# Learning Predictions for Algorithms with Predictions

Misha Khodak, Nina Balcan, Ameet Talwalkar, Sergei Vassilvitskii khodak@cmu.edu

# Algorithms with predictions

take advantage of a prediction w to improve the cost  $C_x(w)$  of running on an instance x generic guarantee:  $C_x(w)$  is bounded by a function  $U_{x}(w)$ , which is

- 1. small if prediction w is good (consistency)
- 2. as good as the worst-case (robustness)

# A new framework for learning predictions

 $f_{log}(x) = \log_2(1 + \exp(-x))$ 

## Step 1: derive a "nice" upper bound $U_x$ of $C_x$

- $U_{\gamma}$  should be a **surrogate** loss for  $C_{\gamma}$
- convex, Lipschitz, etc.

## Step 2: apply online learning

### Results:

- low regret:  $\sum_t U_{x_t}(w_t) - \min_{w} \sum_t U_{x_t}(w) = o(T)$
- sample complexity:  $\mathbb{E}_{x}U_{x}(\widehat{w}) \leq \min_{x} \mathbb{E}_{x}U_{x}(w) + \varepsilon$
- instance-dependent prediction:  $w \leftarrow \langle a, f_x \rangle$
- problem-specific learning algorithms

### Standard approach no learning guarantee ⊗ derive upper bound $U_r(w)$ on the cost of the algorithm Results: bound sample complexity of via - sample complexity bound VC/pseudo-dimension, etc.

## make the derive upper bound $U_{\gamma}(w)$ on the cost of the algorithm

are already good at

upper bound nice

### apply online learning

### Results:

- low regret guarantee
- sample complexity bound
- instance-dependent predictors
- practical and efficient algorithms

# Our framework

Example:

# Bipartite matching

 $\tilde{O}(n)$  improvement over [1]!

first regret guarantee

Algorithm [1]: Hungarian method initialized at integer duals  $\mathbf{w} \in \mathbb{Z}^n$  has runtime  $O(m\sqrt{n}\|\mathbf{w} - \mathbf{y}^*(\mathbf{x})\|_1)$ ,

where  $\mathbf{y}^*(\mathbf{x}) \in \mathbb{Z}^n$  is the dual vector of the optimum

**Problem:** for a bipartite graph with m edges and n

vertices, find the perfect matching with least weight

according to edge-weights  $x \in \mathbb{Z}^m$ 

### Step 1:

rounding  $\mathbf{w} \in \mathbb{R}^n$  to the integers before running Hungarian

- preserves distance to  $\mathbf{v}^*(\mathbf{c})$  up to constants
- makes the problem of learning w convex

### Step 2: apply online gradient descent to $U_x(\mathbf{w}) = \|\mathbf{w} - \mathbf{y}^*(\mathbf{x})\|_1$

 $\widetilde{\Omega}(n^2/\varepsilon^2)$  samples needed to PAC-learn w

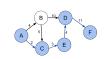
 $O(n\sqrt{2T})$  cumulative regret





# More applications

### Better bounds for shortest path and b-matching



We extend our matching guarantees to obtain up to  $O(n^2)$  improvement in sample complexity over [2]

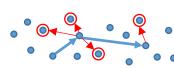
### First learning guarantees for online page migration

Goal: predict a distribution over a finite metric space K to satisfy a sequence of n requests

Step 1: make existing guarantee [3] convex at cost  $O(\log n)$ Step 2: apply exponentiated gradient descent

regret:  $O(n\sqrt{T\log|K|})$ 

sample complexity:  $O\left(\frac{n^2}{c^2}\log|K|\right)$ 



### Tuning robustness-consistency tradeoffs

Robustness-consistency can be traded off parametrically:  $C_{x}(w,\lambda) \leq \min\{f(\lambda)U_{x}(w), g_{x}(\lambda)\}\$ 

for f increasing, g decreasing, and  $\lambda \in [0,1]$ .

We show how to learn the best  $\lambda$  using data, sometimes simultaneously with learning the prediction.

### Learning predictions for job scheduling

See paper (arxiv.org/abs/2202.09312) for learning predictions

- that improve the fractional makespan in online scheduling
- of optimal job permutations for non-clairvoyant scheduling

#### References:

- [1] Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS 2021
- [2] Chen, Silwal, Vakilian, Zhang. ICML 2022.
- [3] Indyk, Mallmann-Trenn, Mitrović, Rubinfeld, AISTATS 2022