

CS/ECE 252 Exam 4 Review

11AM section 2015 December 11

Before we get started

Homework 8 due at beginning of lecture

Exam 4 on Monday, December 14th, during class

Today: Exam 4 Review

(Extra) office hours for HW8 and Exam4: see Piazza

Quote of the day: "Inspiration exists, but it has to find you working"

-- Pablo Picasso 1881 - 1973

Outline

- Chapter 8 Topics
 - Simple logic gates (AND, OR, NOT, XOR, NAND, NOR, XNOR)
 - Multiple inputs on any simple logic gates
 - Sum-of-products design for circuits
 - Take any truth table and design a circuit using AND, OR, and NOT gates
 - DeMorgan's Law
 - Simple circuits, such as multiplexers, full adders, half adders, decoders, encoders, and incrementors.
 - Principle behind control signal and next state circuits
 - R-S Latch, Gated D-Latch, Master-Slave flip-flop.
 - Derive a truth table from a circuit of simple logic gates
 - Transistors
 - N-type and P-type, and their operation
 - Understand and derive truth tables for transistor circuits.
 - Components of the transistor and how they affect its function
 - Moore's Law

Find the boolean expression for *Output* from following truth table. The boolean expression should be in terms of A and B and in sum-of-products (SOP) form.

A	В	С	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

output =

Fill out the truth table for the following boolean equation.

output = ABC'+AB'C+A'B'C+A'BC'+A'B'C'

A	В	С	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Implement the following boolean equation with logic gates.

output = ABC'+AB'C+A'B'C+A'BC'+A'B'C'

Implement the following boolean equation with logic gates.

output = AB+A'B'+C

Fill out the truth table for the logic gate level circuit below.

De Morgan's Laws

- \sim (AB) = \sim A + \sim B given by cheatsheet
- \sim (XY) = \sim X + \sim Y by rewriting and changing variable name
- (XY)' = X' + Y' by rewriting and changing negation notation for better visualization
- (XYZ)' = X' + Y' + Z' by expanding previous line to 3 terms
- \sim (A+B) = (\sim A)(\sim B) given by cheatsheet
- (X+Y+Z)' = X'Y'Z' by applying same algorithm

Compute the negation of the following expression using DeMorgan's Law

AB'C+D'E+(A'+B)(C'+D+E')

Negation

- = (AB'C+D'E+(A'+B)(C'+D+E'))' by negating entire expression
- = (AB'C)'(D'E)'((A'+B)(C'+D+E'))' by applying DeMorgan's Law on each of the 3 products
- = (AB'C)'(D'E)'((A'+B)'+(C'+D+E')') by applying DeMorgan's Law on the rightmost product
- = (A'+B+C')(D+E')((AB')+(CD'E)) by applying DeMorgan's law on each sum on the rightmost product
- = (A'+B+C')(D+E')(AB'+CD'E) by removing unnecessary parentheses

11

Compute the negation of the following expression using DeMorgan's Law

(A'+B+C')(D+E')(AB'+CD'E)

Negation

- = ((A'+B+C')(D+E')(AB'+CD'E))' by negating entire expression
- = (A'+B+C')'+(D+E')'+(AB'+CD'E)' by applying DeMorgan's Law on each of the 3 sums
- = (AB'C)+(D'E)+((AB')'(CD'E)') by applying DeMorgan's Law on each sum
- = (AB'C)+(D'E)+((A'+B)(C'+D+E')) by applying DeMorgan's law on each product on the rightmost sum
- = AB'C+D'E+(A'+B)(C'+D+E') by removing unnecessary parentheses,

which matches our original expression

What is the difference between a latch and a flip-flop?

If the figure on the left is a (musical) conductor, then what is the figure on the right?

Multiple Choice Question

What does 22nm transistors mean?

- a. the channel length is 22nm
- b. the distance between source and drain is 22nm
- c. the technology node is 22nm
- d. all of the above
- e. none of the above

Transistor Behavior

What are the three terminals on a transistor?

How does a transistor (pmos) function when it is ON?

Fill out the truth table for the following circuit

Α	В	С	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

What is Dennard Scaling?

