Kai (Tommy) Zhao

tzhao451@gmail.com 1(312)375-8295 Sunnyvale, CA, USA

Website: http://pages.cs.wisc.edu/~kzhao32/

	Website: http://pages.cs.wisc.edu/~kzhao32/	
on	· · · · · · · · · · · · · · · · · · ·	ept 2014 – May 2017
	M. S. in Computer Science, Dec 2015	
ati	3.72/4.00 Overall GPA	
Education	University of Illinois at Chicago, Chicago, IL	ept 2010 – May 2014
	B. S. in Electrical and Computer Engineering with Honors and with minors in CS	, Math, and Biology
	3.84/4.00 Overall GPA, 4.00 ECE major GPA, 4.00 CS minor GPA, 4.00 math m	inor GPA
	Software Engineer, Google, Sunnyvale, CA	July 2018 –
	Hardware and software co-design for Google search to improve perf/cost	present
	• Evaluate performance of deep learning machine learning models for search	_
	Evaluate fleet-wide resource utilization for all search clusters	
	CPU Diagnostics Engineer, Advanced Micro Devices (AMD), Austin, TX	Aug 2017 –
	• Developed software tool to generate test cases to validate processors post-silicon	July 2018
	• Used instruction generators to stress micro-architectural features	J
	• Found, reported, and root caused silicon hardware bugs	
Work Experience	Teaching Assistant, University of Wisconsin-Madison	
	CS/ECE 354 Machine Organization and Programming	Spring 2017
	CS 302 Introduction to Programming	Summer 2016
	CS 368 Learning a Programming Language: MATLAB Programming	Spring 2016
	CS/ECE 252 Introduction to Computer Engineering	Fall 2015
	Created and graded homework, quizzes, and exams	
	• Hosted office hours, answered questions on discussion board, and led review sess	ions
	Wrote scripts to assist in grading programming assignments	
	Lecturer, CS/ECE 252 Introduction to Computer Engineering; UW-Madison	Fall 2016
	• Prepared and presented lectures for a class of 132 students	
	Created and graded exams and homework	
	Hosted office hours and answer questions on discussion board	
	Embedded Engineer, Extreme Engineering Solution (X-ES), Middleton, WI	Jan 2016 –
	• Implemented, tested, debugged, and released VxWorks for custom hardware	Sept 2016
	• Resolved VxWorks issues involving spin locks, page faults, and virtual memory r	<u>-</u>
	ECE Laboratory Research Assistant, University of Illinois at Chicago	June 2012 –
	• Researched achieving fair resource distribution under connectivity constraints	June 2014
	• Discussed and developed algorithms, implementations, visualizations, and simula	
	• Developed the simulation tool set to verify hypotheses and test algorithm efficiency	
Skills	Programming Languages: C (proficient), C++, C#, Cilk, CSS, CUDA, F#, HTML, Java (proficient),	
	JavaScript, LC-3 assembly, Lisp, MATLAB (proficient), MIPS assembly (profici	
	OpenMP, Python, Ruby (proficient), Scheme, Scratch, SQL, Verilog, WebGL, an	
	Exploring the parallel programming design space of Proximate,	Programming
Projects	a multi-tile programmable hardware accelerator	Multicore
	Implemented parallel workloads on different parts of a Proximate compute tile	Processors
	Investigated scalability and speedup to improve hardware design choices	Fall 2016
	Tronsistor-32, a Nintendo Entertainment System (NES) Clone	Digital
	· · · · · · · · · · · · · · · · · · ·	· ·
	• Designed an Instruction Set Architecture (ISA) for computation and graphi	
	• Used Verilog for FPGA programming to create a NES Clone and support the ISA	Fall 2015
	• Used assembly language in the ISA to write Tron, DDR, and Pac-Man	
	Bonsai, a distributed data collection and storage system for data processing	Advanced
	• Scalable data collection in a ring structure by implementing a circular buffer	
	stored data with a token as synchronization logic	Systems
	• Real-time data processing in a tree structure by multicasting map requests	s to Fall 2014
	backends and reducing results towards the frontend	