
Example: 
Bipartite matching

take advantage of a prediction 𝑤 to improve 
the cost 𝐶! 𝑤 of running on an instance 𝑥
generic guarantee: 𝐶!(𝑤) is bounded by a 
function 𝑈! 𝑤 , which is

1. small if prediction 𝑤 is good (consistency)

2. as good as the worst-case (robustness)

Learning Predictions for Algorithms with Predictions
Misha Khodak, Nina Balcan, Ameet Talwalkar, Sergei Vassilvitskii
khodak@cmu.edu

Better bounds for shortest path and 𝒃-matching

First learning guarantees for online page migration

More applications

FedEx: Tuning local hyperparameters

Algorithms with predictions

Tuning robustness-consistency tradeoffs

Learning predictions for job scheduling

Our framework

derive upper bound 𝑈!(𝑤)
on the cost of the algorithm

Results:
- low regret guarantee
- sample complexity bound
- instance-dependent predictors
- practical and efficient algorithms

make the 
upper 

bound nice

apply online 
learning

derive upper bound 𝑈!(𝑤)
on the cost of the algorithm

bound sample complexity of via 
VC/pseudo-dimension, etc.

Results:
- sample complexity bound

no learning guarantee L

what algorithm designers 

are already good at

Step 1: 
derive a “nice” upper 
bound 𝑈! of 𝐶!
• 𝑈! should be a 

surrogate loss for 𝐶!
• convex, Lipschitz, etc.

A new framework for 
learning predictions

Step 2: 
apply online learning

Results:
• low regret: ∑"𝑈!! 𝑤" −min

𝒘
∑"𝑈!!(𝑤) = 𝑜(𝑇)

• sample complexity:    𝔼!𝑈! /𝑤 ≤ min
𝒘
𝔼!𝑈! 𝑤 + 𝜀

• instance-dependent prediction:    𝑤 ← ⟨𝒂, 𝐟!⟩

• problem-specific learning algorithms

Problem: for a bipartite graph with 𝑚 edges and 𝑛
vertices, find the perfect matching with least weight 
according to edge-weights 𝒙 ∈ ℤ$

Algorithm [1]: Hungarian method initialized at integer
duals 𝒘 ∈ ℤ% has runtime 𝑂(𝑚 𝑛 𝒘 − 𝒚∗ 𝒙 '), 
where 𝒚∗ 𝒙 ∈ ℤ% is the dual vector of the optimum

Step 1: 
rounding 𝒘 ∈ ℝ% to the integers before running Hungarian

• preserves distance to 𝒚∗ 𝒄 up to constants

• makes the problem of learning 𝒘 convex

Step 2:
apply online gradient descent to 𝑈𝒙(𝒘) = 𝒘 − 𝒚∗ 𝒙 '

• 0Ω 𝑛9/𝜀9 samples needed to PAC-learn 𝒘

• O 𝑛 2𝑇 cumulative regret

5𝑂(𝑛) improvement over [1]!

first regret guarantee

We extend our matching guarantees to 
obtain up to 𝑂 𝑛) improvement in 
sample complexity over [2]

Goal: predict a distribution over a finite metric space 𝐾 to 
satisfy a sequence of 𝑛 requests 
Step 1: make existing guarantee [3] convex at cost 𝑂 log 𝑛
Step 2: apply exponentiated gradient descent

• regret:   O 𝑛 𝑇 log |𝐾|

• sample complexity:

O %"

*" log |𝐾|

Robustness-consistency can be traded off parametrically:
𝐶! 𝑤, 𝜆 ≤ min{𝑓 𝜆 𝑈! 𝑤 , 𝑔! 𝜆 }

for 𝑓 increasing, 𝑔 decreasing, and 𝜆 ∈ 0,1 .
We show how to learn the best 𝜆 using data, sometimes 
simultaneously with learning the prediction.

See paper (arxiv.org/abs/2202.09312) for learning predictions
• that improve the fractional makespan in online scheduling 
• of optimal job permutations for non-clairvoyant scheduling
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