
Uni-CAVE: A Unity3D Plugin for Non-head Mounted VR Display Systems
Ross Tredinnick∗ Brady Boettcher† Simon Smith‡ Sam Solovy§ Kevin Ponto¶

Living Environments Laboratory, Wisconsin Institute for Discovery, University of Wisconsin - Madison USA

ABSTRACT

Unity3D has become a popular, freely available 3D game engine
for design and construction of virtual environments. Unfortunately,
the few options that currently exist for adapting Unity3D to dis-
tributed immersive tiled or projection-based VR display systems
rely on closed commercial products. Uni-CAVE aims to solve this
problem by creating a freely-available and easy to use Unity3D ex-
tension package for cluster-based VR display systems. This exten-
sion provides support for head and device tracking, stereo rendering
and display synchronization. Furthermore, Uni-CAVE enables con-
figuration within the Unity environment enabling researchers to get
quickly up and running.

Index Terms: I.3.7 [Three-Dimensional Graphics and Real-
ism]: Virtual Reality—Unity3D; I.3.2 [Graphics Systems]: Dis-
tributed/Network Graphics—Unity3D

1 INTRODUCTION

Unity3D has become a popular, freely available 3D game engine
for design and construction of virtual environments. Much of this
can be attributed to a friendly user interface for designing content
when compared to some other 3D design applications, together with
a robust tool set for working with common elements of a 3D envi-
ronment such as terrains, physics, particle effects, sounds, models,
and animated characters. Unfortunately, when it comes to using
Unity3D on immersive projection-based virtual reality display sys-
tems, some support exists but at an additional monetary cost. While
previous efforts have been made to adapt Unity3D to tiled displays
[5] and to immersive VR display systems [2], these solutions have
utilized closed commercial products. The presented work, entitled
Uni-CAVE, adapts Unity3D to general non-head mounted immer-
sive display systems, including CAVEs and tiled display systems.
The Uni-CAVE plugin allows for different stereo techniques, such
as OpenGL quad buffered stereo, passive stereo, and side-by-side
stereo. The intention of this work is to provide a free to use solu-
tion that can be adapted to any immersive VR projection system.

2 METHOD

Uni-CAVE is a Unity3D package for importing into an exist-
ing Unity3D scene and contains several pre-defined immersive
projection-based VR display system configurations in the form of
Unity3D prefabs. Prefabs created with the plugin consists of a se-
ries of Unity C# scripts and resources.

Display Configuration: To make the configuration more user-
friendly, projection surfaces are created directly inside of the
Unity3D editor. To accomplish this, quad objects which define pro-
jection surfaces, are paired with camera objects. The UniCAVE

∗e-mail: rdtredinnick@wisc.edu
†e-mail:boettcher2@wisc.edu
‡e-mail:spsmith5@wisc.edu
§e-mail:solovy@cs.wisc.edu
¶e-mail:kbponto@wisc.edu

Figure 1: A camera configuration within the Unity3D editor consisting of twelve
Unity3D camera objects and six quad objects (transparent grey) representing
the walls of a CAVE.

plugin subsequently calculates the correct camera projections based
on the technique described in [1] and presents a visualization of the
viewing frustums in the Unity3D editor. Figure 1 shows an exam-
ple configuration for a six-sided CAVE style immersive VR display
system.

Stereo: The Uni-CAVE plugin provides support for different
stereo techniques. Techniques such as quad-buffered stereo, side by
side stereo, or split-screen stereo are configured by way of setting
up the correct camera and viewport configurations in the Unity3D
editor, together with pairing these cameras to the Unity3D quads
that represent the physical display setup. For quad-buffered stereo,
which often requires setting an underlying operating system stereo
flag for the window, different options exist in the plugin depending
on the version of Unity3D. Prior to version 5.1, Unity3D provided
no support for quad-buffered active stereo. To support OpenGL
quad buffered stereo in this case, the Uni-CAVE plugin provides a
stereo injection technique by way of GLIntercept [7]. The plugin
works by counting how many glClear calls are made on a bound
frame buffer that returns true for a glGetBooleanv(GL STEREO)
call. The GL STEREO check ensures that the counter only incre-
ments for the main rendering window, instead of frame buffer ob-
jects for off-screen rendering, as they return false for this check.

The release of version 5.1 of Unity3D added a player settings
option titled “virtual reality supported”. When checking this box,
a list of VR supported devices can be chosen. This was largely
for support of upcoming commercially available HMDs such as
the Oculus Rift and HTC Vive. One option, titled “Stereo Display
(non-head mounted)”, provides support for quad-buffered stereo.
As Unity3D has no knowledge of the physical layout of the pro-
jection surface, a standard camera projection is used. When used
in a CAVE system, this can cause viewing artifacts between dis-
play surfaces as shown in Figure 2a. Version 5.4.2 introduced a
function Camera.SetStereoProjectionMatrix within Unity’s camera
class that allows a user to over-ride the default stereo projection
matrix that Unity3D configures internally. With this ability to over-



(a) Unity3D default stereo projection matrix (b) Unity3D with override of default stereo projection matrix

Figure 2: Photographs of six-sided CAVE system of the scene from Figure 1. a) the scene as displayed using Unity’ VR supported stereo (non head-mounted)
setting. b) Seamless projection that our plugin provides by overriding Unity3D’s default stereo projection matrix.

ride the default projection matrix, seamless visuals between display
surfaces are achieved as shown in Figure 2b.

Tracking: The Uni-CAVE plugin makes use of an existing Unity
VRPN plugin to interface with common 3D tracking systems [3].
The Unity VRPN plugin interfaces with a compiled version of
VRPN via C# scripting to allow for typical VRPN functionality
such as six degree of freedom head and wand tracking [6]. In the
case of adapting the plugin to a clustered system, and as VRPN
does not automatically synchronize data between nodes, a master
node is responsible for gathering the data from the VRPN server
and disseminating this information to the slave nodes via the meth-
ods described below.

Synchronization: The Uni-CAVE plugin uses software-based
synchronization via networking to create frame-lock for clustered
displays. This is setup by including Unity3D NetworkView com-
ponents on camera objects and setting the observed property of the
NetworkView component to the camera’s transform. This ensures
that the transformations of all cameras on slave nodes match the
corresponding camera transform on the master node within a clus-
ter. This synchronization method handles stereo synchronization;
however, several additional subsystems need to be synchronized
to maintain a seamless display across PCs - a concept known as
“data-lock” [4]. Separate subsystems within game engines such as
physics, animation and particle systems create challenges to ensure
a seamless display across physical PC display boundaries.

Synchronizing the overall timing of the game engine across
nodes is a crucial step needed to maintain a seamless display. While
the time of the game engine itself cannot be adjusted via Unity3D’s
scripting engine, Unity3D does expose a variable to adjust the time
scale of the engine, typically used for effects such as slow mo-
tion. The Uni-CAVE plugin uses this exposed feature to synchro-
nize nodes within a cluster. When the game time of a slave node
is ahead of the master node, the plugin slows down the slave node
slightly for a few frames, and likewise if the slave node is behind
the master node, the plugin speeds up the time scale of the slave
node. This concept is handled by way of the following equation:

timeScale =
((Mt −St)+∆sync)

∆sync

∆sync is a tunable parameter which controls the rate at which
timeScale is adjusted. Mt is the time since start of application on the
master node, while St is the time-scaled game time of a slave node.
Setting ∆sync at a rate too frequent or infrequent can cause irregu-
larities in performance. In practice, the authors found that syncing
the time every tenth of a second maintains smooth synchronization

between nodes. Synchronizing time across a cluster via this method
is crucial for maintaining synchronization for animations and par-
ticle systems. Since Unity3D’s physics engine runs in a separate
thread from the rendering system, objects with dynamic rigid body
physics must be accounted for in a different manner. To handle such
objects, the Uni-CAVE plugin adds Unity3D NetworkView objects
that observe the rigid body component of the game object. Parti-
cle system synchronization happens by way of matching the time
between systems by way of adjusting the time scale as described
above, combined with matching random number generation seeds
between systems within a cluster.

3 CONCLUSION

Uni-CAVE is a plugin that is meant to ease the adaptation of the
popular game engine Unity3D to immersive 3D VR display sys-
tems. The plugin has currently been tested on a six-sided CAVE en-
vironment that uses active quad-buffered stereo, on a twenty screen
curved tiled display system that uses side-by-side stereo, and also
on a two projector power wall using quad buffered active stereo and
dual-pipe active stereo. Configurations such as these can be saved
as prefabs and dragged and dropped into new Unity3D environ-
ments. Additional systems are currently under-going testing with
the plugin and going forward we hope to accumulate a collection
of immersive VR projection system setups from several partners
to improve collaboration opportunities and ease the ability to share
3D environments across different projection-based immersive VR
systems.

REFERENCES

[1] R. Kooima. Generalized perspective projection. J. Sch. Electron. Eng.
Comput. Sci, 2009.

[2] S. Kuntz. Middlevr a generic vr toolbox. In 2015 IEEE Virtual Reality
(VR), pages 391–392, March 2015.

[3] Laremere. Simple vrpn wrapper for unity, 2014.
[4] B. Raffin, L. Soares, T. Ni, R. Ball, G. S. Schmidt, M. A. Livingston,

O. G. Staadt, and R. May. Pc clusters for virtual reality. In IEEE Virtual
Reality Conference (VR 2006), pages 215–222. IEEE, 2006.

[5] A. Sigitov, D. Scherfgen, A. Hinkenjann, and O. Staadt. Adopting a
game engine for large, high-resolution displays. Procedia Computer
Science, 75:257 – 266, 2015.

[6] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T.
Helser. Vrpn: a device-independent, network-transparent vr peripheral
system. In Proceedings of the ACM symposium on Virtual reality soft-
ware and technology, pages 55–61. ACM, 2001.

[7] D. Trebilco. Glintercept, 2006.


