- 1. The chi-square test for the $r \times k$ contingency table
 - Null hypothesis:

 H_0 : Row variable and column variable are independent

• Calculation of expected frequencies:

$$E = \frac{(\text{Row total}) \times (\text{Column total})}{\text{Grand total}}$$

• Test statistics

$$\chi_s^2 = \sum \frac{(O-E)^2}{E}$$

• Null distribution (approximate): χ^2 distribution with

$$df = (r-1)(k-1)$$

where r is the number of rows and k is the number of columns in the contingency table. This approximation is adequate if $E \ge 5$ for evary cell. If r and k are large, the condition that $E \ge 5$ is less critical and the χ^2 approximation is adequate if the average expected frequency is at least 5, even if some of the cell counts are smaller.

2. The ANOVA Table

Source: Between groups: Within groups: Total:	$df \\ k-1 \\ n^*-k \\ n^*-1$	$SS(Sum of Squares) \\ \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2 \\ \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 \\ \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 \end{cases}$	MS(Mean Square) SS/df SS/df
where į	$\bar{y}_i = \frac{y_{i1} + y_{i1}}{y_{i1} + y_{i1}}$	$\frac{y_{i2} + \dots + y_{in_i}}{n_i} = \frac{\sum_{j=1}^{n_i}}{n_i}$	y_{ij}
	$n^{\star} = n_1$	$+n_2+\ldots+n_k=\sum_{i=1}^k n_i$	i
and	$ar{ar{y}}$	$=\frac{\sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij}}{n^\star}$	