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Abstract

We study the problem of segmenting specific white matter structures of interest
from Diffusion Tensor (DT-MR) images of the human brain. This is an important
requirement in many Neuroimaging studies: for instance, to evaluate whether a
brain structure exhibits group level differences as a function of disease in a set of
images. Typically, interactive expert guided segmentation has been the method
of choice for such applications, but this is tedious for large datasets common to-
day. To address this problem, we endow an image segmentation algorithm with
“advice” encoding some global characteristics of the region(s) we want to extract.
This is accomplished by constructing (using expert-segmented images) an epitome
of a specific region – as a histogram over a bag of ‘words’ (e.g., suitable feature de-
scriptors). Now, given such a representation, the problem reduces to segmenting a
new brain image with additional constraints that enforce consistency between the
segmented foreground and the pre-specified histogram over features. We present
combinatorial approximation algorithms to incorporate such domain specific con-
straints for Markov Random Field (MRF) segmentation. Making use of recent
results on image co-segmentation, we derive effective solution strategies for our
problem. We provide an analysis of solution quality, and present promising exper-
imental evidence showing that many structures of interest in Neuroscience can be
extracted reliably from 3-D brain image volumes using our algorithm.

1 Introduction

Diffusion Tensor Imaging (DTI or DT-MR) is an imaging modality that facilitates measurement of
the diffusion of water molecules in tissues. DTI has turned out to be especially useful in Neuroimag-
ing because the inherent microstructure and connectivity networks in the brain can be estimated from
such data [1]. The primary motivation is to investigate how specific components (i.e., structures) of
the brain network topology respond to disease and treatment [2], and how these are affected as a
result of external factors such as trauma. An important challenge here is to reliably extract (i.e., seg-
ment) specific structures of interest from DT-MR image volumes, so that these regions can then be
analyzed to evaluate variations between clinically disparate groups. This paper focuses on efficient
algorithms for this application – that is, 3-D image segmentation with side constraints to preserve
fidelity of the extracted foreground with a given epitome of the brain region of interest.

DTI data are represented as a 3 × 3 positive semidefinite tensor at each image voxel. These im-
ages provide information about connection pathways in the brain, and neuroscientists focus on the
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analysis of white-matter regions (these are known to encompass the ‘brain axonal networks’). In
general, standard segmentation methods yield reasonable results in separating white matter (WM)
from gray-matter (GM), see [3]. While some of these algorithms make use of the tensor field di-
rectly [4], others utilize ‘maps’ of certain scalar-valued anisotropy measures calculated from tensors
to partition WM/GM regions [5], see Fig. 1. But different pathways play different functional roles;
hence it is more meaningful to evaluate group differences in a population at the level of specific
white matter structures (e.g., corpus callosum, fornix, cingulum bundle). Part of the reason is that
even significant volume differences in small structures may be overwhelmed in a pair-wise t-test
using volume measures of the entire white matter (obtained via WM/GM segmentation [6]). To
analyze variations in specific regions, we require segmentation of such structures as a first step.

Unsupervised segmentation of specific regions of interest from DTI is difficult. Even interactive
segmentation (based on gray-level fractional anisotropy maps) leads to unsatisfactory results unless
guided by a neuroanatomical expert – that is, specialized knowledge of the global appearance of the
structure is essential in this process. Further, this is tedious for large datasets. One alternative is to
use a set of already segmented images to facilitate processing of new data. Fortunately, since many
studies use hand indicated regions for group analysis [7], such data is readily available. However,
directly applying off the shelf toolboxes to learn a classifier (from such segmented images) does not
work well. Part of the reason is that the local spatial context at each tensor voxel, while useful, is
not sufficiently discriminative. In fact, the likelihood of a voxel to be assigned as part of the fore-
ground (structure of interest) depends on whether the set of all foreground voxels (in entirety) match
an ‘appearance model’ of the structure, in addition to being perceptually homogeneous. One strat-
egy to model the first requirement is to extract features, generate a codebook dictionary of feature
descriptors, and ask that distribution over the codebook (for foreground voxels) be consistent with
the distribution induced by the expert-segmented foreground (on the same codebook). Putting this
together with the homogeneity requirement serves to define the problem: segment a given DTI im-
age (using MRFs, normalized cuts), while ensuring that the extracted foreground matches a known
appearance model (over a bag of codebook features). The goal is related to recent work on simulta-
neous segmentation of two images called Cosegmentation [8, 9, 10, 11].

In the following sections, we formalize the problem and then present efficient segmentation meth-
ods. The key contributions of this paper are: (i) We propose a new algorithm for epitome-based
graph-cuts segmentation, one which permits introduction of a bias to favor solutions that match a
given epitome for regions of interest. (ii) We present an application to segmentation of specific struc-
tures in Diffusion Tensor Images of the human brain and provide experimental evidence that many
structures of interest in Neuroscience can be extracted reliably from large 3-D DTI images. (iii) Our
analysis provides a guarantee of a constant factor approximation ratio of 4. For a deterministic
round-up strategy to obtain integral solutions, this approximation is provably tight.

2 Preliminaries
We provide a short overview of how image segmentation is expressed as finding the maximum like-
lihood solution to a Conditional or Markov Random Field function. Later, we extend the model to
include an additional bias (or regularizer) so that the configurations that are consistent with an epit-
ome of a structure of interest turn out to be more likely (than other possibly lower energy solutions).

Figure 1: Specific white matter structures such as Corpus Callosum, Interior Capsules, and Cingulum Bundle
are shown in 3D (left), within the entire white matter (center), and overlaid on a Fractional Anisotropy (FA)
image slice (right). Our objective is to segment such structures from DTI images. Note that FA is a scalar
anisotropy measure often used directly for WM/GM segmentation, since anisotropy is higher in white matter.
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2.1 Markov Random Fields (MRF)

Markov Random Field based image segmentation approaches are quite popular in computer vision
[12, 13] and neuroimaging [14]. A random field is assumed over the image lattice consisting of
discrete random variables, x = {x1, · · · , xn}. Each xj ∈ x, j ∈ {1, · · · , n} takes a value from
a finite label set, L = {L1, · · · ,Lm}. The set Nj = {i|j ∼ i} lists the neighbors of xj on the
adjacency lattice, denoted as (j ∼ i). A configuration of the MRF is an assignment of each xj to
a label in L. Labels represent distinct image segments; each configuration gives a segmentation,
and the desired segmentation is the least energy MRF configuration. The energy is expressed as a
sum of (1) individual data log-likelihood terms (cost of assigning xj to Lk ∈ L) and (2) pairwise
smoothness prior (favor voxels with similar appearance to be assigned to the same label) [12, 15, 16]:

min
x,z

X
Lk∈L

nX
j=1

wjkxjk +
X
(i∼j)

cijzij (1)

subject to |xik − xjk| ≤ zij ∀k ∈ {1, · · · ,m}, ∀(i ∼ j) ∈ N where i, j ∈ {1, · · · , n}, (2)
x is binary of size n×m, z is binary of size |N |, (3)

where wjk is a unary term encoding the probability of j being assigned to Lk ∈ L, and cij is
the pairwise smoothness prior (e.g., Generalized Potts model). The variable zij = 1 indicates that
voxels i and j are assigned to different labels and x provides the assignment of voxel to labels
(i.e., segments or regions). The problem is NP-hard but good approximation algorithms (including
combinatorial methods) are known [16, 15, 17, 12]. Special cases (e.g., when c is convex) are known
to be poly-time solvable [15]. Next, we discuss an interesting extension of MRF segmentation,
namely Cosegmentation, which deals with the simultaneous segmentation of multiple images.

2.2 From Cosegmentation toward Epitome-based MRFs

Cosegmentation uses the observation that while global histograms of images of the same object
(in different backgrounds) may differ, the histogram(s) of the respective foreground regions in the
image pair (based on certain invariant features) remain relatively stable. Therefore, one may perform
a concurrent segmentation of the images with a global constraint that enforces consistency between
histograms of only the foreground voxels. We first construct a codebook of features F (e.g., using
RGB intensities) for images I(1) and I(2); the histograms on this dictionary are:

H(1) = {H(1)
1 , · · · ,H(1)

β } andH(2) = {H(2)
1 , · · · ,H(2)

β } (b indexes the histogram bins),

such that H(u)
b (j) = 1 if voxel j ∈ I(u) is most similar to codeword Fb, where u ∈ {1, 2}. If x(1)

and x(2) denote the segmentation solutions, and x(1)
j = 1 assigns voxel j of I(1) to the foreground,

a measure of consistency between the foreground regions (after segmentation) is given by:
βX
b=1

Ψ
“
〈H(1)

b ,x(1)〉, 〈H(2)
b ,x(2)〉

”
. (4)

where Ψ(·, ·) is a suitable similarity (or distance) function and 〈H(u)
b ,x(u)〉 =

∑n
j=1H(u)

b (j)x(u)
j ,

a count of the number of voxels in I(u) (from Fb) assigned to the foreground for u ∈ {1, 2}.
Using (4) to regularize the segmentation objective (1) biases the model to favor solutions where the
foregrounds match (w.r.t. the codebook F), leading to more consistent segmentations.

The form of Ψ(·, ·) above has a significant impact on the hardness of the problem, and different
ideas have been explored [8, 9, 10]. For example, the approach in [8] uses the `1 norm to measure
(and penalize) the variation, and requires a Trust Region based method for optimization. The sum
of squared differences (SSD) function in [9] leads to partially optimal (half integral) solutions but
requires solving a large linear program – infeasible for the image sizes we consider (which are
orders of magnitude larger). Recently, [10] substituted Ψ(·, ·) with a so-called reward on histogram
similarity. This does lead to a polynomial time solvable model, but requires the similarity function
to be quite discriminative (otherwise offering a reward might be counter-productive in this setting).

3 Optimization Model

We start by using the sum of squared differences (SSD) as in [9] to bias the objective function
and incorporate epitome awareness within the MRF energy in (1). However, unlike [9], where one
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seeks a segmentation of both images, here we are provided the second histogram – the epitome
(representation) of the specific region of interest. Clearly, this significantly simplifies the resultant
Linear Program. Unfortunately, it remains computationally intractable for high resolution 3-D image
volumes (2562×128) we consider here (the images are much larger than what is solvable by state of
the art LP software, as in [9]). We propose a solution based on a combinatorial method, using ideas
from some recent papers on Quadratic Pseudoboolean functions and their applications [18, 19]. This
allows us to apply our technique on large scale image volumes, and obtain accurate results quite
efficiently. Further, our analysis shows that we can obtain good constant-factor approximations
(these are tight under mild conditions). We discuss our formulation next.

We first express the objective in (1) with an additional regularization term to penalize histogram
dissimilarity using the sum of squared differences. This gives the following simple expression,

min
x,z

X
i∼j

cijz
(1)
ij +

nX
j=1

wj0(1− x(1)
j ) +

nX
j=1

wj1x
(1)
j + λ

βX
b=1

(〈H(1)
b ,x(1)〉 − Ĥb|{z}

〈H(2)
b
,x(2)〉

)2

Since the epitome (histogram) is provided, the second argument of Ψ(·, ·) in (4) is replaced with Ĥ,
and x(1) represents the solution vector for image I(1). In addition, the term wj0 (and wj1) denote
the unary cost of assigning voxel j to the background (and foreground), and λ is a user-specified
tunable parameter to control the influence of the histogram variation. This yields

min
x,z

X
i∼j

cijzij +

nX
j=1

wj0(1− xj) +

nX
j=1

wj1xj + λ

βX
b=1

0@〈Hb,x〉2 − 2〈Hb,x〉Ĥb + Ĥ2
b|{z}

constant

1A
subject to |xi − xj | ≤ zij ∀(i ∼ j) where i, j ∈ {1, · · · , n}, and x, z is binary, (5)

The last term in (5) is constant. So, the model reduces to

min
x,z

X
i∼j

cijzij +

nX
j=1

wj0(1− xj) +

nX
j=1

wj1xj + λ

βX
b=1

 
nX
j=1

nX
l=1

Hb(j)Hb(l)xjxl − 2

nX
j=1

Hb(j)xjĤb

!
s.t. |xi − xj | ≤ zij ∀(i ∼ j) where i, j ∈ {1, · · · , n}, and x, z is binary, (6)

Observe that (6) can be expressed as a special case of the general form, Γ(x1, · · · , xn) =∑
S⊂U φS

∏
j∈S xj where U = {1, · · · , n}, x = (x1, · · · , xn) ∈ Bn is a binary vector, S is a

subset of U , and φS denotes the coefficient of S. Such a function Γ : Bn 7→ R is called a pseudo-
Boolean function [18]. If the cardinality of S is no more than two, the corresponding form is

Γ(x1, x2, · · · , xn) =
X
j

φjxj +
X
(i,j)

φijxixj

These functions are called Quadratic Pseudo-Boolean functions (QPB). In general if the objective
permits a representation as a QPB, an upper (or lower) bound can be derived using roof (or floor)
duality [18], recently utilized in several papers [19, 20, 21]. Notice that the function in (6) is a QPB
because it has at most two variables in each term in the expansion. An advantage of the model
derived above is that (pending some additional adjustments) we will be able to leverage an extensive
existing combinatorial machinery to solve the problem. We discuss these issues in more detail next.

4 Reparameterization and Graph Construction

Now we discuss a graph construction to optimize the above energy function by computing a max-
imum flow/minimum cut. We represent each variable as a pair of literals, xj and x̄j , which cor-
responds to a pair of nodes in a graph G. Edges are added to G based on various terms in the
corresponding QPB. The min-cut computed on G will determine the assignments of variables to 1
(or 0), i.e., foreground/background assignment. Depending on how the nodes for a pair of literals are
partitioned, we either get “persistent” integral solutions (same as in optimal) and/or obtain variables
assigned 1

2 (half integral) values and need additional rounding to obtain a {0, 1} solution.

We will first reparameterize the coefficients in our objective as a vector denoted by Φ. More specif-
ically, we express the energy by collecting the unary and pairwise costs in (6) as the coefficients
of the linear and quadratic variables. For a voxel j, we denote the unary coefficient as Φj and for
a pair of voxels (i, j) we give their corresponding coefficients as Φij . For presentation, we show
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Voxel pairs (i, j) i ∼ j, i 6∼= j i 6∼ j, i ∼= j i ∼ j, i ∼= j
(vi → vj), (v̄j → v̄i) 1

2cij 0 1
2cij

(vj → vi), (v̄i → v̄j) 1
2cij 0 1

2cij
(v̄j → vi), (v̄i → vj) 0 1

2λ
1
2λ

Table 1: Illustration of edge weights introduced in the graph for voxel pairs.

spatial adjacency as i ∼ j, and if i and j share a bin in the histogram we denote it as i ∼= j, i.e.,
∃b : Hb(i) = Hb(j) = 1. The definition of the pairwise costs will include the following scenarios:

Φij =

8><>:
cij if i ∼ j and i 6∼= j and (i, j) assigned to different labels
λ if i 6∼ j and i ∼= j and (i, j) assigned to foreground
cij if i ∼ j and i ∼= j and (i, j) assigned to different labels
λ if i ∼ j and i ∼= j and (i, j) assigned to foreground

(7)

The above cases enumerate three possible relationships between a pair of voxels (i, j): (i) (i, j)
are spatial neighbors but not bin neighbors; (ii) (i, j) are bin neighbors, but not spatial neighbors;
(iii) (i, j) are bin neighbors and spatial neighbors. In addition, the cost is also a function of label
assignments to (i, j). Note that we assume i 6= j above since if i = j, we can absorb those costs in
the unary terms (because xi · xi = xi). We define the unary costs for each voxel j next.

Φj =


wj0 if j is assigned to background
wj1 + λ− 2λĤb if j is assigned to foreground and ∃b : Hb(i) = 1

(8)

1
2wj0

I

1
2(wj1 + λ− 2λĤb)

Ī

1
2(wj1 + λ− 2λĤb)

1
2wj0

1
2λ

1
2λ

s

t

1
2cij

1
2cji

1
2cij

1
2cji

bin neighbors spatial neighbors any voxel j

Figure 2: A graph to optimize (6). Nodes in the left box
represents vj ; nodes in the right box represent v̄j . Colors
indicate spatial neighbors (orange) or bin neighbors (green).

With the reparameterization given as Φ =
[Φj Φij ]T done, we follow the recipe in
[18, 22] to construct a graph (briefly sum-
marized below). For each voxel j ∈ I, we
introduce two nodes, vj and v̄j . Hence,
the size of the graph is 2|I|. We also have
two special nodes s and twhich denote the
source and sink respectively. We connect
each node to the source and/or the sink
based on the unary costs, assuming that the
source (and sink) partitions correspond to
foreground (and background). The source
is connected to the node vj with weight,
1
2 (wj1 + λ − 2λĤb), and to node v̄j with
weight 1

2wj0. Nodes vj and v̄j are in turn
connected to the sink with costs 1

2wj0 and
1
2 (wj1 + λ − 2λĤb) respectively. These
edges, if saturated in a max-flow, count to-
wards the node’s unary cost. Edges be-
tween node pairs (except source and sink)
give pairwise terms of the energy. These
edge weights (see Table1) quantify all possible relationships of pairwise voxels and label assign-
ments (Fig. 2). A maximum flow/minimum cut procedure on this graph gives a solution to our
problem. After the cut, each node (for a voxel) is connected either to the source set or to the sink
set. Using this membership, we can obtain a final solution (i.e., labeling) as follows.

xj =

8<: 0 if vj ∈ s, v̄j ∈ t
1 if vj ∈ t, v̄j ∈ s
1
2

otherwise
(9)

A property of the solution obtained by (9) is that the variables assigned {0, 1} values are “persistent”,
i.e., they are the same in the optimal integral solution to (6). This means that the solution from the
algorithm above is partially optimal [18, 20]. We now only need to find an assignment for the 1

2
variables (to 0 or 1) by rounding. The rounding strategy and analysis is presented next.

5 Rounding and Approximation analysis

In general, any reasonable heuristic can be used to round 1
2 -valued variables to 0 or 1 (e.g., we can

solve for and obtain a segmentation for only the 1
2 -valued variables without the additional bias). Our
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experiments later make use of such a heuristic. The approximation analysis below, however, is based
on a more conservative scheme of rounding all 1

2 -valued variables up to 1. We only summarize our
main results here, the longer version of the paper includes details.
A 2-approximation for the objective function (without the epitome bias) is known [16, 12]. The
rounding above gives a constant factor approximation.

Theorem 1 The rounding strategy described above gives a feasible solution to Problem (6). This
solution is a factor 4 approximation to (6). Further, the approximation ratio is tight for this rounding.

6 Experimental Results

Overview. We now empirically evaluate our algorithm for extracting specific structures of interest
from DTI data, focusing on (1) Corpus Callosum (CC), and (2) Interior Capsule (IC) as represen-
tative examples. Our experiments were designed to answer the following main questions: (i) Can
the model reliably and accurately identify the structures of interest? Note that general-purpose
white matter segmentation methods do not extract specific regions (which is often obtained via
intensive interactive methods instead). Solutions from our algorithm, if satisfactory, can be used
directly for analysis or as a warm-start for user-guided segmentations for additional refinement.
(ii) Does segmentation with a bias for fidelity with epitomes offer advantages over training a clas-
sifier on the same features? Clearly, the latter scheme will work nicely if the similarity between
foreground/background voxels is sufficiently discriminative. Our experiments provide evidence that
epitomes indeed offer advantages. (iii) Finally, we evaluate the advantages of our method in terms of
relative effort expended by a user performing interactive extraction of CC and IC from 3-D volumes.

Data and Setup. We acquired 25 Diffusion Tensor brain images in 12 non-collinear diffusion encod-
ing directions (and one b = 0 reference image) with diffusion weighting factor of b = 1000s/mm2.
Standard image processing included correcting for eddy current related distortion, distortion from
field inhomogeneities (using field maps), and head motion. From this data, the tensor elements were
estimated using standard toolboxes (Camino [23]). The images were then hand-segmented (slice
by slice) by experts to serve as the gold standard segmentation. Within a leave one out cross val-
idation scheme, we split our set into training (24 images) and test set (hold out image). Epitomes
were constructed using training data (by averaging tensor volumes and generating feature codeword
dictionaries), and then specific structures in the hold out image were segmented using our model.
Codewords used for the epitome also served to train a SVM classifier (on training data), which was
then used to label voxels as foreground (part of structure of interest) or background, in the hold-out
image. We present the mean of segmentation accuracy over 25 realizations.

Figure 3: WM/GM segmentation (without epitomes) from stan-
dard toolkits, overlaid on FA maps (axial, sagittal views shown).

WM/GM DTI segmentation. To
briefly elaborate on (i) above, we note
that most existing DTI segmentation
algorithms in the literature [24] focus
on segmenting the entire white-matter
(WM) from gray-matter (GM) where
as the focus here is to extract spe-
cific structure within the WM path-
ways, to facilitate the type of analysis
being pursued in neuroscience studies
[25, 2]. Fig. 3 shows results of a DTI image WM segmentation. Such methods segment WM well
but are not designed to identify different components within the WM. Certain recent works [26] have
reported success in identifying structures such as the cingulum bundle if a good population specific
atlas is available (here, one initializes the segmentation by a sophisticated registration procedure).

Dictionary Generation. A suitable codebook of features (i.e., F from §2.2) is essential to modulate
the segmentation (with an uninformative histogram, the process degenerates to a ordinary segmen-
tation without epitomes). Results from our preliminary experiments suggested that the codeword
generation must be informed by the properties/characteristics of Diffusion Tensor images. While
general purpose feature extractors or interest-point detectors from Vision cannot be directly applied
to tensor data, our simple scheme below is derived from these ideas. Briefly, by first setting up
a neighborhood region around each voxel, we evaluate the local orientation context and shape in-
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formation from the principal eigen vectors and eigen values of tensors at each neighboring voxel.
Similar to Histogram of Oriented Gradients or SIFT, each neighboring voxel casts a vote for the pri-
mary eigen vector orientation (weighted by its eigen value), which encodes the distribution of tensor
orientations in a local neighborhood around the voxel, as a feature vector. These feature vectors are
then clustered, and each voxel is ‘assigned’ to its closest codeword/feature to give H(u). Certain
adjustments are needed for structurally sparse regions close to periphery of the brain surface, where
we use all primary eigen vectors in a (larger) neighborhood window. This dictionary generation
is not rotationally invariant since the orientation of the eigen-vectors are used. Our literature re-
view suggests that there is no ‘accepted’ strategy for feature extraction from tensor-valued images.
While the problem is interesting, the procedure here yields reasonable results for our purpose. We
acknowledge that improvements may be possible using more sophisticated approaches.

Implementation Details. Our implementation in C++ was interfaced with a QPB solver [22, 18]. We
used a distance measure proposed in DTI-TK [23] which is popular in the neuroimaging literature,
to obtain a similarity measure between tensors. The unary terms for the MRF component were
calculated as the least DTI-TK metric distance between the voxel and a set of labels (generated by
sampling from foreground in the training data). Pairwise smoothness terms were calculated using a
spatial neighborhood of 18 neighbors. The parameter λ was set to 10 for all runs.

6.1 Results: User guided interactive segmentation, Segmentation with Epitomes and SVMs

User study for interactive segmentation. To assess the amount of effort expended in obtaining
a good segmentation of the regions of interest in an interactive manner, we set up a user study
with two users who were familiar with (but not experts in) neuroanatomy. The users were pre-
sented with the ground truth solution for each image. The user provided “scribbles” denoting fore-
ground/background regions, which were incorporated into the segmentation via must-link/cannot-
link constraints. Ignoring the time required for segmentation, typically 20-40 seeds were needed for
each 2-D slice/image to obtain results close to ground-truth segmentations, which required ∼ 60s
of user participation per 3-4 slices. Representative results are presented in Figs. 4–5 (column 5).

Results from SVM and our model. For comparison, we trained a SVM classifier on the same set
of voxel-codewords used for the epitomes. For training, feature vectors for foreground/background
voxels from the training images were used, and the learnt function was used to classify voxels in the
hold-out image. Representative results are presented in Figs. 4–5, overlaid on 2-D slices of Frac-
tional Anisotropy. We see good consistency between our solutions and the ground truth in Figs. 4–5
where as the SVM results seem to oversegment, undersegment or pick up erroneous regions with
similar contextual appearance to some voxels in the epitome. It is true that such a classification ex-
periment with better (more discriminative) features will likely perform better; however, it is not clear
how to reliably extract good quality features from tensor valued images. The results also suggest
that our model exploits the epitome of such features rather well within a segmentation criterion.

Quantitative Summary. For quantitative evaluations, we computed the Dice Similarity coefficient
between the segmentation solutions A and the expert segmentation B, given as 2(A∩B)

|A|+|B| . On CC and
IC, the similarity coefficient of our solutions were 0.62 ± 0.04 and 0.57 ± 0.05 respectively. The
corresponding values for the SVM segmentation were 0.28 ± 0.06 and 0.15 ± 0.02 respectively.
Hence, the null hypothesis using a two sample t-test can be rejected at α = 0.01 (significance level).
The running time of our algorithm was comparable to the running times of SVM using Shogun (a
subset of voxels were used for training). It took∼ 2 mins for our algorithm to solve the network flow
on the graph, and < 4 mins to read in the images and construct the graph. While the segmentation
results from the user-guided interactive segmentation are marginally better than ours, the user study
above indicates that a significant level of interaction is required, which is already difficult for large
3-D volumes and becomes impractical for neuroimaging studies with tens of image volumes.

7 Discussion and Conclusions

We present a new combinatorial algorithm for segmenting specific structures from DTI images. Our
goal is to segment the structure while maintaining consistency with an epitome of the structure,
generated from expert segmented images (note that this is different from top-down segmentation ap-
proaches [27], and algorithms which use a parametric prior [28, 11]). We see that direct application
of max-margin methods does not yield satisfactory results, and inclusion of a segmentation-specific
objective function seems essential. Our derived model can be optimized using a network flow pro-
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Figure 4: A segmentation of the Corpus Callosum overlaid on FA maps. Rows refer to axial and sagittal views.
Columns: (1) Tensors. (2) Ground truth. (3) Our solutions. (4) SVM results. (5) User-guided segmentation.

Figure 5: A segmentation of the Interior Capsules overlaid on FA maps. Rows correspond to axial views.
Columns: (1) Tensors. (2) Ground truth. (3) Our Solutions. (4) SVM results. (5) User-guided segmentation.

cedure. We also prove a 4 factor approximation ratio, which is tight for the proposed rounding
mechanism. We present experimental evaluations on a number of large scale image volumes which
shows that the approach works well, and is also computationally efficient (2-3 mins). Empirical
improvements seem possible by designing better methods of feature extraction from tensor-valued
images. The model may serve to incorporate epitomes for general segmentation problems on other
images as well. In summary, our approach shows that many structures of interest in neuroimaging
can be accurately extracted from DTI data.
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