
Border Control: Sandboxing Accelerators

Lena E. Olson Jason Power Mark D. Hill David A. Wood
University of Wisconsin-Madison
Department of Computer Sciences

1. Summary of paper

In the era of dark silicon, hardware accelerators are one way
to improve performance and reduce power, and therefore they
have been proposed for a variety of applications. Some ac-
celerators may be custom-designed by third parties, and pur-
chased as soft or firm intellectual property (IP). At the same
time, groups like the HSA Foundation are pushing for greater
programmability and tighter integration between CPUs and
accelerators, through interfaces such as shared virtual memory.

Although allowing accelerators access to system memory
makes sense from a programmability and performance stand-
point, it has security implications that have yet to be fully
explored. In particular, third-party accelerators may have bugs
or design flaws, or they may even be malicious. Incorrect
accelerator accesses to host memory can have serious conse-
quences, because they allow the accelerator to interfere with
processes which never run on the accelerator. These conse-
quences include corruption of operating system structures and
leakage of information between processes.

The Principle of Least Privilege states that “Every program
and every user of the system should operate using the least
set of privileges necessary to complete its job. Primarily, this
principle limits the damage that can result from an accident
or error.” [9]. Similarly, an accelerator should only be able
to access memory addresses associated with the process it is
running. This limits the damage it can cause, protecting all
processes that do not run on the accelerator from corruption
or information leakage.

Our work, Border Control, provides sandboxing: isolation
and protection between accelerators and the host system. In
particular, Border Control prevents untrusted accelerators from
making invalid accesses to the host memory system.

1.1. Threat Model

The threat model we address is an untrusted accelerator ac-
cessing a host physical memory location in violation of the
permissions set by the trusted operating system. We assume
that the host operating system and host hardware are trusted,
but do not place any constraints on the correctness of accel-
erators or the software running upon them. The threat vector
is any untrusted accelerator that has direct access to physical
memory. The addressed threats are violations of confidential-

Border Control: Sandboxing Accelerators, Lena E. Olson, Jason Power,
Mark D. Hill, David A. Wood. Published in MICRO-48, December 2015.

Provides Protection Direct Access
Between to physical

For OS Processes memory
ATS-only IOMMU 7 7 3

Full IOMMU 3 3 7

IBM CAPI 3 3 7

ARM TrustZone 3 7 3

Border Control 3 3 3

Table 1: Comparison of Border Control with other approaches.

ity (or integrity) of host memory, if the untrusted accelerator
reads (or writes) a host physical address to which it is not
currently granted read (or write) access.

A confidentiality violation could allow an accelerator to
read sensitive data from other processes or from the OS. An
integrity violation could allow the accelerator to corrupt crit-
ical data. In the presence of a malicious accelerator (or an
exploitably buggy accelerator) which can access host memory
without restrictions, an attacker can gain full control of the
system through reading and writing OS data on the host. This
is true even if the malicious accelerator is not meant to handle
sensitive or critical data (e.g., a video decoder), so long as it
has direct access to host physical memory.

1.2. Previous Approaches

A number of approaches have been used by industry to make
accelerators more programmable and safer than devices that
use physical addresses (e.g., classic DMA). However, these
approaches have focused either on safety or high performance,
but not both (see Table 1). For example, approaches such
as the I/O Memory Management Unit (IOMMU) [3, 4, 6]
and CAPI [5, 10] can provide safety by requiring that every
memory request be made by virtual address, then translated
and checked by a trusted hardware interface. However, they
prevent the accelerator from implementing TLBs or coherence-
friendly physically addressed caches. These constraints may
be acceptable for accelerators with very regular memory ac-
cess patterns or low performance requirements, but some ac-
celerators require higher performance.

In contrast, other approaches prioritize high performance
over safety. Some current high-performance GPU configura-
tions use the IOMMU’s Address Translation Service (ATS)
for translation, but allow the accelerator to store physical
addresses in an accelerator TLB and caches [3, 4, 6]. The ac-
celerator is then able to bypass the IOMMU and make requests
directly to memory by physical address, without any check of
whether the address is legitimate. Some orthogonal techniques,

1



Accel

TLB

$ $

Untrusted

third-party

Accel

TLB

CPU

TLB

$ $

AccelCPU

TLB

$ $ $ $

Trusted first-party Untrusted

third-party

Untrusted

third-party

Memory

Border

Control

Current Solutions Border Control

(b)

Unsafe

(a)

Safe

(c)

Safe & high perf.

Memory

IOMMU or

CAPI

CPU

TLB

$ $

Figure 1: An example system with untrusted third-party accel-
erators interacting with the system in three ways: a safe but
slow IOMMU (a), a fast but unsafe direct access (b), and Border
Control, which is safe and high performance (c).

such as ARM TrustZone [1], protect highly sensitive data, but
offer no protection between normal processes.

1.3. Border Control

Border Control aims to overcome the limitations of existing
approaches by allowing accelerators to use performance op-
timizations such as TLBs and physical caches, while also
guaranteeing that memory access permissions are respected
by accelerators, regardless of design errors or malicious intent
(see Figure 1). Border Control decouples address translation
and permission checking, and thus it does not need to perform
reverse address translation. Instead, Border Control checks
the physical address of every memory access from the un-
trusted accelerator to the shared memory on the trusted host
and ensures that the process running on the accelerator has
permissions for that physical page. We build upon the existing
process abstraction and the page table to determine whether
an access should be allowed. If an accelerator attempts a
bad access, Border Control blocks the access and notifies the
operating system.

1.4. Border Control Design

Border Control has two main components: the Protection
Table and the Border Control Cache (BCC). The Protection
Table is a flat table in physical host memory, with a read and
a write permission bit for each page of physical memory. It
is indexed by physical page number (PPN) and initialized to
zero (no permissions).

Every time the trusted ATS performs a translation on be-
half of the accelerator, it provides the PPN and associated
permission bits to the accelerator TLB. In our approach, it also
provides this information to Border Control, which updates
the Protection Table accordingly. For an access to host phys-
ical memory to be valid, the accelerator must have obtained

the PPN from the ATS. Therefore, Border Control allows the
access to proceed if and only if the appropriate permission bit
in the Protection Table is set. The Protection Table provides a
correct implementation and full safety.

Because accessing memory on every access to the host
memory has a latency overhead, Border Control also caches
recently seen permissions in a small structure: the BCC. Each
entry in the BCC can contain permissions for multiple con-
secutive physical pages. This structure can be very small and
still achieve a high hit rate due to spatial locality, because a
single 64-byte entry can provide protection information for
256 pages at 2 bits per page. This is much smaller than would
be required for an address translation.

Please refer to the full paper for detailed descriptions of the
actions Border Control takes on different permission events
(e.g., permission downgrades).

1.5. Results

We quantitatively evaluated Border Control for a general
purpose GPU (GPGPU). GPGPUs are a prominent high-
performance accelerator which is capable of high memory traf-
fic and irregular memory access patterns. Thus, the GPGPU
is a stress-test for memory safety mechanisms. We compared
performance with Border Control to the unsafe ATS-only
IOMMU as a baseline, as well as to configurations similar
to the full IOMMU and CAPI. We evaluated performance
for a subset of the Rodinia benchmarks, for both a highly-
threaded GPGPU (high-performance accelerator proxy) and a
moderately-threaded GPGPU (more latency-sensitive acceler-
ator proxy).

Our results show that current protection mechanisms de-
grade performance significantly for high-performance acceler-
ators. Compared to the unsafe case, the full IOMMU had an
average slowdown of 374% and 85% for a highly-threaded and
moderately-threaded GPGPU, respectively. The CAPI-like
configuration had an overhead of 3.81% and 16.5%, respec-
tively.

Border Control provides the same safety as the full IOMMU
and CAPI with almost no performance degradation. Border
Control shows an average of 0.15% (highly-threaded) and
0.48% (moderately-threaded) slowdown versus the unsafe
baseline. Our results show that Border Control can guaran-
tee safety for the host system without sacrificing the high
performance of the ATS-only IOMMU baseline.

Additionally, Border Control has low space overhead. The
Protection Table contains two bits per page of physical mem-
ory, or 0.006% of memory capacity for each active accelerator.
For the BCC, we found that an approximately 1KB cache
(including tags and data) was sufficient for our workloads, due
to the large reach of each entry.

These results show that Border Control is an effective means
of providing safety while still retaining high performance.

2



2. Case for influence

This paper introduces and addresses a novel security prob-
lem in the emerging third-party accelerator economy. Even
today, consumer-facing corporations incorporate IP designed
elsewhere into their devices. For instance, consumers buy
iPhones from Apple, and the SoC which powers the phone is
engineered by Apple. However, many of the components on
the SoC were developed by third-party IP providers, like the
GPU IP from Imagination Technologies.

It it hypothesized that there will be an increasing number
of third-party accelerators [7]. Efforts like open source hard-
ware [2] will lower the barrier to entry for new IP providers.

With the proliferation of accelerators, it will be increasingly
important for consumer-facing businesses to have a way to
protect their systems from both hardware bugs and malicious
designs. If an accelerator is buggy or malicious, it may be a
vector for adversaries to affect the consumer device and in the
worst case exfiltrate sensitive information.

In a perfect world, consumer-facing companies would be
able to perfectly verify that all of the IP they include in their
product was safe and correct. However, this may not be possi-
ble. For instance, IP providers want to keep their “secret sauce”
to themselves, so they may encrypt the IP when sending it to
other manufacturers. Additionally, with the proliferation of
3D die-stacking, it may be possible to integrate fully manu-
factured chips from third parties (which are very difficult to
verify) into products.

This paper is the first paper in the architecture community to
recognize the pitfalls of current system-accelerator protection
mechanisms: they either provide full protection with low per-
formance, or provide high-performance without full protection.
We introduce a new protection mechanism, Border Control,
that provides full protection and high performance with simple
hardware. Instead of inventing a new protection specification
from scratch, we leverage the current operating system protec-
tion specifications (processes and page tables), allowing the
protection to be transparent to accelerator programmers.

This paper addresses an important threat from tightly in-
tegrated third-party IP: direct access to the shared physical
memory. Even with trusted first-party design, it is difficult to
ensure that hardware designs are completely correct, as demon-
strated by processor errata. There have been previous cases
where hardware bugs have been exploited to allow attacks
such as privilege escalation [8]. By leveraging the differences
between accelerators and CPUs (e.g., accelerators do not run
the OS and therefore do not require access to all of memory),
Border Control can provide added protection against accel-
erators, no matter their origin. Jerome Saltzer defined the
Principle of Least Privilege by saying that “Every program
and every user of the system should operate using the least
set of privileges necessary to complete its job. Primarily, this
principle limits the damage that can result from an accident or
error.” [9]. Although Saltzer was referring to software, these

concepts can apply to hardware as well: rather than limiting
the privileges of programs and users, we can limit the privi-
leges of hardware components. Applying this principle may
thus be a worthwhile aspiration when dealing with hardware
accelerators.

This is a forward-looking paper that provides a solution to
a future security threat. We make a number of assumptions
based on extrapolations of current SoC trends. When looking
back in five years, even if only a subset of our assumptions
are true, we believe that this work will have a large impact.
This paper may provide a catalyst for other researchers to find
other interesting threat vectors in the emerging third-party
accelerator economy, and to explore ways of mitigating and
defending against these threats. Works like this, and other
follow-on works, will pave the way for better security for
consumer devices.

References
[1] ARM Security Technology: Building a Secure

System using TrustZone Technology. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf

[2] “Risc-v.” [Online]. Available: http://riscv.org/
[3] AMD I/O Virtualization Technology (IOMMU) Specifi-

cation, Revision 2.00, Mar. 2011. [Online]. Available:
http://support.amd.com/TechDocs/48882.pdf

[4] ARM System Memory Management Unit Archi-
tecture Specification, SMMU architecture version
2.0, 2012-2013. [Online]. Available: http:
//infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/
IHI0062C_system_mmu_architecture_specification.
pdf

[5] Coherent Accelerator Processor Interface User’s
Manual, 2014. [Online]. Available: http://www.nallatech.
com/wp-content/uploads/IBM_CAPI_Users_Guide.pdf

[6] Intel Virtualization Technology for Directed I/O,
Revision 2.3, Oct. 2014. [Online]. Available: http://www.
intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf

[7] B. Black, “Die stacking is happening!” MICRO
2013 Keynote, Dec. 2013. [Online]. Available: http:
//www.microarch.org/micro46/files/keynote1.pdf

[8] M. T. Inc, MIPS R4000PC/SC Errata, Processor Revi-
sion 2.2 and 3.0, May 1994.

[9] J. Saltzer and M. Schroeder, “The protection of infor-
mation in computer systems,” Proceedings of the IEEE,
vol. 63, no. 9, pp. 1278–1308, Sept 1975.

[10] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel,
“CAPI: A coherent accelerator processor interface,” IBM
Journal of Research and Development, vol. 59, no. 1, pp.
7:1–7:7, Jan. 2015.

3

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://riscv.org/
http://support.amd.com/TechDocs/48882.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://www.nallatech.com/wp-content/uploads/IBM_CAPI_Users_Guide.pdf
http://www.nallatech.com/wp-content/uploads/IBM_CAPI_Users_Guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.microarch.org/micro46/files/keynote1.pdf
http://www.microarch.org/micro46/files/keynote1.pdf

	Summary of paper
	Threat Model
	Previous Approaches
	Border Control
	Border Control Design
	Results

	Case for influence

