1. Statistical estimation

- The estimate of population mean μ is sample mean \bar{y}
- The estimate of population standard deviation σ is sample standard deviation s.

2. The standard error of the mean is

$$
S E_{\bar{y}}=\frac{s}{\sqrt{n}}
$$

which is a measure of the reliability or precision of \bar{y} as an estimate of μ : the smaller the SE , the more precise the estimate.
Consider: What is the distincton between standard error and standard deviation?
3. Confidence interval

- The construction of confidence interval:

If the sample size is n, sample mean is \bar{y}, and the standard error is $S E_{\bar{y}}$, then the $(1-\alpha) \%$ confidence interval for μ is constructed as follows:

$$
\bar{y} \pm t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}
$$

where the criticl value $t_{\frac{\alpha}{2}}$ is determined from Student's t distribution with $d f=n-1$. For instance, if $\alpha=10$, then the 90% confidence interval is $\bar{y} \pm t_{0.5} S E_{\bar{y}}$.

- The interpretation of a confidence interval:

Suppose the 95% confidence interval of μ is (a,b), which of the following statement is true?
$-\operatorname{Pr}\{\mathrm{a}<\mu<\mathrm{b}\}=95 \%$

- We are 95% confidence that the population mean μ is between a and b.
$-\operatorname{Pr}\{\mathrm{a}<\bar{y}<\mathrm{b}\}=95 \%$
- We are 95% confidence that the sample mean \bar{y} is between a and b.
- If we take 100 samples from the population and construct 100 95% confidence intervals. Then there will be 95 confidence intervals containing μ.
$-\operatorname{Pr}\{$ the next sample will give us a confidence interval that contains $\mu\}=0.95$

4. Planning a study to estimate μ

To get a desired standard error, the sample size should be:

$$
\mathrm{n} \geq\left(\frac{\text { Guessed SD }}{\text { Desired SE }}\right)^{2}
$$

Exercise:
Y follows a normal distribution with mean 20 and standand deviation 2. Take a sample from the population and get these data:
19.1067220 .4954719 .2028116 .8174019 .1817019 .4432018 .3431119 .51481 19.2250325 .5322120 .2490518 .8011921 .46908 sx

- get sample mean \bar{Y} and sample standard deviation s
- the sample error
- $\operatorname{Pr}\{19<\bar{Y}<22\}$
- the 90% confidence interval for μ
- if we want the standard error to be less than 0.1 , how large should the sample be?

