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Modern unsupervised text embeddings

NLP practitioners use unsupervised text embeddings to
capture the "meaning” of documents.

Often produced or taken as input by (recurrent) neural
networks.

Goal: compete with this state-of-the-art using simple,
analyzable, deep-learning free methods



Why represent text as an embedding?
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Want to use large amounts of unsupervised data to improve
performance/sample efficiency on supervised tasks.



How to represent text as an embedding”

Word embeddings: ion tiger

e Assign vector to each word
(dimension d~300) Stockholm

e Ooptimize objective that makes
frequently co-occurring words
have high inner product (e.g.
word2vec! or GloVe?)

The lion is king

of the jungle.
A tiger hunts

in a forest.

How to extend to longer text”

Stockholm has

1: Mikolov et al., NIPS 2013. nice summers.

2. Pennington et al., EMNLP 2014.



The LSTM embedding approach

Take in words wh, ..., Wwr and compute a hidden state vector ht at
each step. The embedding is the last state hr:

ho h1 ht hy = F(th, ht—l)
—_— —_— amm —P —
VIO VIT fow,,he—1) o ht—1 + i(Vy,, ht—1) © g(Vep, , ht—1))
Examples:

* skip-thought (Kiros et al., 2015)
e MC-QT (Logeswaran and Lee, 2018)

Drawbacks:

* slow for training and inference

* struggles against Bag-of-n-Grams (BonG) — sparse vectors
counting the n-grams in a document — on text classitication



Many attempts at simple embeddings

The embedding is a sum of word embeddings (perhaps weighted
or linearly transtformed):

VWI,...,WT — Z le_

=1

Examples:

e paraphrastic — use word vectors trained on a corpus of
paraphrases (Wieting et al., 2016)

 SIF— down-weight frequent words (Arora et al., 2017)

Drawbacks:
* have not incorporated word-order information successfully
* not as successtul on classification as on semantic similarity



Summary of text embedding methods
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e.g. skip-thoughts [Kiros et al., 2015]
InferSent [Conneau et al., 2017]
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Linear Schemes

Composition of
Word Embeddings

Bag of N-Grams LSTM Hidden State

Simple, strong baseline Long-range dependencies

Simple baseline

Slow training and inference
Often beaten by BonGs

Poor sample complexity
Only local word order

Usually ignores word-order
Often beaten by BonGs

Unsupervised Learning =4

e.g. SIF [Arora et al., 2017]
Sent2Vec [Pagliardini et al., 2018]



What to aim for in the unsupervised setting

Task unknown beforehand — maybe try and preserve most
of the information in the text in an easily extractable way?

This is what the sum-of-embeddings does with the Bag-of-
Words vector:

A
recovering sparse X given Ax is the
goal of compressed sensing
Vi [Donoho, 2005: Candés & Tao, 2005]

(W]

matrix of
word embeddings can be done if the columns of A are

incoherent or near-orthogonal

BoW vector



Can we recover information from a sum
of pretrained embeddings?

Experiment:
1. compress Xsgow as AXeow
2. recover xesow by Basis Pursuit:  min ||x]|| S.t. Ax = Axg
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Yes! We are more likely to recover Xgow from AXsow

using Basis Pursuit if A consists of pretrained
embeddings and Xeow comes from a real document.




Does recoverability imply learnability in
the compressed domain®

Yes, for random vectors:

For A satistying RIP, linear classitication over compressed

samples AX is approximately at least as good as over X,
assuming X Is sparse.

Can construct such A w.h.p. using random vectors with
dimension O(k log N / k).




More formally

Theorem 1: If the distribution D of examples
(X, y) has k-sparse X, wp is their optimal
linear classitier for some convex Lipschitz
loss, and A is (2k,€)-RIP, then the linear
classifier wa trained over (AX, y) satisfies:

Cp(Wy) < Cp(wp) + O (\/;> \Wo

Proof Sketch: @

classitier wy Is a linear combination
of training examples

Aise—RIP = AWy Ax < vAvgx + O(¢) /
2 is Lipschitz = £(Aw,) < £(W,y) + O(¢) Wa

Compressed Domain

Sparse Domain

Awg

4: Extends results by Calderbank et al. (Technical Report 2009).



Compressing Bag-of-n-Grams Information

By Theorem 1 the sum of embeddings is as good as the
Bag-of-Words for RIP vectors. But we want to be as good

as Bag-of-n-Grams.

Our approach — take a sum over n-gram embeddings:

* For n-gram g=(w1,...,wn) set Vg — le ORRNO an

e With some assumptions we can show these vectors satisty RIP, so
their sums are guaranteed to do as well as Bag-of-n-Grams.

 We call these DisC embeddings (for distributed co-occurrence).



Properties of DisC embeddings

e perform well on standard classification tasks, competing with
latest neural methods:

SST Polarity SST Fine-Grained IMDB Polarity
90 50 90.0
87.5 47.5 87.5
85 45 85.0
825 42.5 82.5
80 40 80.0
BonG SIF skip- Ours BonG SIF skip- Ours BonG SIF skip- Ours
thoughts thoughts thoughts

e can be constructed by a low-memory LSTM, so by Theorem 1
even a linear LSTM can do at least as well as Bag-of-n-Grams
on text classitication (if initialized properly)
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Verifying our theory: convergence to
Bag-of-n-Grams performance

Unigram Performance
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Using pretrained embeddings yields much better
performance, even though they do not satisty RIP.
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Can compressed sensing theory
explain word embedding recovery?

* RIP/incoherence approach is too strong hyperplane h

 must hold for all sparse signals \ vectors of
e requires vectors with low inner product document
words
» e/
* Weaker conditions often hard to check /
* Supporting Hyperplane Property 2
(SHP):5if there is a hyperplane h containing the

vectors of all words in a document and all other
word vectors are in the same half-space as the
origin then Xeow can be recovered from AXsow
using lv-minimization

origin

5: Extends results by Donoho & Tanner (PNAS 2005).
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Pretrained embeddings are
more likely to satisfy SHP
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Intuitive explanation: embedding objectives push words

INn the same document closer together through
unsupervised learning over a large text corpus.




Word embeddings have nice properties;
what about n-gram embeddings”

 Difficult to capture n-gram semantics with composition alone,
especially element-wise multiplication.

« New method — a /la carte embedding (ACL 2018):
* |nduces n-gram embeddings using corpus contexts

« Computes the expected n-gram vector under a standard model
for GloVe-like word embeddings

* Even stronger performance on standard classification tasks:

Method MR CR SUBJ MPQA TREC SST SST IMDB
BonG 77.8 78.3 91.8 85.8 90.0 80.9 42.3 89.8
Sent2Vec! 76.3 79.1 91.2 87.2 85.8 80.2 31.0 85.5
skip-thought? 80.3 83.8 94.2 88.9 93.0 85.1 45.8
SDAES 74.6 78.0 90.8 86.9 78.4
CNN-LSTM4 77.8 82.0 93.6 89.4 92.6
MC-QT5 824 860 948 902 924  87.6
a la carte 81.8 84.3 93.8 87.6 89.0 86.7 48.1 90.9

1: Pagliardini et al. ‘18, 2: Kiros et al. ‘15, 3: Hill et al. ’16, 4: Gan et al. ‘17, 5: Logeswaran and Lee ‘18



Discussion and Future Work

In theory — more mysteries of word embeddings:

e (Good sparse recovery does not give provable guarantees for
classitication. Does compressed learning hold for conditions
weaker than RIP?

e |sthere arigorous explanation for these properties for some
objective/model?

In practice — simple methods are competitive
with deep learning for unsupervised NLP:
o Are standard tasks too simple and/or noisy?

o Simplified approaches can lead to similar insights for other
neural systems, both in NLP and beyond.



Thank you!

Paper available on OpenReview (ICLR 2018):
https://openreview.net/pdf?id=B1e5ef-C-

Contact:
{arora,mkhodak,nsaunshi}@cs.princeton.edu
kiran.vodrahalli@columbia.edu
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