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Algorithms with predictions
take advantage of a prediction w to improve
the cost C,.(w) of running on an instance x

generic guarantee: C,(w) is bounded by a
function U, (w), which is

1. small if prediction w is good (consistency)

2. as good as the worst-case (robustness)

A new framework for
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Step 1:
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bound U, of C,
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surrogate loss for C,
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Step 2:

apply online learning
Results:

* low regret: Y Uy, (We) — min %, Uy, (W) = o(T)
* sample complexity: E,U,(®) < min ExUx(w) + €
* instance-dependent prediction: w « (a,f,)

* problem-specific learning algorithms
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- practical and efficient algorithms

Our framework

Problem: for a bipartite graph with m edges and n
vertices, find the perfect matching with least weight
according to edge-weights x € Z™

Example:
Bipartite matching
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Step 2:

apply online gradient descent to U, (w) = ||lw — y*(x)||,
[O(n) improvement over [1]!] —).

Algorithm [1]: Hungarian method initialized at integer
duals w € Z™ has runtime O(mn|lw — y*(x)|l,),
where y*(x) € Z" is the dual vector of the optimum

Step 1:
rounding w € R™ to the integers before running Hungarian

» preserves distance to y*(c) up to constants

* makes the problem of learning w convex

ﬁ(nz/sz) samples needed to PAC-learn w

e’ 0(nV2T) cumulative regret

[first regret guarantee]
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More applications

Better bounds for shortest path and b-matching
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We extend our matching guarantees to
obtain up to 0(n?) improvement in
sample complexity over [2]

First learning guarantees for online page migration

Goal: predict a distribution over a finite metric space K to
satisfy a sequence of n requests

Step 1: make existing guarantee [3] convex at cost O (logn)
Step 2: apply exponentiated gradient descent

* regret: 0(nJT10g|K|) o ®
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* sample complexity:
nZ
0 (% logk|)
Tuning robustness-consistency tradeoffs

Robustness-consistency can be traded off parametrically:
Cx(w, 1) < min{f (DU, (W), gD}
for f increasing, g decreasing, and 1 € [0,1].

We show how to learn the best A using data, sometimes
simultaneously with learning the prediction.

Learning predictions for job scheduling

See paper (arxiv.org/abs/2202.09312) for learning predictions
* thatimprove the fractional makespan in online scheduling

* of optimal job permutations for non-clairvoyant scheduling
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