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Abstract.—Determining whether speciation and extinction rates depend on the state of a particular character has been of
long-standing interest to evolutionary biologists. To assess the effect of a character on diversification rates using likelihood
methods requires that we be able to calculate the probability that a group of extant species would have evolved as observed,
given a particular model of the character’s effect. Here we describe how to calculate this probability for a phylogenetic
tree and a two-state (binary) character under a simple model of evolution (the “BiSSE” model, binary-state speciation and
extinction). The model involves six parameters, specifying two speciation rates (rate when the lineage is in state 0; rate when
in state 1), two extinction rates (when in state 0; when in state 1), and two rates of character state change (from 0 to 1, and from
1 to 0). Using these probability calculations, we can do maximum likelihood inference to estimate the model’s parameters
and perform hypothesis tests (e.g., is the rate of speciation elevated for one character state over the other?). We demonstrate
the application of the method using simulated data with known parameter values. [Birth-death process; branching process;
cladogenesis; extinction; key innovation; macroevolution; phylogeny; speciation; speciose; statistical inference.]

The pattern of branching of a phylogenetic tree con-
tains information about the processes of speciation and
extinction (Nee et al., 1994b; Barraclough and Nee, 2001).
For instance, extinction may be revealed by an upturn
near the present in a plot of species lineages through time
(Nee et al., 1994a). Of special interest is whether phy-
logenetic trees can be used to demonstrate that certain
characteristics of a lineage, such as ecological niche or
mating system, affect the rate of speciation or extinction
(Mitter et al., 1988; Barraclough et al., 1998; Gittleman
and Purvis, 1998). Often used to answer these questions
are sister-clade analyses (Mitter et al. 1988; Farrell et al.
1991; Barraclough et al., 1998; Vamosi and Vamosi 2005).
For example, Mitter et al. (1988) showed that herbivorous
clades of beetles were more speciose than their carniv-
orous sister clades; this pattern indicates that herbivory
confers either a higher speciation and/or a lower extinc-
tion rate. Comparison of sister clades is a simple and rel-
atively nonparametric approach (Slowinski and Guyer,
1993; Barraclough et al., 1996) and has had a broad im-
pact on macroevolutionary studies. However, it has some
drawbacks that prompt us to explore alternatives. Sister-
clade comparisons cannot distinguish differential speci-
ation from differential extinction (Barraclough and Nee,
2001). Also, when the character of interest is a simple cat-
egorical variable, clades with mixed states cannot easily
participate in the test. Then, the choice of clades can be
arbitrary, and information is discarded when collapsing
the phylogenetic tree into a set of clade pairs. In princi-
ple it should be possible to find a method considering
the whole tree that is more powerful than those selecting
a subset of clade pairs (Chan and Moore, 2002; Ree, 2005;
Paradis, 2006).

Ideally, we would like a likelihood-based approach to
estimate the effect of a character on diversification rates.
The underlying likelihood model would allow specia-
tion and extinction rates to depend on the character state
of a lineage at each point in time and allow the character
state to change. Inferences about speciation and extinc-

tion rates as a function of character state could then be
made based on their likelihood: the probability of ob-
serving the data (the phylogeny and the current charac-
ter states) given proposed values for the rate parameters.
In this paper, we describe a method for calculating this
likelihood when the character controlling diversification
has two states (i.e., is binary). We show how this calcula-
tion leads to new methods for parameter estimation and
hypothesis testing about a binary character’s effect on di-
versification. The calculations can also be readily applied
to a broader set of questions about character evolution or
indeed about tree inference itself, although we will not
address these questions here.

Likelihood calculations for models involving specia-
tion and extinction rates (Nee et al., 1994b, Moore et al.,
2004) and rates of character state change (Pagel, 1994)
have been described separately, but have not yet been
fully integrated. Notable contributions to this effort have
been made by Pagel (1997), Paradis (2005), and Ree
(2005). Pagel’s (1997) model permits different charac-
ter states to confer different rates of speciation, but it
assumes no extinction and that character change oc-
curs only at speciation events. Paradis (1995) and Ree
(2005) present likelihood-based methods that use re-
constructed ancestral states to compare speciation rates
between states (again, ignoring extinction). Most impor-
tantly, these previous methods have all assumed that
ancestral states can be assessed without accounting for
the effects of the character on speciation/extinction pro-
cesses. This is problematic, because the reconstruction
of a particular ancestral state depends critically on how
the character affects speciation and extinction rates. For
example, imagine a phylogeny in which one character
state promotes speciation compared to a second state,
resulting in a greater proportion of extant species with
the first state. If we attempted to understand character
change without taking into account the character’s effect
on speciation, we would interpret the state’s abundance
to reflect a higher rate of change toward it, even if in
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fact the rates of change were equal to and from the state
(Maddison, 2006). This in turn would bias the ancestral
state reconstruction and mislead us about the process of
diversification. Our approach here is the first to incor-
porate explicitly the process of character state change di-
rectly and simultaneously into the likelihood assessment
of speciation and extinction rates.

Here we describe how to calculate the probability of
the tree and observed states given a basic model with six
parameters: the instantaneous rates of speciation and ex-
tinction when the lineage is in state 0 (e.g., herbivory), the
rates when the lineage is in state 1 (e.g., carnivory), and
the instantaneous rates of character state change (0 to 1
and 1 to 0). We will occasionally abbreviate this model as
the BiSSE (binary-state speciation and extinction) model.
Following a presentation of the model and likelihood cal-
culations, we apply the method to some simulated data
sets.

LIKELIHOOD OF THE BISSE MODEL

We assume that an accurate rooted phylogenetic tree
with branch lengths is known (the “inferred tree”) and
that the character state is known for each of the termi-
nal taxa. (Alternatively, our methods could be applied to
each of the fully resolved trees coming from a Bayesian
MCMC analysis—Yang and Rannala, 1997; Larget and
Simon, 1999.) The tree is assumed complete: all extant
species in the group have been found and included.
We consider only binary characters, but extending the
method to multistate characters would be straightfor-
ward. All terminal taxa are contemporaneous, and the
tree is ultrametric (i.e., the total root-to-tip distance is the
same for all tips). Except where noted, we measure time
backwards, with 0 being the present.

The parameters of the model are as follows. While a
lineage has character state 0, the instantaneous specia-
tion rate is λ0, the extinction rate is µ0, and the rate of
transition to state 1 is q01. Similarly, while a lineage has
character state 1, the speciation, extinction, and transi-
tion rates are λ1, µ1, and q10. These parameters are as-
sumed constant throughout the tree, although it would
be straightforward to extend the model to explore hy-
potheses about changes to these parameters. We assume
that the transitions happen instantaneously over the time
scales considered (i.e., we ignore periods of time during
which a species is polymorphic). We also assume that
these events are independent of one another; in particu-
lar, we assume that the character state change does not,
in and of itself, cause speciation (or vice versa).

Probability of the Tree and Character States (D)

Although the rates reflect probabilities of events mov-
ing forward in time, our calculations will move back-
ward in time, from the tips of the tree to the root. This
is the well-established “pruning” (Felsenstein, 1981) or
“downpass” (Maddison and Maddison, 1992) approach
and is used to handle more compactly all the possibilities
of ancestral states at various parts of the tree (Felsenstein,
1981). This approach uses a simple principle: if we are

FIGURE 1. Calculation of the probabilities (D) of the observed tree
and character states, along a branch of the tree. We assume that we
know the D’s for time t on the branch and attempt to calculate them
for time t+�t.

able to use key probabilities at any point on a tree to de-
rive corresponding probabilities immediately ancestral
(i.e., closer to the root), then it must be possible to move
step-by-step down the tree toward the root. When the
root is reached, the calculated probabilities will apply to
the whole tree.

Our calculations make use of the full tree topology, un-
like those of Nee et al. (1994b), which use only timing of
branching events. We need to use the full tree topology
because we are considering simultaneously the evolu-
tion of character states. In Appendix 1 we describe how
removing the dependence on character states reduces
our equations to those of Nee et al.

In the BiSSE model, the key probabilities, DN0(t) or
DN1(t), describe the chance that a lineage beginning at
time t with state 0 or 1 would evolve into a clade like
that observed to have descended from node N, closer
to the present (Fig. 1). We track these probabilities back
by a very short amount of time, �t, toward the root,
accounting for all possible events that could have hap-
pened along the way. If we use a small enough time in-
terval �t, we can ignore the possibility that more than
one event happens during the time interval. Once we
have derived equations for the change in the probability
over �t, we then shrink the time interval and use the
definition of a derivative to obtain differential equations
describing the change in these probabilities as we de-
scend toward the root. By integrating these differential
equations along the branches, we are able to solve for the
overall probability of the data given the BiSSE model. In
the following, we carry out these calculations, first along
a branch and then across nodes in the tree.

Calculations within a branch.—Let us assume that we
have already calculated the probability DN0(t) that the
clade of node N and its stem lineage would have evolved
exactly as represented by the inferred tree (including
branch lengths and terminal character states) given that
the lineage started in state 0 at time t on the branch be-
low node N (Fig. 1). We will describe the calculations
focused on state 0; the calculations for state 1 are parallel
and indeed need to be performed simultaneously.
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FIGURE 2. Alternative scenarios by which a lineage with state 0 at time t+�t on the branch might yield clade decended from node N but no
other living descendants.

To move the next step down the tree (Fig. 1), we need to
calculate corresponding probabilities for one small time
step (�t) further down the branch; i.e., DN0(t + �t) and
DN1(t + �t). To calculate DN0(t + �t), we enumerate all
of the ways that the observed clade could have arisen
by considering all possible events that could occur in
the �t time interval. Specifically, we use the law of total
probability to write DN0(t + �t) as the sum of all pos-
sible transitions forward in time from t + �t to t times
the probability that the clade would have evolved in the
manner observed from time t to the present. There are
four cases, each of which requires that the lineage of in-
terest did not go extinct during the �t interval (Fig. 2). In
the first case (Fig. 2a), nothing happens in the �t interval.
In the second case (Fig. 2b), the character changes. In the
third case (Fig. 2c), a speciation event occurs and the left
lineage generates node N; the right lineage must thus go
extinct sometime before the present, which occurs with
probability E0(t), described further in the next section.
The fourth case (Fig. 2d) is similar, except that the left
lineage goes extinct and the right lineage generates node
N. No other cases contribute to the probabilityDN0(t +
�t) because of the assumptions that the events are inde-
pendent and the clade had to survive to the present.

The probabilities for these four cases can then be
summed to yield DN0(t + �t):

DN0(t+�t) =
(1 − µ0�t)× (in all cases no extinction in �t)

[(1 − q01�t)(1 − λ0�t)DN0(t) (see Fig. 2a: No state change, no speciation)
+ (q01�t)(1 − λ0�t)DN1(t) (see Fig. 2b: State change, no speciation)
+ (1 − q01�t)(λ0�t)E0(t)DN0(t) (see Fig. 2c: No state change, speciation, extinction) (1)

+ (1 − q01�t)(λ0�t)E0(t)DN0(t)] (see Fig. 2d: No state change, speciation, extinction)
+ (µ0�t) × 0 (if the lineage went extinct, the clade has zero probability of being observed)

For clarity in Equation (1), we have ignored several pos-
sible transitions that involve multiple events within the
time interval (e.g., speciation and extinction), because
these occur with a probability (of order �t2) that is neg-

ligibly small if �t is small. Dropping all terms of order
�t2, we get:

DN0(t + �t) = [1 − (λ0 + µ0 + q01)�t]DN0(t) + (q01�t)

DN1(t) + 2(λ0�t)E0(t)DN0(t) (2a)

Similarly,

DN1(t + �t) = [1 − (λ1 + µ1 + q10)�t]DN1(t) + (q10�t)

DN0(t) + 2(λ1�t)E1(t)DN1(t) (2b)

Dividing [DN0(t + �t – DN0(t)] and [DN1(t + �t) –
DN1(t)] by the time interval, �t, and taking the limit as
�t goes to zero, we can derive two coupled differential
equations:

dDN0

dt
= −(λ0 + µ0 + q01)DN0(t) + q01 DN1(t)

+2λ0 E0(t)DN0(t) (3a)

dDN1

dt
= −(λ1 + µ1 + q10)DN1(t) + q10 DN0(t)

+ 2λ1 E1(t)DN1(t) (3b)

We have not found analytical solutions for these equa-
tions. Nevertheless, given solutions for E0(t) and E1(t)
described below, they can be numerically integrated
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along a branch. This permits us to derive DN0(t) and
DN1(t) at the bottom of the branch (rootward) from the
probabilities at the top of the branch.

Initial conditions.—If N is a terminal node with state
0, then the initial conditions are DN0(0) = 1 and
DN1(0) = 0. That is, the state must be that observed at
time 0. Likewise, if the taxon has state 1, DN0(0) = 0 and
DN1(0) = 1.

Calculations at nodes.—When we arrive at the bottom
of the branch, i.e., at the immediate ancestral node A,
we need to combine the probability from the branch
with the probability from its sister branch before con-
tinuing the journey down the ancestral branch. For A’s
clade to have evolved as represented in the inferred tree,
the speciation event must have occurred, and each of the
daughter lineages must have survived to the present day.
The probability of the Aclade evolving as in the inferred
tree equals the probability that the left daughter lineage
evolved as in the tree, times the probability that the right
daughter lineage evolved as in the tree, times the proba-
bility of speciation across a small interval of time,�t. This
probability of speciation, λ�t, thus introduces a �t term
at each node. These �t terms therefore contribute a factor
(�t)n to the probability over the whole tree, where n is the
number of internal nodes. Because this factor does not
depend on the parameter values, we can safely ignore it
without changing the proportionality of the likelihoods
under different parameter values. Technically, ignoring
it converts our probabilities to probability densities, but
we will continue to speak of probabilities for brevity.

Thus, right before the speciation event has occurred,
the probability that the lineage is in state 0 or 1 and
evolves into a clade like that observed to have descended
from node A (including the speciation event at node A)
is given by:

DA0(tA) = DN0(tA)DM0(tA)λ0 (4a)

DA1(tA) = DN1(tA)DM1(tA)λ1 (4b)

FIGURE 3. Alternative scenarios by which a lineage at time t with state 0 might go extinct.

where M is the sister node to N. Note that these equations
include only the case where the character state is the
same for the ancestor Aand its two descendant lineages.
That is, we treat speciation and character state changes
as independent events, so that the probability is zero for
both changes to occur simultaneously.

Now, having passed node A, we can continue toward
the root, using DA0(tA) and DA1(tA) as starting points for
the numerical integration down A’s branch.

At the root.—When we get to the root R we will
have calculated DR0(tR) and DR1(tR), which describe the
probability of observing the phylogeny and the extant
character states, given that the root was in state 0 or 1,
respectively. To obtain a single likelihood to serve as the
basis for inference we need to account for the proba-
bility that the root was in state 0 or 1. We could, fol-
lowing Schluter et al. (1997) and Pagel (1999), add DR0
and DR1 together. This effectively assigns a probability
of 0.5 to the root being in state 0 and to the root being
in state 1, even if the transition probabilities of the BiSSE
model would make it much more likely that the charac-
ter is in one state or the other. Alternatively, we could
weight these root states by the equilibrium frequencies
of 0 and 1 implicit in the model (see Appendix 2), as
done by default in Mesquite version 1.1 and later for
similar likelihood calculations for ancestral states (Mad-
dison and Maddison, 2006). We take this latter approach
here.

Probability of Extinction (E)

In order to use the differential Equations (3) to cal-
culate the probability, DN0(t) or DN1(t), that a lineage
evolves as represented in the inferred tree, we must de-
termine the probability that a lineage alive at time t goes
extinct before the present time. Here, we derive E0(t)
and E1(t) using a similar procedure, except that the ex-
tinction probabilities do not depend on tree structure of
the surviving lineages, only on time.
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Assume that we have calculated E0(t), the probability
that a lineage starting at time t in state 0 leaves no descen-
dants at the present day. Then E0(t + �t) can be obtained
by considering the four different possible events in the
�t interval consistent with the lineage (and all of its de-
scendants) going extinct ultimately (Fig. 3). In the first
case (Fig. 3a), the lineage goes extinct during the �t time
interval. In the second case (Fig. 3b), the lineage neither
goes extinct nor changes state nor speciates between t
and t + �t , but nevertheless it goes extinct eventually.
In the third case (Fig. 3c), the lineage changes state dur-
ing the �t time interval and then goes extinct. Finally,
in the fourth case (Fig. 3d), the lineage speciates during
the �t time interval, but now both descendant lineages
must go extinct before the present day. We assume in the
fourth case that the extinction events are independent of
one another, thus contributing a term E0(t)2 to the prob-
ability. No other cases need be considered because of the
assumption that the events are independent and �t is
extremely small.

The probabilities for these four cases can then be
summed to yield the probability of extinction, E0(t + �t):

E0(t + �t) =
µ0�t (see Fig. 3a: Extinction in �t)
+ (1 − µ0�t)(1 − q01�t)(1 − λ0�t)E0(t) (see Fig. 3b: No state change, no speciation)
+ (1 − µ0�t)(q01�t)(1 − λ0�t)E1(t) (see Fig. 3c: State change, no speciation) (5)

+ (1 − µ0�t)(1 − q01�t)(λ0�t)E0(t)2 (see Fig. 3d: No state change, speciation)

Again, we have included some terms in Equation (5) that
are negligibly small (of order �t2). Dropping these terms,
we get:

E0(t + �t) = µ0�t + [1 − (µ0 + q01 + λ0)�t]E0(t)

+ (q01�t)E1(t) + (λ0�t)E0(t)2 (6a)

Similarly,

E1(t + �t) = µ1�t + [1 − (µ1 + q10 + λ1)�t]E1(t)

+ (q10�t)E0(t) + (λ1�t)E1(t)2 (6b)

Dividing the change in E0 and E1 by the time interval, �t
and taking the limit as �t goes to zero yields the coupled
differential equations:

dE0

dt
= µ0 − (µ0 + q01 + λ0)E0(t) + q01 E1(t) + λ0 E0(t)2

(7a)

dE1

dt
= µ1 − (µ1 + q10 + λ1)E1(t) + q10 E0(t) + λ1 E1(t)2

(7b)

As with the equations for D(t), these equations for the
extinction probabilities can be solved using numerical
integration.

Initial conditions.—At time t = 0, there is no time for
extinction, and thus E0(0) = E1(0) = 0.

APPLICATION TO ESTIMATION AND TESTING

Maximizing the BiSSE likelihood, calculated as de-
scribed above, can yield estimates for all six parameters.
This means that the method could be used not just to un-
derstand speciation and extinction, but the entire process
of diversification including character state change. With
such a flexible model, a variety of hypothesis tests are
possible. For example, is speciation under state 0 more
rapid than under state 1? Is net diversification rate (speci-
ation − extinction) higher under one state than the other?
What causes an excess of species with one state (Maddi-
son, 2006): asymmetrical character change (rate 0 to 1
different from rate 1 to 0), asymmetrical extinction, or
asymmetrical speciation? To answer these questions, one
can perform likelihood ratio tests by comparing like-
lihoods given unconstrained versus appropriately con-
strained models.

In the following, we provide an initial exploration of
BiSSE using simulated phylogenetic trees and characters.
First, we estimate rate parameters when true speciation,
extinction, and character transition rates either do or do
not depend on the character state. Second, we examine
whether the null hypothesis of equal rates can be rejected
using likelihood-ratio tests.

These examples do not attempt to provide a full ex-
ploration of the method. To understand the method’s
capabilities and limitations, we would want to study the
power of the method to reject false null hypotheses under
a variety of parameter values and assumptions, includ-
ing cases with multiple simultaneous asymmetries. We
would also like to know the size of the tree needed for
adequate power, as well as the accuracy and precision
of estimated parameter values. These explorations we
leave for a subsequent paper.

Implementation

The BiSSE likelihood calculations described above
have been programmed in the Diverse package of mod-
ules (Midford and Maddison, 2007) for Mesquite (Mad-
dison and Maddison, 2007). These calculations use a
fourth-order Runge-Kutta method of numerical inte-
gration (Ralson and Rabinowitz, 1978) for proceeding
along the branches and Mesquite’s implementation of
Brent’s (1973) optimizer for seeking maximum likeli-
hood estimates. If the choice is made to condition the
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probabilities on the survival of the entire clade, the
module uses Nee at al.’s (1994b) convention (i.e., the con-
dition used is that at least two descendants of the clade
survive).

In our examination of the method, maximum likeli-
hood optimization was first attempted using 10 random
starting parameter values, with the numerical integra-
tor using a coarse division of each branch into segments
(an average-length branch was assigned 100 segments;
other branches were assigned up to a maximum of 400
or a minimum of 50 segments in proportion to their
length). Error in the numerical integration is expected
to decrease as segment length decreases, and therefore
the most likely parameter set resulting from the 10 at-
tempts was then used as a starting point for a final op-
timization using a finer division of branches (average
1000 segments, maximum 4000, minimum 500). Details
of the numerical integration method will be considered
in a subsequent paper, but we note that the reasonable
estimates obtained in our results suggest that the method
is having some success. Likelihoods were conditional on
clade survival. The prior used for the character state at
the root (i.e., the probability of state 0 versus 1 at the
root) was the set of equilibrium frequencies implicit in
the proposed model parameter values.

Simulated trees and terminal character states were
generated in Mesquite via a prerelease version of the
“BiSSE Trees & Characters” module of the Diverse pack-
age (Midford and Maddison, 2007). This module divided
time into small steps, such that if an event’s occurrence
has an instantaneous rate r the probability of the event
in the time slice is r/1000. In each time slice on each lin-
eage, a uniform random number was drawn to determine
whether the character changed, followed by a random
number draw to determine if extinction occurred. If ex-
tinction did not occur on a lineage, then a random num-
ber was drawn to determine if speciation had occurred. If
the tree went extinct, the simulation was restarted. A sim-
ulation continued until the tree first had the requested
number of species (e.g., 500). This is not ideal, because
extinction and speciation could have caused the tree to
achieve the requested number of species several times;
stopping the simulation at the first time biases the re-
sult toward shorter terminal branches. The bias should,
however, be very small for the parameters investigated
below, where speciation rates are high relative to rates of
extinction and character state change and where the size
of the tree is large. (For example, under the scenario with
the highest extinction rate explored below, the average
height of the tree when 500 species was first reached was
0.99916 that of the height of the tree when 500 species was
last reached, as determined by 100 simulations in which
trees were allowed to grow to 600 species. See also Ap-
pendix 2 for a deterministic approximation to average
times to reach a certain number of species.)

Parameter Estimation

To explore parameter estimation, we simulated trees
under each of four parameter combinations. The first
combination was entirely symmetrical: λ0 = λ1 = 0.1,

µ0 = µ1 = 0.03, q01 = q10 = 0.01. The other three com-
binations introduced an asymmetry in each process
(speciation, extinction, character change) by altering one
parameter at a time in the perfectly symmetrical model.
Specifically, the three alternative models involved raising
the speciation rate with state 1 (λ1 = 0.2), raising the ex-
tinction rate with state 0 (µ0 = 0.06), or lowering the rate
of character change to state 0 (q10 = 0.005). Five hundred
trees of 500 extant species were simulated under each
model.

Maximum likelihood estimates of parameters from the
resulting trees were obtained from the Diverse package.
The results are plotted in Figure 4, which focuses on
the estimate of the asymmetric parameter in each sim-
ulation. In general, the estimates of speciation rates λ0
and λ1 are fairly good, falling near the correct param-
eter values. As well, the estimates for the symmetrical
case (λ0 = λ1 = 0.1) are easily distinguished from the es-
timates in the asymmetrical case (λ0 = 0.1, λ1 = 0.2). For
extinction rates and rates of character state change, the
estimates do not so closely match the simulated rates.
Whether this reflects general difficulties in estimating ex-
tinction (Nee et al., 1994; Kubo and Iwasa, 1995; Paradis,
2005) or state change or instead depends on the particu-
lar parameter values chosen remains to be explored in a
future paper.

Hypothesis Testing

We examined the same simulated trees to explore what
power the method would have to reject the null hypoth-
esis that a rate (e.g., of speciation) was equal for the two
character states, when in fact it was different. In addition
to the unconstrained six-parameter likelihood estimates
described above, we also calculated the maximum likeli-
hood given constrained five-parameter models, holding
either the speciation rates equal (λ0 = λ1), the extinction
rates equal (µ0 = µ1), or the rates of state change equal
(q01 = q10). The log-likelihood difference between the
constrained five-parameter likelihood model and the un-
constrained six-parameter likelihood model was used as
a test statistic. If this difference was larger than a critical
value (based on the simulated trees with truly symmetri-
cal rate parameters), then we rejected the null hypothesis
of symmetrical rates for the parameter of interest.

When investigating whether the character affected
speciation rates, 5% of the symmetric simulations yielded
a 2 × log-likelihood difference of 3.60 or more between
the constrained (λ0 = λ1) and the unconstrained (λ0 �=
λ1) models even though there was no difference in speci-
ation rate. Thus, we used 3.60 as our 5% cutoff for signif-
icance. Of the asymmetric simulations, 58% resulted in a
greater log-likelihood difference than this cutoff, leading
to the rejection of the null hypothesis of equal speciation
rates (λ0 = λ1). This shows at least some power to re-
ject the null hypothesis with trees of 500 species when
there is a twofold difference in speciation rates. Rejec-
tion rates with asymmetries in extinction or character
state change were, however, much lower. Exploring ex-
tinction rate differences, 21.2% of the asymmetric simula-
tions exceeded the cutoff 2 × log-likelihood difference of
4.08 based on the symmetric simulations. Exploring rates
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FIGURE 4. Estimated parameter values from simulated trees and characters. Lines indicate true parameter values of the simulations (solid,
equal rates for the two states; dashed, unequal). Small symbols represent estimates; large symbols represent mean values of estimates. Open circles
represent parameter estimates from symmetrical simulations; i.e., equal parameter values for states 0 and 1 (speciation rates 0.1, extinction rates
0.03, character change 0.01). Closed triangles represent estimates from simulations with asymmetries in the respectively estimated parameters.
Asymmetries shown are (a) speciation rate asymmetry (λ1 = 0.1 versus 0.2), (b) extinction rate asymmetry (µ0 = 0.03 versus 0.06), and (c)
character state change rate asymmetry (q10 = 0.01 versus 0.005). In the maximum likelihood analysis, all six parameters were free to vary, but
each scatterplot focuses only on the parameters of interest in each case.

of character state change, only 16.4% of the asymmetric
simulations exceeded the cutoff 2 × log-likelihood dif-
ference of 4.52 based on the symmetric simulations. As
we noted above with respect to parameter estimation,
these results do not necessarily indicate that extinction
or character changes are generally harder to study, only
that they are under the parameter values studied.

Given sufficient data, we would expect twice the log
likelihood difference from constrained versus uncon-
strained models to follow a χ2 distribution with one de-
gree of freedom, under the null hypothesis of equal rates
for the two states. The 5% cutoff for significance under
this asymptotic distribution would be 3.841. The 5% cut-
off values established by our equal-rate simulations are
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close to this value, suggesting that the χ2 approximation
may be a reasonable one for likelihood ratio tests involv-
ing trees of this size.

It remains to be studied how the probability of reject-
ing a false null hypothesis (power) varies with number of
species and with the degree of difference in rates. From
our initial exploration, however, we suspect that large
phylogenetic trees will generally be needed to have suf-
ficient power. Rather than being a sign of a weakness in
the method, we believe that this low power stems from
the fact that there are many similar ways to generate
an observed phylogeny and observed character states
(Maddison, 2006)—and only with much data can these
be distinguished.

Extensions

In this paper, we have used these likelihood calcula-
tions to explore our ability to detect asymmetrical rates
of speciation, extinction, or character state change. The
calculations could equally be applied to exploring how
uncertainty in some of these parameters (e.g., specia-
tion and extinction rates) influences the likelihood esti-
mates for other parameters (e.g., character state changes).
They could also be used to infer ancestral states using
likelihood (Schluter et al., 1997). Maddison (2006) has
explained why methods are needed that consider a char-
acter’s effect on diversification when interpreting the
character’s evolutionary history; our likelihood calcu-
lations can provide such methods. They could also be
used in tree inference itself, permitting models in which
character states affect diversification processes.

The general approach of describing differential equa-
tions for likelihood and integrating down branches
should be applicable to a broad array of questions. Us-
ing numerical integration methods frees us from the
constraint of considering only those models that can be
solved analytically. We could, for example, extend the
method to include multiple correlated characters or other
models of character evolution or other models of speci-
ation (e.g., speciation that occurs simultaneously with
character change). Another useful extension would be
to deal with continuous valued data, perhaps incorpo-
rating a model such as Slatkin’s (1981). Paradis’s (2005)
method is already generalized for multiple characters of
different types, although as noted it does not integrate
state change with speciation/extinction into a common
model.

A final caution about the BiSSE method: even if it
proves to have adequate ability to estimate parameters
and test hypotheses, it will suffer the same limitation
(Read and Nee, 1995; Maddison, 2000) shared by Pagel’s
(1994) and Maddison’s (1990) tests of character correla-
tion and Ree’s (2005) test of diversification. If we deter-
mine, for example, that λ1 > λ0, we cannot on this basis
alone say that the character of interest is controlling speci-
ation rate. Another character, with parallel distribution of
character states, could in fact be responsible. This would
be of little concern if our character’s states were scat-
tered with much homoplasy on the tree, because then we

could argue that any other character is unlikely to have
a parallel distribution, unless it were causally linked to
our examined character, and so indirect causality could
still be argued. But, the issue of codistributed characters
would be a concern if all of the species with state 1 (for
example) occurred in a single clade. Our method, as well
as the others cited, could give a significant result in such a
case, even though any other synapomorphy of the clade
could actually be responsible for the effect, and such a
synapomorphy might be unrelated to our character of
interest except by coincidence of origin on the same sin-
gle lineage (Read and Nee, 1995; Maddison, 2000). Thus,
the correct conclusion given a significant result using our
method is that the character examined or a codistributed
character appear to be controlling diversification rates.
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APPENDIX 1
Character-independent model.—The likelihood model described in the

text can be reduced to a simple speciation-extinction (or birth-death)
model if one assumes that speciation and extinction rates are not af-
fected by a character. As the speciation-extinction model has been well
studied (e.g., Nee et al., 1994b), we describe how our calculations re-
duce to theirs in the case that the speciation and extinction rates are
constant (λ, µ).

Rederiving Equations (3) and (7) without reference to a character,
we obtain differential equations for DN(t), the probability that a lineage
at time t gives rise to the extant descendant lineages and no others, and
E(t), the probability that a lineage and all of its descendants go extinct
before the present day:

dDN

dt
= −(λ + µ)DN(t) + 2λE(t)DN(t) (8a)

dE
dt

= µ − (µ + λ)E(t) + λE(t)2 (8b)

Using these two differential equations, the tree can be traversed as
described in the text to yield a probability of observing the extant data.

In this simple case, however, it is possible to derive an analytical
solution for the calculations of probabilities along a single branch. We

describe this briefly to show the relationship between our method and
that of Nee et al. (1994b), and because the character-independent model
describes the approximate behavior of the likelihood functions when
the character state has little effect on extinction and speciation rates.
The solution for E(t) is:

E(t) = 1 − (λ − µ)
(λ − e−(λ−µ)tµ)

if λ �= µ (9a)

E(t) = λt
1 + λt

if λ = µ (9b)

as derived by Kendall (1948). E(t) rises as we go further back in time
(increase t), approaching 1 if λ < µ and µ/λ otherwise. Basically, the
further back in time we go, the more opportunity there is for the entire
lineage and its descendants to go extinct.

The above solution for E(t) can be used to solve for DN(t):

DN(t) = e−(λ−µ)(t−tN ) (λ − e−(λ−µ)tN µ)2

(λ − e−(λ−µ)tµ)2
DN(tN) if λ �= µ (10a)

DN(t) = (1 + λtN)2

(1 + λt)2
DN(tN) if λ = µ (10b)

where tN is the time depth of node N (see Fig. 1). These equations
permit us to jump from node N to its ancestor A without recourse to
approximate numerical integration. To traverse node A, we need to
account for the speciation event, as we did in Equation (4). The above
process of traversing a branch and then accounting for the node can be
repeated until the root is reached. Doing so, we get the probability of
observing the full phylogeny:

DR(tR) =
[

2n∏
i=1

e−(λ−µ) (ti,b −ti,t)

(
λ − e−(λ−µ) ti,t µ

)2

(λ − e−(λ−µ) ti,b µ)2

]
(λ)n if λ �= µ (11a)

DR(tR) =
[

2n∏
i=1

(1 + λ ti,t)
2

(1 + λ ti,b)2

]
(λ)n if λ = µ (11b)

where ti,b is the time at the base of the ith branch (rootward), ti,t is the
time at the terminus of the ith branch length (nearest the present), n
is the number of nodes (including the root node), and the product is
taken over all branches in the tree.

If we condition on the existence of a root node with two surviv-
ing lineages (dividing (11a) by λ [1 − E(tR)]2), then after some algebra,
Equation (11a) can be shown to equal equation (21) of Nee et al. (1994b)
except for a factor, (N − 1)!, which does not depend on the parameters.
The (N − 1)! arises because Nee et al. consider the probability of all
possible tree topologies with the same branching times (regardless of
where the branches occur), and there are (N − 1)! such tree topolo-
gies. Thus, our method generates the same likelihood surface as that
of Nee et al. (1994b) when the character does not influence the rate of
speciation and extinction, but as we have shown, can be more readily
extended to include more complex processes of diversification.

APPENDIX 2
Equilibrium frequencies.—The expected frequency of state 0 and 1

within an assemblage of species should, over evolutionary time, reach
an equilibrium that can be calculated from the model. Here, we consider
the passage of time, T , in the forward direction and track the number
of lineages in state 0, n0, and the number of lineages in state 1, n1.
Given that each lineage could speciate, go extinct, or switch state, the
expected number of species of each type should obey the following
ordinary differential equations:

dn0

dT
= λ0n0 − µ0n0 − q01n0 + q10n1 (12a)

dn1

dT
= λ1n1 − µ1n1 − q10n1 + q01n0 (12b)
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From these equations, we can derive a differential equation for the
frequency of lineage in state 0, x = n0/(n0 + n1), using the quotient rule:

dx
dT

=
dn0

dT
n1 − dn1

dT
n0

(n0 + n1)2
= g x (1 − x) − x q01 + (1 − x) q10 (13)

where g = λ0 − µ0−λ1 + µ1. The equilibrium frequency of lineages in
state 0, x̂, is thus the single root of the quadratic equation, g x̂ (1 − x̂) −
x̂ q01 + (1 − x̂) q10 = 0, that lies between 0 and 1. When g = 0, this equi-
librium occurs at x̂ = q10/(q01 + q10).

Average number of species over time.—We can also solve Equations
(12) explicitly to determine the average number of species as we move
forward in time from a single species to time T when a character affects
the diversification process. Averaging over those cases where the root
is in state 0 (with probability x̂) and in state 1 (with probability 1 – x̂),
the average number of lineages, L(T), at time T grows exponentially
according to:

L(T) = e [x̂(λ0−µ0)+(1−x̂)(λ1−µ1)]T (14)

If lineages in state 0 speciate more rapidly or go extinct less rapidly
than lineages in state 1 (i.e., if g > 0), then more species are expected
to exist after time T for groups that are initially in state 0. After some
algebra, the average number of lineages, L0(T), at time T assuming

that the root state is 0 can be written as:

L0(T) = L(T)

[
1 − g (1 − x)2

g(1 − x)2 − q01

]
+ e (λ0−µ0− q01

1−x )T

×
[

g(1 − x)2

g(1 − x)2 − q01

]
(15a)

Assuming instead that the root state is 1, we have:

L1(T) = L(T)

(
1 − gx2

gx2 + q10

)
+ e (λ1−µ1− q10

x )T

(
gx2

gx2 + q10

)
(15b)

Equations (15a) and (15b) both reduce to L(T) given by Equation (14)
when the net diversification rate is the same for the two character states
(i.e., g is zero).

The above equations can be solved for T to estimate the amount of
time required to generate a certain number of species when the charac-
ter state influences diversification. It should be emphasized, however,
that these equations use a deterministic model (12) to approximate the
stochastic process of diversification and character state change. Thus,
Equations (14) and (15) provide only a heuristic guide to the evolution-
ary process when character states influence speciation and extinction
rates.




