
Towards Automatic Architecture 
Design for Emerging Machine 

Learning Tasks

Misha Khodak
Carnegie Mellon University

DDPS WEBINAR LLNL

4 NOVEMBER 2021



The past decade in machine learning

20162012 

2014

2020

U Toronto

Google

DeepMind (Google) DeepMind (Google)

OpenAI / Microsoft



Democratizing deep learning
Deep learning achieves impressive results 
in some domains:

◦ Vision (image classification, segmentation)

◦ Text (language prediction, translation)

Applying it in other domains is tricker 
because the types of neural networks 
being used are not well-tuned for them:

◦ Experimental data from the natural 
sciences

◦ Simulation data from science and 
engineering

◦ Graph-based data

◦ Biological sequences

Science: Data-driven PDE solvers
Healthcare: Drug discovery, Cancer Detection
Manufacturing: Anomaly detection
Finance: Fraud detection, quantitative trading
Retail: No-checkout shopping
AdTech: Improved bidding, recommendation
Education: Personalized lesson plans
Software: Automated customer service
Agriculture: Aerial imagery analysis
Construction: Site monitoring and optimization
IoT: Smart buildings, auto-cooled data centers
….
Waste Management: Detection and logistics

Transportation: Autonomous vehicles
Internet: Image Search, Voice-powered interfaces
Telecom: Voice assistants

Can we automate this tuning, enabling 
the straightforward application of 

deep learning to many tasks?



What is a neural architecture?

nonlinearity

classifier

nonlinearity

nonlinearity

“frog”

weight
matrix

weight
matrix

weight
matrix

Standard 
neural 

network

General 
computational 

graph



Developments in human 
architecture design

Human-driven architecture search has 
proceeded in two directions:

Operations:
◦ Linear

◦ Convolutions

◦ Transformers

Network topology:
◦ Skip connections (ResNet)

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n



New architectures drive progress in 
machine learning



Complex, expert-driven architecture 
design

3x3 or 5x5 conv?
max or avg pooling?

how to connection 
these operationsrepeated blocks?

why are we using 
convolutions 

anyway?



Neural architecture search (NAS)

Goal: automate away the design of neural architectures

 help practitioners in advanced areas of ML (vision, language, …)

 accelerate progress in budding application areas (natural sciences, 
social sciences, …)



Some might say we’ve made a lot of 
progress in NAS

3x3 or 5x5 conv?
max or avg pooling?

how to set intra-
block connections?repeated blocks?

why are we using 
convolutions 

anyway?

seems to always work, so 
let’s just always do it…

lots of NAS algorithms for 
selecting which topology 

to use

lots of NAS algorithms for 
picking one of a small set 

of operations ???



…but much of this progress has been 
limited in scope

Goal: automate away the design of neural architectures

 help practitioners in advanced areas of ML (vision, language, …)

 accelerate progress in budding application areas (natural sciences, 
social sciences, computational sciences …)

Focus of existing NAS research:

- NAS methods glue together existing primitives (e.g. convolutions) that we 
know work well on heavily studied tasks (vision).

- Why do this if Google is already doing human architecture search for this?

Goal of our work:

Specifically: 
a new search space that can serve as an initial, automated 
solution to any ML problem on diverse domains



What is the NAS problem?

 Pick an operation for each edge 
in a computational graph to 
maximize some objective 
(accuracy, latency, …).

 To do so we define a set of 
operations, i.e. a search space. 

 Popular DARTS search space [Liu 
et al., ‘18] has 8 operations:
 Identity

 Zero-operation

 Conv 3x3 and 5x5

 Dilated Conv 3x3 and 5x5

 Avg Pool

 Max Pool



What is the NAS problem?

 DARTS operations:
 Identity

 Zero-operation

 Conv 3x3 and 5x5

 Dilated Conv 3x3 and 5x5

 Avg Pool

 Max Pool

 We know convolutions work well 
for visions tasks.

 Would this search space work for 
other data domains?



What other domains?

Many problems involve data consisting 
of multi-dimensional arrays:

 Sequence modeling
 Convolutions work okay but need 

large dilations [Bai et al., ‘18], and 
Transformers are still better 
[Vaswani et al., ‘17].

 Solving PDEs
 Convolutions work poorly, but are 

related to the state-of-the-art 
operation [Li et al., ‘21].

 Prediction on graphs
 Regular convolutions don’t make 

sense; graph convolutions [Kipf & 
Welling, ‘17] work well.

<start token> 
<Neural>
<Architecture>

<Search>

time=0 time=50

used ResNet
topology

basic multi-
layer topology



How can we handle these 
new domains?

Possible solutions:

 Just use this search space anyway.
 Large gap in performance.

 Cannot discover truly novel architectures.

 Add new operations one-by-one:
 Discrete NAS methods scale poorly with number of operations.

 What if we don’t know the right operation to use?

We need a more general search space 
focused on operations, NOT topology.



Constructing a more general 
search space

DARTS operations:
 Identity

 Zero-operation

 Conv 3x3 and 5x5

 Dilated Conv 3x3 and 5x5

 Avg Pool

 Max Pool

7/8 of the DARTS operations are
 linear

 diagonalized by the discrete 
Fourier transform (DFT)

filter weights input

DFT

Key idea: replace the DFTs 
by a more general family 
of efficient matrices



Expressive diagonalization (XD) 
operations

filter weights input

DFT
Key idea: replace the DFTs 
by a more general family 
of efficient matrices

architecture parameters 



Which family of efficient matrices 
should we use?

Kaleidoscope (K-) matrices [Dao et al., ’20]

 FFT-like product of small factor matrices

 Provably expresses any efficient matrix-vector operation:
 sparse

 low-rank

 permutation

 DFT

 DCT

 wavelet transform



Substituting K-matrices into the 
diagonalization

filter weights input

DFT

architecture parameters 

Allowing each DFT to 
instead be any K-matrix

 preserves the 
efficiency/short 
description length of 
convolutions

 allows us to express 
many different 
operations of 
interest



What does the set of 
XD-operations contain?

XD-operations include

 7/8 DARTS operations

 all convolutions in PyTorch

 graph convolutions (for fixed 
graphs)

 the Fourier neural operator 
(SOTA for PDE solvers)



How to use XD-operations

Standard pipeline:

 Obtain data

 Choose a conv net 
topology (LeNet, 
ResNet, VGG, …)

 Train model weights 
using SGD or Adam

 Evaluate and tune as 
needed

To use XD-operations:

replace all convolutions in the network 
by XD-operations initialized (“warm-

started”) as convolutions

simultaneously train architecture 
parameters using SGD or Adam

only extra tuning is of the architecture 
optimizer settings



Applications
Classifying permuted images:

◦ XD outperforms baseline CNN and expensive NAS methods 
when images in a standard vision benchmark are permuted.

Predicting protein folding / next note prediction in sheet 
music:

◦ XD beats CNNs with custom-designed dilation pattern

Neural PDE solving



Neural PDE Solvers
Setup:

 Sample problems from some distribution over initial conditions

 For each problem, generate a “ground-truth” solution at some later 
time using a standard solver, e.g. Crank-Nicholson

 Train a neural network to learn a function from initial conditions to 
the later state

Target applications:

 Direct use

 Inverse problems

 Transfer to new problem domains

time=0 time=50



Operations for training neural PDE 
solvers

 Convolutions
 Baseline 

 Performance decreases as resolution increases

 Fourier Neural Operator (FNO) [Li et al., ‘21]
 Much stronger performance

 Three orders of magnitude faster than traditional solvers

 Consistent across resolutions

 XD-operations:
 Contain both convolutions and FNOs!

 Slower, but still fast enough to be useful



Fourier neural operator
FNO

On an inverse problem requiring 
30K solves to determine the 
initial vorticity of a Navier-
Stokes system:

 FNO network takes 2.5 
minutes (+ 12 hours data-
generation & training)

 Standard solver takes 18 
hours

truth standard FNO



Experimental setup
Settings

 Burgers’ equation on [0,1] with random initial conditions.

 Darcy flow on 0,1 2 with random initial diffusion.

 2d Navier-Stokes on 0,1 2 × 0, 𝑇 with random initial vorticity

Discretization

 Square grid, including in time

 Performance measured as average of squared losses over grid vertices

All backbone networks and settings borrowed from FNO paper where possible.



XD-operations across resolutions 
(Burgers’ and Darcy flow)

Burgers’ equation (1d) Darcy flow (2d)

 Vanilla CNN performance decreases with increasing grid resolution

 Starting from CNNs, XD gets much smaller error and consistency across resolutions

 It even slightly outperforms (the custom-designed) FNO



XD-operations across viscosities 
(Navier-Stokes)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

viscosity 1E-4 viscosity 1E-5

l2
 r

el
at

iv
e 

er
ro

r

CNN

CNN

FNO FNOXD XD



Recap: why use XD?
Transform any CNN backbone (ResNet, VGG, etc.) into a search space over 
operations and find something better than convolution for your problem.

Successful applications:
◦ Permuted/flattened image classification

◦ Neural PDE solving

◦ Distance prediction for protein folding

◦ Music modeling

◦ Language modeling

◦ Financial time series prediction

Unsuccessful (little better than baseline):
◦ Image classification

◦ Audio classification

Science: Data-driven PDE solvers
Healthcare: Drug discovery, Cancer Detection
Manufacturing: Anomaly detection
Finance: Fraud detection, quantitative trading
Defense: Autonomous drones
Retail: No-checkout shopping
AdTech: Improved bidding, recommendation
Education: Personalized lesson plans
Software: Automated customer service
Agriculture: Aerial imagery analysis
Construction: Site monitoring and optimization
IoT: Smart buildings, auto-cooled data centers
….
Waste Management: Detection and logistics

Transportation: Autonomous vehicles
Internet: Image Search, Voice-powered interfaces
Telecom: Voice assistants



What XD is not

A replacement for classical topology search NAS (DARTS, DeepHyper, 
etc.)

◦ XD is solving a different problem: discovering new operations, not
connecting existing ones

◦ Can be used in-conjunction (first find a good CNN, then apply XD)

A direct way to improve efficiency
◦ Applying XD to a CNN makes it:

◦ 5x slower to train on the PDE task

◦ 2x slower on the protein task

◦ Similar slow-downs for inference

◦ Large memory costs



Ongoing and future work: 
Efficiency

Causes of inefficiency in XD-operations:
◦ Dependence on new software for K-matrices instead of the FFT
◦ Cannot take advantage of Hermitian symmetry of DFT
◦ Kernel filters must be padded to the input size

Ongoing efforts:
◦ Better software for K-matrices
◦ Developing alternative structured matrices that are more GPU-friendly
◦ Approximations/truncations



Ongoing and future work:
Benchmarking

Evaluating NAS on diverse tasks is difficult:
◦ What is a diverse task? How many do you need?

◦ How to assess different methods?

◦ How to consider computational tradeoffs?

Ongoing efforts: NAS-Bench-360 (nb360.ml.cmu.edu)
◦ 10 (and counting) understudied tasks that are 

feasible to evaluate on an academic budget

◦ Includes tasks from PDE solving, protein folding, 
genomics, audio, …

◦ Evaluations of NAS methods at different budget 
constraints



Ongoing and future work:
New search spaces

Can we design search spaces that efficiently 
contain other important operations?

◦ Self-attention

◦ Max-pooling

Can similar ideas be applied to search over 
efficient operation spaces?

◦ Different types of convolutions

◦ Approximations to self-attention



Thank you!

Collaborators:

Nick Roberts, Tri Dao, Liam Li, Chris Ré, Ameet Talwalkar

Paper (to appear at NeurIPS 2021): 

https://arxiv.org/abs/2103.15798

Software:

https://github.com/mkhodak/relax

Contact:

khodak@cmu.edu


