥π ≤ N −N (d)
t

∣∣∣∣N (d)
t , Bt

)

= lim
Bt→∞

P
(
Xt ≤ Ct

∣∣N (d)
t , Bt

)
= lim
Bt→∞

P
(
Yt ≤ Ct

∣∣N (d)
t , Bt

)
= lim
Bt→∞

P

(
π − π
Bt

∑
b∈Bt

Z
(b)
t ≤ π

∣∣∣∣N (d)
t , Bt

)

where the random variable Z(b)
t = 1b≥π+π

2
+ π−π

2(π−π) − Ct has expectation EZ(b)
t = π

π−π − Ct and variance Var
(
Z

(b)
t

)
= 1

4 .

Thus as Bt →∞ the Central Limit Theorem implies that 1
Bt

∑
b∈Bt

Z
(b)
t converges in distribution to N

(
π

π−π − Ct,
1

4Bt

)
. Then

it follows from the previous equalities and the equivalence between convergence in distribution and pointwise convergence of
the cumulative density function that

lim
Bt→∞

N−N(d)
t

Bt
=Ct

P
(
πt ≤ π

∣∣N (d)
t , Bt

)
= lim

Bt→∞
N−N(d)

t
Bt

=Ct

P
(
Zt ≤ π

∣∣N (d)
t , Bt

)

Zt ∼ N

(
π − (π − π)

N −N (d)
t

Bt
,

(π − π)
2

4Bt

)

Rewriting this last expression in terms of the normalizations nt and bt of N (d)
t and Bt completes the proof.

C. Estimating Parameters via Expectation-Maximization

Given the spot price data Π (8) and the inferred hidden states X (9), the model likelihood given the parameters Θ is
expressed as

LΘ (Π,X) =

m∏
j=1

Tj∏
t=1

fθd,θ̃d

(
n

(j)
t − n

(j)
t−1

)
fθs,θ̃s

(
b
(j)
t − b

(j)
t−1

) Tj−1j<m∏
t=1j>1

n
(j)
t +b

(j)
t >1

g σ2

b
(j)
t

(
π

(j)
t − π + (π − π)

1− n(j)
t

b
(j)
t

)

where fµ,ν(x) is the probability density function of the difference of random variables drawn from exponential distributions
with parameters µ, ν, which is expressed as

fµ,ν(x) =
µν

µ+ ν

{
exp(νx) x < 0
exp(−µx) x ≥ 0

and gΣ is the probability density function of a normally distributed random variable with mean zero and covariance Σ. Note
that the index restrictions placed above and below the last product sign in the likelihood are to account for states for which the
spot price conditioned on the states satisfies π(j)

t ∈ {π, π} with probability 1 (following (6)) and which can thus be excluded
from the product.

Now since in EM we only know the (approximate) distribution over the hidden states, we will be maximizing the expected
log-likelihood EX logLΘ (Π,X). We approximate this expectation by taking the average of the log of the above expression
over K samples n(j,k)

t and b
(j,k)
t returned by SMC. We apply first-order optimality conditions to find the system solved by

the parameter estimates:

0 =
T
θd
− T
θd + θ̃d

− 1

K

K∑
k=1

m∑
j=1

Tj∑
t=1

max
{

0, n
(j,k)
t − n(j,k)

t−1

}

0 =
T
θ̃d
− T
θd + θ̃d

+
1

K

K∑
k=1

m∑
j=1

Tj∑
t=1

min
{

0, n
(j,k)
t − n(j,k)

t−1

}

0 =
T
θs
− T
θs + θ̃s

− 1

K

K∑
k=1

m∑
j=1

Tj∑
t=1

max
{

0, b
(j,k)
t − b(j,k)

t−1

}

0 =
T
θ̃s
− T
θs + θ̃s

+
1

K

K∑
k=1

m∑
j=1

Tj∑
t=1

min
{

0, b
(j,k)
t − b(j,k)

t−1

}

0 =
(T −m+ 2)K −R

Kσ
− 1

Kσ3

K∑
k=1

m∑
j=1

Tj−1j<m∑
t=1j>1

n
(j,k)
t +b

(j,k)
t >1

(
π

(j)
t − π + (π − π)

1− n(j,k)
t

b
(j,k)
t

)2

b
(j,k)
t

where T =
m∑
j=1

Tj and R =
∣∣∣{(j, k) : n

(j,k)
t + b

(j,k)
t ≤ 1

}∣∣∣. Solving this system for Θ = {θd, θ̃d, θs, θ̃s, σ2} yields the following

parameter estimates:

θ̂d =
TK

√
n+
(√

n+ +
√
n−
) ˆ̃

θd =
TK

√
n−
(√

n+ +
√
n−
)

θ̂s =
TK

√
b+
(√

b+ +
√
b−
) ˆ̃

θs =
TK

√
b−
(√

b+ +
√
b−
)

σ̂2 =

K∑
k=1

m∑
j=1

Tj−1j<m∑
t=1j>1

n
(j,k)
t +b

(j,k)
t >1

(
π

(j)
t − π + (π − π)

1−n(j,k)
t

b
(j,k)
t

)2

b
(j,k)
t

(T −m+ 2)K −R
where

n+ =

K∑
k=1

m∑
j=1

Tj∑
t=1

max
{

0, n
(j,k)
t − n(j,k)

t−1

}
n− = −

K∑
k=1

m∑
j=1

Tj∑
t=1

min
{

0, n
(j,k)
t − n(j,k)

t−1

}

b+ =
K∑
k=1

m∑
j=1

Tj∑
t=1

max
{

0, b
(j,k)
t − b(j,k)

t−1

}
b− = −

K∑
k=1

m∑
j=1

Tj∑
t=1

min
{

0, b
(j,k)
t − b(j,k)

t−1

}
The approximately optimal expected log-likelihood is thus

EX logLΘ̂ (Π,X) = T log

(
θ̂d

ˆ̃
θd

θ̂d +
ˆ̃
θd

θ̂s
ˆ̃
θs

θ̂s +
ˆ̃
θs

)
− θ̂dn

+ +
ˆ̃
θdn
− + θ̂sb

+ +
ˆ̃
θsb
−

K

− (T −m+ 2)K −R
2K

(
1 + log 2πσ̂2

)
+

1

2K

K∑
k=1

m∑
j=1

Tj−1j<m∑
t=1j>1

n
(j,k)
t +b

(j,k)
t >1

log b
(j,k)
t

D. Proof of Lemma 2

Proof: Under the assumptions θd ≈ θ̃d and θs ≈ θ ≈ θ̃s we have that η(d)
t′ = λ

(d)
t′ − λ̃

(d)
t′ and η

(s)
t′ = λ

(s)
t′ − λ̃

(s)
t′

approximately follow zero-mean Laplace distributions at all times t′, with the distribution of η(s)
t′ having scale parameter 1

θ .
Thus by applying Equation 7 repeatedly and using the fact that n̄τ and b̄τ are unbiased estimators of nτ and bτ , respectively,
we have that

E (n̄τ − nt) = E

(
n̄τ − nτ −

t∑
t′=τ+1

λ
(d)
t′ − λ̃

(d)
t′

)
= E (n̄τ − nτ) +

t∑
t′=τ+1

E
(
η

(d)
t′

)
= 0

E
(
b̄τ − bt

)
= E

(
b̄τ − bτ −

t∑
t′=τ+1

λ
(s)
t′ − λ̃

(s)
t′

)
= E

(
b̄τ − bτ

)
+

t∑
t′=τ+1

E
(
η

(s)
t′

)
= 0

Assuming δ is small enough such that πt ∈ (π, π), we define εt ∼ N
(

0, σ
2

bt

)
and apply Equation 6) along with the

independence of the hidden states to get that

Eπτ (πt) = Eπτ
(
π − (π − π)

1− nt
bt

+ εt

)
= π − (π − π)Eπτ

(
1− nt
bt

)
= π − (π − π)Eπτ (1− nt)Eπτ

(
1

bt

)
= π − (π − π) (1− n̄τ)Eπτ

(
1

b̄τ
− bt − b̄τ

b̄2τ
+

(bt − b̄τ)2

b̄3τ
− . . .

)
≈ π − (π − π)

1− n̄τ
b̄τ

Eπτ
(

1− bt − b̄τ
b̄τ

+
(bt − b̄τ)2

b̄2τ

)
= π − (π − π)

1− n̄τ
b̄τ

(
1 +

Eπτ (bt − b̄τ)2

b̄2τ

)

where we have taken a 2nd-order Taylor approximation of 1
bt

around b̄τ . By the independence of bτ , η
(s)
τ+1, . . . , η

(s)
t we have

Eπτ
(
bt − b̄τ

)2
= Eπτ

(
bτ +

t∑
t′=τ+1

η
(s)
t′ − b̄τ

)2

= Eπτ
(
bt − b̄τ

)2
+

t∑
t′=τ+1

Eπτ
(
η

(s)
t′

)2

= S2
τ +

2δ

θ2

where recall that δ = t − τ and note that 2
θ2 is the variance of the Laplace distribution with scale parameter 1

θ . Substituting
this equation into the previous approximation yields the result.

