1. Comparison of Paired Samples

• Standard error of \bar{d} is

In a paired design, the observations (Y_1, Y_2) occur in pairs (not independent). Instead of considering Y_1 and Y_2 independently, we consider the DIFFERENCE d, defined as $d = Y_1 - Y_2$.

• Relationship between sample means and population means:

$$\bar{d} = \bar{y_1} - \bar{y_2}$$
$$\mu_d = \mu_1 - \mu_2$$

$$SE_{\bar{d}} = \frac{s_d}{\sqrt{n_d}}$$

 $\bullet~t$ Test

$$H_0: \mu_d = 0$$
$$t_s = \frac{\bar{d} - 0}{\mathrm{SE}_{\bar{d}}}$$

• $(1 - \alpha)$ Confidence Interval for μ_d is

$$\bar{d} \pm t_{\frac{\alpha}{2}} SE_{\bar{d}}$$

e.g., If $\alpha = 10\%$, then 90% confidence interval of μ_d is $\bar{d} \pm t_{0.05} SE_{\bar{d}}$

2. Analysis of Categorical Data

• The chi-square goodness-of-fit test

 H_0 : Pr{categorical 1} = p_1 , Pr{categorical 2} = p_2 , ...

 H_A : At least one of the probabilities specified in H_0 is incorrect Chi-square Statistics is

$$\chi_s^2 = \sum \frac{(O-E)^2}{E}$$

where the summation is over all the categories. O represents the observed frequency of the category and E represents the expected frequency. For categorial $i, E = n \times p_i$, where n is the total number of observations: $n = \sum O$.

Under H_0 , if the sample size is large enough, the distribution of χ_s^2 can be approximated by χ^2 distribution with degree of freedom as

df = (number of categories) - 1

• The chi-square test for the 2×2 contingency table

$$H_0: p_1 = p_2$$

The Chi-squate statistics is

$$\chi_s^2 = \sum \frac{(O-E)^2}{E}$$

where the sum is taken over all four cells in the contingency table. O represents the observed frequency and E represents the correspondint expected frequency according to H_0 , and

$$E = \frac{(\text{Row total}) \times (\text{Column total})}{\text{Grand total}}$$

The degree of freedom is

$$df = 1$$