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The past decade in machine learning
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Democratizing deep learning

Deep learning achieves impressive results
in some domains:

> Vision (image classification, segmentation)

Transportation: Autonomous vehicles
Internet: Image Search, Voice-powered interfaces
Telecom: Voice assistants

o Text (language prediction, translation)

Applying it in other domains is tricker
because the types of neural networks
being used are not well-tuned for them:

o Experimental data from the natural

sciences 1 ‘ iy, stoerservice
‘  Agriculture: Aerial imagery analysis
o S|mu|at|on data from sclence and x“j ‘ ! " Construction: Site monitoring and optimization

loT: Smart buildings, auto-cooled data centers

engineering

Waste Management: Detection and logistics

° Graph-basec
> Biological se




What is a neural architecture?
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Developments in human
architecture design

Human-driven architecture search has
proceeded in two directions:

Operations:
° Linear

o Convolutions
o Transformers

Network topology:
o Skip connections (ResNet)

Residual Network

ip Connection

Q-

Residual Block Residual Block




New architectures drive progress in
machine learning
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Complex, expert-driven architecture
design

how to connection
repeated blocks? these operations

why are we using
convolutions
anyway?

3x3 or 5x5 conv?
max or avg pooling?



Neural architecture search (NAS)

Goal: automate away the design of neural architectures

= help practitioners in advanced areas of ML (vision, language, ...)

= accelerate progress in budding application areas (natural sciences,
social sciences, ...)



Some might say we've made a lot of
progress in NAS




..but much of this progress has been
limited in scope

Goal: automate away the design of neural architectures

Focus of existing NAS research:

= help practitioners in advanced areas of ML (vision, language, ...)

- NAS methods glue together existing primitives (e.g. convolutions) that we
know work well on heavily studied tasks (vision).
- Why do this if Google is already doing human architecture search for this?

Goal of our work:

= accelerate progress in budding application areas (natural sciences,
social sciences, computational sciences ...)

Specifically:
a new search space that can serve as an initial, automated
solution to any ML problem on diverse domains




What is the NAS problem?

= Pick an operation for each edge
in a computational graph to
maximize some objective
(accuracy, latency, ...).

= To do so we define a set of
operations, i.e. a search space.

= Popular DARTS search space [Liu
et al., ‘18] has 8 operations:

Identity

Zero-operation

Conv 3x3 and 5x5

Dilated Conv 3x3 and 5x5
Avg Pool

Max Pool
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AvgPool(x)

or




What is the NAS problem?

= DARTS operations:

Identity

Zero-operation

Conv 3x3 and 5x5

Dilated Conv 3x3 and 5x5
Avg Pool

Max Pool

=  We know convolutions work well
for visions tasks.

= Would this search space work for
other data domains?
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What other domains?

Many problems involve data consisting
of multi-dimensional arrays:

= Sequence modeling <start token>
=  Convolutions work okay but need <Neural> - <Search>
large dilations [Bai et al., ‘18], and <Architecture>

Transformers are still better
[Vaswani et al., ‘17].

—~ used ResNet EZN‘ ol § 8B Al

. 0 EY & z‘ o IS 0 vo o o o'HE \

= Solving PDEs topology RS | # ]
= Convolutions work pgorly, but are :} . | B 8 N ‘ -
0

related to the state/fof-the-art R
operation [Li et al., 21]. time= time=50

basic multi-

o layer topology
= Prediction on graphs
= Regular convolutions don’t male
sense; graph convolutions [Kipf &
Welling, ‘17] work well.




How can we handle these
new domains?

Possible solutions:

= Just use this search space anyway.
= Large gap in performance.
= Cannot discover truly novel architectures.

= Add new operations one-by-one:
= Discrete NAS methods scale poorly with number of operations.

=  What if we don’t know the right operation to use?




Constructing a more general
search space

DARTS operations: filter weights input
Identity
Zero-operation COHV(W)(X) - AWX

Conv 3x3 and 5x5
Dilated Conv 3x3 and 5x5

Avg Pool

=  Max Pool

7/8 of the DARTS operations are
= linear

= diagonalized by the discrete
Fourier transform (DFT)




Expressive diagonalization (XD)
operations

filter weights input

architecture parameters o = (K, L, M

N—"




Which family of efficient matrices
should we use?

Kaleidoscope (K-) matrices [Dao et al., '20]

"  FFT-like product of small factor matrices

= Provably expresses any efficient matrix-vector operation:
=  sparse
= |ow-rank
= permutation
= DFT
= DCT
= wavelet transform



Substituting K-matrices into the
diagonalization

Allowing each DFT to filter weights input

instead be any K-matrix

/
Conv(w)(x) = Awx

= preserves the

efficiency/short DET
description length of
convolutions _Al/. \« \

= diag (Fw) Fx

= allows us to express —

many different
operations of

interest XD(]); (W) (X) — Real (K diag (LE) MX)

\ N\ /

architecture parameters « = (K, L, M)



What does the set of
XD-operations contain?

search space of

standard discrete XD-operations

NAS search space "L,
"..’ “‘»:‘_‘:MaxPOOI
.'q‘.' .

XD-operations include

Dilate‘:lConvdﬂaﬁon=2

7/8 DARTS operations

Dilate.dconvdilationzél

= all convolutions in PyTorch Dilated Convilygion—s

= graph convolutions (for fixed
graphs)

FourierNeuralOp (ui et a1, 2021
L ]

Conv o Permutation
[ ]

GraphConv (xipt & welling, 2017)
o

= the Fourier neural operator
(SOTA for PDE solvers)




How to use XD-operations

Standard pipeline: To use XD-operations:

=  (QObtain data

=  Choose a conv net replace all convolutions in the network
topology (LeNet, by XD-operations initialized (“warm-
ResNet, VGG, ...) started”) as convolutions

=  Train model weights simultaneously train architecture
using SGD or Adam parameters using SGD or Adam

=  Evaluate and tune as only extra tuning is of the architecture
needed optimizer settings



Applications

Classifying permuted images:

o XD outperforms baseline CNN and expensive NAS methods
when images in a standard vision benchmark are permuted.

'Y

Predicting protein folding / next note prediction in sheet
music:

o XD beats CNNs with custom-designed dilation pattern
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Neural PDE Solvers

Setup:

= Sample problems from some distribution over initial conditions

= For each problem, generate a “ground-truth” solution at some later
time using a standard solver, e.g. Crank-Nicholson

= Train a neural network to learn a function from initial conditions to
the later state

ﬂ
Target applications: '
= Direct use 35[ . 1

" Inverse problems time=0

= Transfer to new problem domains



Operations for training neural PDE
solvers

= Convolutions
= PBaseline

= Performance decreases as resolution increases

= Fourier Neural Operator (FNO) [Li et al., ‘21]
= Much stronger performance

= Three orders of magnitude faster than traditional solvers

= Consistent across resolutions

= XD-operations:
= Contain both convolutions and FNOs!
= Slower, but still fast enough to be useful



Fourier neural operator

FNO
Conw(w)(x) = F'diag®w)Fx

\11

XD! (w)(x) = Real (K diag (Lw) Mx)

On an inverse problem requiring truth standard ENO
30K solves to determine the : - raEL . —
initial vorticity of a Navier- ifw' . ‘ 3 z:. ‘

0s 4 & s 06 .
Stokes system: . 31 . I

=  FNO network takes 2.5
minutes (+ 12 hours data-
generation & training)

= Standard solver takes 18
hours
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Experimental setup

Settings

= Burgers’ equation on [0,1] with random initial conditions.
= Darcy flow on [0,1]? with random initial diffusion.
= 2d Navier-Stokes on [0,1]? x [0, T] with random initial vorticity

Discretization
= Square grid, including in time
= Performance measured as average of squared losses over grid vertices

All backbone networks and settings borrowed from FNO paper where possible.



XD-operations across resolutions
(Burgers’ and Darcy flow)
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Vanilla CNN performance decreases with increasing grid resolution
Starting from CNNs, XD gets much smaller error and consistency across resolutions

It even slightly outperforms (the custom-designed) FNO



XD-operations across viscosities
(Navier-Stokes)
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Recap: why use XD?

Transform any CNN backbone (ResNet, VGG, etc.) into a search space over
operations and find something better than convolution for your problem.

Transportation: Autonomous vehicles

- ) f Internet: Image Search, Voice-powered interfaces
‘( } \’\‘;J",; Telecom: Voice assistants

)

Successful applications:
o Permuted/flattened image classification

e s

(¢]

Neural PDE solving

(¢]

Distance prediction for protein folding

(¢]

Music modeling

(¢]

Language modeling

(¢]

Financial time series prediction

ustomer service
Agriculture: Aerial imagery analysis

i Al |
UnSUCCGSSful (I|tt|e better than basellnE). Wi ‘ | Construction: Site monitoring and optimization
. . 4 ‘ loT: Smart buildings, auto-cooled data centers
> Image classification

Waste Management: Detection and logistics

o Audio classification




What XD is not

A replacement for classical topology search NAS (DARTS, DeepHyper,
etc.)
o XD is solving a different problem: discovering new operations, not
connecting existing ones

o Can be used in-conjunction (first find a good CNN, then apply XD)

sep_conv_3x3

skip_connect

skip_connect =
3
A direct way to improve efficiency //

> Applying XD to a CNN makes it: 74

o 5x slower to train on the PDE task + cun2d

o
o 2x slower on the protein task
o Similar slow-downs for inference AR [ —

— e e — T
o Large memory costs

4 Auto-DeepLab

sep—conv 5x5

Darcy Flow

L2 relative error




Ongoing and future work:
Efficiency

Causes of inefficiency in XD-operations:
o Dependence on new software for K-matrices instead of the FFT

o Cannot take advantage of Hermitian symmetry of DFT
o Kernel filters must be padded to the input size

Ongoing efforts:
o Better software for K-matrices

o Developing alternative structured matrices that are more GPU-friendly
o Approximations/truncations



Ongoing and future work:
Benchmarking

Evaluating NAS on diverse tasks is difficult:
o What is a diverse task? How many do you need?

> How to assess different methods?
° How to consider computational tradeoffs?

Ongoing efforts: NAS-Bench-360 (nb360.ml.cmu.edu)

> 10 (and counting) understudied tasks that are
feasible to evaluate on an academic budget

° Includes tasks from PDE solving, protein folding,
genomics, audio, ...

o Evaluations of NAS methods at different budget
constraints

NAS-Bench-360
A NAS Benchmark for

Diverse Tasks
CI FAR'1 00 Computer Vision

Spherical Omnidirectional Vision
NinaPro DB5  erosthetics control
FSDSOK  audio ciassification
Darcy FIow  eoe soiver
PSICOV  eroteinFolding
CosmiC  asironomy imaging

ECG  Medical Diagnostics

Sate"ite Earth Monitoring

¢ Bind om

DeepS EA Genetic Prediction



Ongoing and future work:
New search spaces

Can we design search spaces that efficiently -

Probabilities

contain other important operations?
o Self-attention

° Max-pooling
Feed
Forward
[CAdd & Norm Iﬂ_-:
—{Add 8 Nom ) Mult-Head
Fead Attention
Forward I ) N
Can similar ideas be applied to search over v | |
.. . ulti-He Multi-Head
efficient operation spaces? e
> Different types of convolutions Postion S — —
. . . Encoding p ¢ Encoding
o Approximations to self-attention e e
I 1
Inputs Outputs
(shifted right)



Thank you!

Collaborators:

Nick Roberts, Tri Dao, Liam Li, Chris Ré, Ameet Talwalkar

Paper (to appear at NeurlPS 2021):
https://arxiv.org/abs/2103.15798

Software:
https://github.com/mkhodak/relax

Contact:
khodak@cmu.edu



