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Abstract

Developing applications to run in the cloud presents
a different set of challenges than developing for lo-
cal machines. We implement a distributed checksum
collision finder on top of Google App Engine, a plat-
form for web applications. We examine the perfor-
mance of our application, as well as the usability of
the platform for such intensive uses. The problems we
encountered are discussed, and our solutions to them
are presented.

1 Introduction

Cloud computing is a term with various definitions;
for the purposes of this paper, we will consider it to
be the execution of applications on a cluster of ma-
chines owned by an external entity and allocated on
demand, rather than on a machine or group of ma-
chines owned by the application writer. There are sev-
eral major advantages of cloud computing over more
traditional models. One advantage is that the ma-
chines can be shared between a number of users. It
is likely that many will have little need of the re-
sources they have, and unlikely that many will see
a spike in need for resources at the same time. This
is also an advantage to application developers; they
do not need to pay for resources to meet their peak
requirements continuously, but rather only for the re-
sources that they actually use. This makes it possi-
ble to use many machines to execute tasks in paral-
lel without actually paying for the machines all the
time. Cloud computing is thus well suited for both
applications with a large number of users and eas-
ily parallelized, computationally-intensive tasks. For
parallelizable tasks, it is simple to scale up to many
systems in order to reduce execution time.

There are also some disadvantages to cloud com-
puting, which can generally be reduced to the loss of
control. Such concerns include privacy, side-channel
attacks, and vendor lock-in. Privacy is only protected
by the provider’s honesty. Side-channel attacks can be

restricted to some extent, but the provider must an-
ticipate future attacks and also make changes to miti-
gate current attacks. Vendor lock-in is definitely trou-
blesome; the three platforms we investigated (Ama-
zon EC2, Google App Engine, and Microsoft Azure)
were significantly dissimilar, making porting impos-
sible..

1.1 Distributed Computation in the

Cloud

The goal of our project was to implement a dis-
tributed application to run in the cloud, and to eval-
uate the ease with which such an environment might
support it. The application we implemented takes
two files, appending data to the second in order to
have identical CRC-32 hashes.1 The cloud computing
model should work well for this, because the prob-
lem is embarrassingly parallel; there is no need for
communication between processes, as they all simply
search a subset of potential appended data for colli-
sions.

Cloud computing is not without its difficulties.
This is especially the case with computationally in-
tensive tasks, where shortcuts need to be made for
reasonable performance. Debugging errors can be
a problem given the separation between developers
and the virtualized systems that execute the code.
Providers may not make guarantees on the architec-
ture code runs on. 64-bit architectures sometimes do
not run even high level code in the same way as a
32-bit architecture would. The other characteristic of
cloud computing that we consider a potential disad-
vantage is the constraint on execution environment.
In our case, it would have been faster to compute
the CRC-32s in a different language, such as C, but
we were limited to using Java or Python. Though C
may be much harder to debug remotely than Python,
the potential benefits to application developers would
be much higher. However, the increased difficulty in

1This is with the CRC-32-IEEE 802.3 algorithm used in

Ethernet, POSIX cksum, and zlib.



preventing attacks on the framework when using a
less safe language than Java or Python might explain
why providers would be reluctant to provide these
languages.

2 Methods

2.1 CRC-32

CRC-32 is a simple hashing algorithm used for error
detection. It produces a 32-bit integer from an arbi-
trary stream of data, where the data is read one byte
at a time. When appending a byte of data to a stream,
recomputing the CRC-32 only involves one round of
the CRC function. CRC-32 is fine for error detection,
but it can easily be broken. We are breaking it by
brute force only to show how well such distributed
algorithms can work in the cloud.

2.2 Google App Engine

Google App Engine is a platform for cloud comput-
ing. We chose to use it to implement our CRC colli-
sion generator for several reasons. First, it provides
a simple interface and does not require us to set up
an entire virtual machine (as would have been the
case with Amazon’s EC2); although the flexibility to
do so is useful sometimes, it was not necessary for
this project. The services that App Engine provides
were sufficient for our purposes, and having them al-
ready implemented rather than having to implement,
test, debug, and optimize them ourselves was advan-
tageous. Second, it allowed us to work in familiar lan-
guages (Python and Java are supported). Third, it is
free to use for a limited number of CPU hours and
use of other resources per day, making it much more
attractive than EC2. Even with the paid plan, we
only needed to pay for the overage charges: $.10 per
CPU hour, where a CPU hour is misleadingly defined
by Google with respect to a 1.2 GHz CPU, probably
from Intel.

App Engine provides more features than we
needed, but we tried to make use of as many as pos-
sible. Our desire was to become more familiar with
the advantages of App Engine, rather than just its
suitability to our chosen task. We used the datastore

(database), the memcache (a key-value store), task
queues, the blob store (stores uploaded files), and a
cron-like task scheduler. It provides still more fea-
tures for web application writers for authenticating
users and sending emails, but these are irrelevant for
the purposes of our application.

2.2.1 Offline Development

Google makes available a limited SDK for develop-
ment offline. It was very useful for getting the basics
down, but it had significant limitations. It only al-
lows one page to be loaded at a time, which becomes
a problem when developers wish to access the devel-
opment console at the same time. No tasks ever ex-
ecute unless manually through the development con-
sole. These two conditions mean our design could not
be run except using the online environment. Other
differences are that the default database is completely
unusable (we could not read our writes for more
than five minutes), no DeadlineExceededErrors
(thrown after 30 s) were ever thrown, and the de-
velopment console is wholly dissimilar to the online
development console.

2.2.2 Quotas

Google provides a limited amount of various resources
to developers, many of which can be increased by en-
abling billing. When quotas are increased by enabling
billing, developers only need pay for the resources
used beyond the free quota. One challenge we encoun-
tered was that the service quality provided to pay-
ing vs. non-paying applications differs greatly, but is
not clearly specified in the documentation. We found
that the per-minute quotas for several resources (e.g.
datastore updates) are higher for users with billing
enabled than users without, even if both were still
using the free quota at the time. This caused tests
run from our non-paying account to overwhelm some
short-term limits or encounter transient errors; this
led to a cascading failure that somehow squandered
all CPU hours and made the tests unrunnable. In
contrast, the account with billing enabled rarely ex-
perienced any errors.

2.2.3 30 Second Time Limit

There is a thirty second wallclock time limit for every
request. When this limit has almost been exceeded,
a DeadlineExceededError will be thrown by
any App Engine API call. The application can then
catch this error, and perform operations such as sav-
ing some state so that it can be restarted later or
returning a different code to the user. If the ap-
plication does not finish within an unspecified but
short time after the DeadlineExceededError, a
CancelledError is thrown. The latter error is not
catchable, and the script will terminate.



2.2.4 Datastore

App Engine provides a transactional schema-less,
non-relational, strongly-consistent database. Instead
of tables, it has entity groups, which are defined in
Python as needed. The datastore supports transac-
tions, allowing an entity to be retrieved and updated
atomically, or rolled back if a conflict occurs. Each
entity is limited to 1 MB in size, and for non-paying
users, the total datastore is limited to 1 GB.
We used the datastore to store several types of in-

formation. We had a Job class in which we stored
one entity per job, containing the original data and
data for the last task that was assigned. There is also
a Task class, which holds information uniquely de-
scribing each task to be run.
One problem that we encountered with the datas-

tore is that it is incredibly slow. According to the App
Engine System Status page, during the time we were
developing our application, the latency for a single-
entity get was frequently greater than 50 ms and
sometimes greater than 400 ms, while the latency for
a single-entity put was often greater than 125 ms,
and sometimes greater than 500 ms[1]. These laten-
cies posed a problem when each script was limited
to 30 seconds, especially when some of that time
was already taken up by the overhead of starting
the scripts. Additionally, the latency of the datas-
tore was large enough that it was not possible to
use it to store intermediate state in the period be-
tween a DeadlineExceededError and the final
CancelledError.

2.2.5 Memcache

The memcache is similar in appearance to mem-
cached. It stores key-value pairs, with no way to it-
erate through them. The latency for the memcache
is far better than for the datastore; the App Engine
System Status page showed it as generally less than
10 ms[1]. For this reason, we used it to store informa-
tion we needed to access frequently, such as whether
a task had completed. It is also the only option for
storing data after a DeadlineExceededError.

2.2.6 Blobstore

The blobstore is an immutable store for larger ob-
jects than can fit into the datastore. It will take files
uploaded from a web form, and inserts them into the
blobstore. References to the an entry can be kept in
the datastore with a blob key. The filesize limit for an
entry in the blobstore is 50 MB, as compared to the
1 MB limit for the datastore. However, it is still only
possible to retrieve these items 1 MB at a time, due

to a limit on API calls. We used the blobstore only
for files uploaded by the user, although direct input
is also possible.

2.2.7 Task Queues

Because of the time limit for each script, and because
there is little point in running this application in the
cloud if we cannot take advantage of large amounts
of parallelism, it was necessary to find some way to
execute many tasks at once. App Engine provides
task queues, an experimental feature to execute tasks
asynchronously. Tasks are basically private scripts,
and so have the same restrictions. There is a limit
to how many tasks the queue can invoke per second,
and they are still subject to the same 30 second time
limit as any other script.

2.2.8 Fault Tolerance of App Engine

Although App Engine is to some extent presented as
providing guarantees of fault tolerance and scalabil-
ity, in reality, it does not provide complete fault tol-
erance and not all features scale. For example, when
we attempted to run many tasks at once, we ran into
quota problems; even if an application is scalable in
theory, if it exceeds the quota limits or stresses the
datastore or task queues, it will not be scalable in
App Engine. There are also few guarantees when it
comes to tasks completing. We encountered several
errors, including ‘transient errors’. These are passed
on to the user scripts, to handle as they choose; App
Engine does not guarantee error-free execution of user
scripts, so it is the developer’s responsibility to build
in fault tolerance if it is necessary. Although tasks
have the option of returning a failure status code
and being automatically re-executed, this is not al-
ways a good option because in some cases the prob-
lem might be quota-related, in which case automat-
ically re-executing the tasks would only exacerbate
the problem.

3 Implementation

3.1 Master

Our model for finding a collision is to have a single
master to create tasks. When the interface web page
contacts the master script, the master will pick up
where it left off. The solution was to use the datas-
tore for persistence and fault tolerance. The datastore
contains for each Job entry the last end value writ-
ten to the Task (notional) table. Each time an entry
is added to the Task table, a task is added to the



queue (the private task page and some parameters).
The expectation is that a Task entry will exist until
the task has completed. When the master runs out of
time it saves its state and returns a short document
that indicates it has not found a solution. The client
then polls the master again.
We added tasks to the task queue from the master

script. Each task contained a subset of the suffixes
to test. To ensure that the tasks did not continue
running after a solution was found, each one initially
checks the memcache to determine if a solution has
been found, and if so, exits immediately. They also
periodically check that a solution has not been found
while they were executing; we chose to do this once
per 16,384 checksum calculations to balance the la-
tency of a memcache request against the time spent
unnecessarily checking checksums. This was done to
avoid wasting CPU time, since it was a finite resource.

3.2 Tasks

The Tasks do the work of locating collisions. They can
be described as a simple tuple: a unique CRC (though
a pair of CRCs is perhaps better), a beginning string,
and an ending string. It might say ‘try appending
each string from a--- to b---’. Tasks calculate the
CRC of the original text appended with the current
string. Failing a collision, they increment the current
string and repeat. If a task happens to find a collision,
it says as much to the datastore and memcache. Upon
task completion, it removes its entry from the Task
table.
As an optimization, tasks are sent their arguments

as CGI parameters. They need not ask the datas-
tore or memcache for anything before beginning. Still,
tasks may sit in the queue for a long time, so they
will look in the memcache to see if a collision has
been found.

3.3 Fault Tolerance

In order to deal with DeadlineExceededErrors,
we needed to provide a way for tasks to be resumed.
Because the time to access the datastore is so high,
it was not possible to simply update the job or task
entry in the datastore. What is needed is a way to
both save progress and restart.

3.3.1 Progress

Progress is generally stored in the datastore, but
when that is not an option only the memcache is
used. Upon resumption, the datastore can be updated
to reflect what was written in memcache. Tasks store

the last value they attempted to check, while masters
store the last end value written to the datastore.

3.3.2 Resumption

Tasks need to store more than just their last value:
they need to indicate their liveness. They also store
a timestamp and a flag to indicate if they timed out.
When the flag indicates they are running, it serves
as a heartbeat. When the master starts, it will check
the Task table for tasks that have not completed. If
any of them have not been running in the last five
minutes, or have timed out, they are restarted.
Restarting master processes is much easier, as there

is only ever one. The web interface will restart the
master whenever it gets an ‘uncompleted’ response.
The master will first check for progress in the mem-
cache. It then updates its table entry, checks for dead
tasks, and then creates tasks until the deadline is ex-
ceeded.
It is thus not necessary that a process successfully

save its state to memcache, as long as the service
usually works. Tasks can not escape from the mas-
ter’s attention, and the master cannot escape from
the browser refreshing it. Though it is rarely nec-
essary, our system loses no progress even when the
system load is higher than normal and our tasks fail
to complete.

3.4 Difficulties

Though Python is cross-platform, it uses libraries
that are not. We ran into some problems with the
CRC function returning different results when run-
ning the application on our own machines or in the
cloud. Zlib produces purely 32-bit integers, so when
the size of a Python int is 4, as it is only on 32-bit
architectures, the number is negative. Since Google
makes no guarantee on the architecture code runs on,
we needed to occasionally perform type checks.
One major complication we ran into is far

too irrational to be intended: the mysterious
DeadlineExceededError. There are in fact two
such exception types in the App Engine library. The
first is easy to access, but the second in a module that
is not quite so easy to find, and certainly not docu-
mented anywhere. Perhaps Google simply refuses to
help users that use a full 30 s.

4 Evaluation

We evaluated several factors of our implementations
on machines we had access to as well as the App
Engine machines.



Language Time (s)
C++ 0.0126
Python 1.18

Table 1: Time to execute one task

4.0.1 Comparison of Single-Task Execution

In order to be able to compare the time to find a
collision on the App Engine and on our private ma-
chines, we determined the relative time to execute
just the computation phase of one task. We measured
this time on several machines, with results shown in
Figure 1.
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Figure 1: Time to execute one task in Python. The
N270 is clocked at 1.66 GHz, but this is misleading
when comparing to an x86 CPU.

These measurements do not include the overhead
of starting the script; it is measured from before the
function call to calculate the checksum for 1,048,576
possible values until the function call returns. It also
does not include any calls to the datastore or mem-
cache, as they would lead to an unfair comparison.
Each test was run 100 times, and the results were av-
eraged. The machines that the test process was run-
ning on for App Engine gave reasonably good perfor-
mance, in line with our own machines.

4.1 Python vs. C++

One of the disadvantages of App Engine was that it
limits the developer to using Java or Python, lan-
guages which might not be ideally suited for the task
at hand. We were curious about the difference in per-
formance between a Python implementation of the
collision finder and a C++ implementation. Both im-
plementations are using the same zlib implementa-
tion, though probably different versions. To test the
performance of each one, we again ran one task, once

in C++ and once in Python. Both tests were run on
a Phenom II 955. The results can be seen in Table 1.
We found that the C++ implementation is approxi-
mately 100 times as fast as the Python implementa-
tion.

4.2 Time to Find a Checksum
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Figure 2: Time needed to find collision for ‘alpha’,
‘beta’ on a log scale.

We compared the time taken to find a colliding
checksum on three different implementations: a se-
quential C++ implementation, a sequential Python
implementation, and the distributed App Engine
Python implementation. The results can be seen in
Figure 2. The App Engine version was approximately
7.8 times as fast as the sequential Python implemen-
tation, indicating that we were finding some benefit
in executing multiple tasks in parallel. After three
trials, the cloud implementation had used 7.1 ‘CPU
hours’. Assuming the GHz rating is a true indicator
of performance, it takes 37% more CPU hours in the
cloud than with the sequential Python implementa-
tion. We also found that although the App Engine
version was faster than the sequential Python ver-
sion, the sequential C++ version was over 10 times
faster than even the App Engine version.

5 Discussion

5.1 Ease of Development

As previously discussed, we ran into a variety of prob-
lems with developing our application, many of which
can be attributed to the fact that App Engine is de-
signed as a platform for low-latency web applications,
rather than computation-intensive applications like
this one. This direction App Engine has taken is ap-
parent in a few places: the supported languages, task
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Figure 3: CPU time of tasks, and the amount of time they actually run for. The trace was generated at off
peak hours with the words ‘zeta’, ‘beta’, a pair with a quicker solution.

queues being an experimental feature, and a 30 s limit
for all scripts. The most annoying problem we ran
into was the time limit; however, dealing with the er-
rors caused by it and the ones caused by attempting
to queue or run too many tasks at once forced us
to incorporate fault tolerance in our design where we
had not anticipated needing it.
Another problem we encountered was that we were

limited in methods of communicating between differ-
ent processes. This was not a large problem in this
case, since we mostly only needed to communicate
whether a solution had been found and that could
be done simply through the memcache, but for ap-
plications that are less embarrassingly parallel, the
lack of easy, fast, and reliable interprocess commu-
nication would pose a challenge. Synchronization is
another possibility, which can be achieved with the
datastore, but at a high cost. Transactions are slow,
and timeouts make it quite difficult to release locks.

5.2 Performance

Although the performance per individual task was
slightly worse than what could be obtained for a desk-
top machine in the case of the Python implementa-
tion, the hypothetical advantage of using App En-
gine was that we could have large numbers of ma-
chines running tasks in parallel, allowing the check-
sum to be found more quickly. However, in practice
we ran into numerous problems. The short per-script
time limit meant that we spent more time starting
tasks and made the fault tolerance more difficult and
time-consuming. This was compounded by limits on

the number of tasks that could be added to the task
queues per second, the number that could be invoked
per second, and a limit on CPU-hour and other quota
usage per second.
The variability in service is another difficulty. One

simple solution for job partitioning might be to just
reduce task size, but as can be seen in 3, this often
will not work. It may be that the spike is caused by
task allocation. It seems likely that there is high vari-
ability even in the systems Google provides. The first
100 requests see roughly the same performance, but
the task run time drops sharply thereafter. Perhaps
this hints that tasks are usually allocated to the same
systems for data locality.
One interesting point is that the performance of

even the computation for one task was far worse on
the Atom processor than on a machine in the cloud.
This is because netbooks are designed to provide long
battery life at the cost of slower performance. The
idea is that netbooks can be used for connecting to
the internet, and then using applications in the cloud
for anything computation intensive (for example, us-
ing Google Docs rather than running OpenOffice lo-
cally). In our case, you are better off trying to look
for checksum collisions using a App Engine applica-
tion than running it on the netbook, at least when
using Python.
In terms of performance compared with a fast se-

quential implementation and fast App Engine imple-
mentation, the App Engine performance was signifi-
cantly hurt because of the necessity of using Python.
If the goal is to provide the best performance, Python
is not an ideal language, and by limiting the code that



can be run on the App Engine to Python or Java,
the platform’s maximum performance is limited com-
pared to an environment where any language might
be used.
Furthermore, although the particular application,

language, and platform were in our case not well
suited to obtaining the best performance, the fact
that we obtained some speedup over the sequential
case (for the same language) indicates that there is
no fundamental flaw in the approach we took: divid-
ing up the work into a number of subtasks, letting
each execute in parallel in the cloud, and returning
the results to the user.

6 Conclusion

Google App Engine is a platform that is still un-
der development, and it is furthermore intended for
low-latency web applications. For our project, we at-
tempted to make use of its features, some of them
experimental, to develop a computation-intensive dis-
tributed application. In doing so, we encountered sev-
eral problems, which could be attributed to a mis-
match between our goals and the intentions of the
platform. These problems included script time lim-
its which were too short for our purposes, through-
put limits, and communication limits. Despite these
difficulties, we implemented a checksum collision cre-
ator and demonstrated that it showed speedup over
a sequential implementation in the same language.
We also showed that it provides fault tolerance and
progress is guaranteed, so long as the underlying
framework continues to execute some of the tasks.
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