One-way ANOVA

$$
\begin{aligned}
k & =\text { number of groups } \\
n_{i} & =\text { sample size of the } i \text { th sample } \\
n * & =\text { combined sample size } \\
\bar{y}_{i} & =\text { sample mean of the } i \text { th sample } \\
\overline{\bar{y}} & =\text { grand mean } \\
s_{i} & =\text { sample SD of the } i \text { th sample } \\
\text { SS(between) } & =\sum_{i=1}^{k} n_{i}\left(\bar{y}_{i}-\overline{\bar{y}}\right)^{2} \\
& \sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2} \\
\mathrm{SS}(\text { within }) & \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\overline{\bar{y}}\right)^{2} \\
\mathrm{SS}(\text { total }) & =k-1 \\
\mathrm{df}(\text { between }) & =n^{*}-k \\
\operatorname{df}(\text { within }) & =n^{*}-1 \\
\text { df(total) } & \left.=\mathrm{SS}^{*}(\text { between }) / \text { df(between }\right) \\
\mathrm{MS}(\text { between }) & =\mathrm{SS}(\text { within }) / \mathrm{df}(\text { within }) \\
\mathrm{MS}(\text { within }) & =\mathrm{MS}(\text { between }) / \mathrm{MS}(\text { within }) \\
F & =\sqrt{\mathrm{MS}(\text { within })}
\end{aligned}
$$

Correlation Coefficient

$$
\begin{aligned}
r & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \\
& =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}
\end{aligned}
$$

Simple Linear Regression

fitted line
slope
$Y=b_{0}+b_{1} X$
$b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$b_{1}=r \frac{s_{y}}{s_{x}}$
intercept
fitted value residual
residual sum of squares
residual SD
$\mathrm{SE}\left(b_{1}\right)$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

$\hat{y}_{i}=b_{0}+b_{1} x_{i}$
$y_{i}-\hat{y}_{i}$
$\mathrm{SS}($ resid $)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
$\mathrm{SS}($ resid $)=(n-1)\left(1-r^{2}\right) s_{y}^{2}$
$s_{Y \mid X}=\sqrt{\frac{\mathrm{SS}(\mathrm{resid})}{n-2}}$
$s_{Y \mid X}=\sqrt{\frac{n-1}{n-2}} \sqrt{1-r^{2}} s_{y}$
$\mathrm{SE}\left(b_{1}\right)=\frac{s_{Y \mid X}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}$
$\mathrm{SE}\left(b_{1}\right)=\sqrt{\frac{1-r^{2}}{n-2}} \frac{s_{y}}{s_{x}}$
confidence interval
hypothesis test
$t=\frac{b_{1}}{\mathrm{SE}\left(b_{1}\right)}=r \sqrt{\frac{n-2}{1-r^{2}}}$

