TA: Ruiyan Luo
Office: 4268 CSSC
Office hours: TW 2:30-3:30pm
Phone number: 262-8182
E-mail: rluo@stat.wisc.edu

1. Bionomial distribution

- Four conditions for a binomial random varialbe:
- Binary outcomes: there are two possible outcomes for each trial (success and failure)
- Independent rials: the outcomes of the trials are independent of each other
-n is fixed: the number of trials, n , is fixed in advance
- Same value of p : the probability of a success on a single trial is the same for all trials
- The binomial distribution formula

For a binomial random variable, the probability that the n trials result in j successes (and $n-j$ failures) is given by the following formula:

$$
\operatorname{Pr}\{j \text { successes }\}={ }_{n} C_{j} p^{j}(1-p)^{n-j}
$$

where ${ }_{n} C_{j}=\frac{n!}{j!(n-j)!}$ and $x!=x(x-1)(x-2) \ldots(2)(1), 0!=1$.
${ }_{n} C_{j}$ has some properties:

$$
\begin{gathered}
{ }_{n} C_{0}={ }_{n} C_{n}=1 \\
{ }_{n} C_{j}={ }_{n} C_{n-j}
\end{gathered}
$$

- Properties of binomial distribution:
- expectation (or mean) of X is $n p$.
- variance is $n p(1-p)$; standard deviation is $\sqrt{n p(1-p)}$
- the binomial distribution is symmetric if and only if $p=0.5$

2. Normal distribution

- If Y follows a normal distribution with mean μ and standard deviation σ, then it is common to write $Y^{\sim} N(\mu, \sigma)$. Its density function is

$$
f(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}}
$$

- By standardization formula

$$
Z=\frac{Y-\mu}{\sigma}
$$

random variable Z has density function

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

, which is called standard normal distribution with mean 0 and standard deviation 1.

- $\operatorname{Pr}\{\mathrm{Z}$ is between a and b$\}=$ area under the standard normal curve between a and b. The tabel in the book gives the area under the normal curve below a spedified value of z.
$\operatorname{Pr}\{Z \leq z\}=$ area to the left of z (given in table)
$\operatorname{Pr}\{Z \geq z\}=$ area to the right of $z=1$-area to the left of z $\operatorname{Pr}\{a \leq Z \leq b\}=$ area to the left of $\mathrm{b}-$ area to the left of a
- Given a probability α, from the normal table we can get Z_{α} such that $\operatorname{Pr}\left\{Z \leq Z_{\alpha}\right\}=1-\alpha$, then $Y_{\alpha}=Z_{\alpha} \sigma+\mu$ satisfying that $\operatorname{Pr}\left\{Y \leq Y_{\alpha}\right\}=1-\alpha$.

