Learning Predictions for Algorithms with Predictions

Misha Khodak, Nina Balcan, Ameet Talwalkar, Sergei Vassilvitskii khodak@cmu.edu

Algorithms with predictions

take advantage of a prediction w to improve the cost $C_x(w)$ of running on an instance x generic guarantee: $C_x(w)$ is bounded by a function $U_{x}(w)$, which is

- 1. small if prediction w is good (consistency)
- 2. as good as the worst-case (robustness)

A new framework for learning predictions

 $f_{log}(x) = \log_2(1 + \exp(-x))$

Step 1: derive a "nice" upper bound U_x of C_x

- U_{γ} should be a **surrogate** loss for C_{γ}
- convex, Lipschitz, etc.

Step 2: apply online learning

Results:

- low regret: $\sum_t U_{x_t}(w_t) - \min_{w} \sum_t U_{x_t}(w) = o(T)$
- sample complexity: $\mathbb{E}_{x}U_{x}(\widehat{w}) \leq \min_{x} \mathbb{E}_{x}U_{x}(w) + \varepsilon$
- instance-dependent prediction: $w \leftarrow \langle a, f_x \rangle$
- problem-specific learning algorithms

Standard approach no learning guarantee ⊗ derive upper bound $U_r(w)$ on the cost of the algorithm Results: bound sample complexity of via - sample complexity bound VC/pseudo-dimension, etc.

make the derive upper bound $U_{\gamma}(w)$ on the cost of the algorithm

are already good at

upper bound nice

apply online learning

Results:

- low regret guarantee
- sample complexity bound
- instance-dependent predictors
- practical and efficient algorithms

Our framework

Example:

Bipartite matching

 $\tilde{O}(n)$ improvement over [1]!

first regret guarantee

Algorithm [1]: Hungarian method initialized at integer duals $\mathbf{w} \in \mathbb{Z}^n$ has runtime $O(m\sqrt{n}\|\mathbf{w} - \mathbf{y}^*(\mathbf{x})\|_1)$,

where $\mathbf{y}^*(\mathbf{x}) \in \mathbb{Z}^n$ is the dual vector of the optimum

Problem: for a bipartite graph with m edges and n

vertices, find the perfect matching with least weight

according to edge-weights $x \in \mathbb{Z}^m$

Step 1:

rounding $\mathbf{w} \in \mathbb{R}^n$ to the integers before running Hungarian

- preserves distance to $\mathbf{v}^*(\mathbf{c})$ up to constants
- makes the problem of learning w convex

Step 2: apply online gradient descent to $U_x(\mathbf{w}) = \|\mathbf{w} - \mathbf{y}^*(\mathbf{x})\|_1$

 $\widetilde{\Omega}(n^2/\varepsilon^2)$ samples needed to PAC-learn w

 $O(n\sqrt{2T})$ cumulative regret

More applications

Better bounds for shortest path and b-matching

We extend our matching guarantees to obtain up to $O(n^2)$ improvement in sample complexity over [2]

First learning guarantees for online page migration

Goal: predict a distribution over a finite metric space K to satisfy a sequence of n requests

Step 1: make existing guarantee [3] convex at cost $O(\log n)$ Step 2: apply exponentiated gradient descent

regret: $O(n\sqrt{T\log|K|})$

sample complexity: $O\left(\frac{n^2}{c^2}\log|K|\right)$

Tuning robustness-consistency tradeoffs

Robustness-consistency can be traded off parametrically: $C_{x}(w,\lambda) \leq \min\{f(\lambda)U_{x}(w), g_{x}(\lambda)\}\$

for f increasing, g decreasing, and $\lambda \in [0,1]$.

We show how to learn the best λ using data, sometimes simultaneously with learning the prediction.

Learning predictions for job scheduling

See paper (arxiv.org/abs/2202.09312) for learning predictions

- that improve the fractional makespan in online scheduling
- of optimal job permutations for non-clairvoyant scheduling

References:

- [1] Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS 2021
- [2] Chen, Silwal, Vakilian, Zhang. ICML 2022.
- [3] Indyk, Mallmann-Trenn, Mitrović, Rubinfeld, AISTATS 2022