
cs769, Spring 2011: Problem Set 1
Total points: 100

Due date: 5pm, Friday, 11th of February

Submit to Weiyan Wang by email wywang@cs.wisc.edu or in person (CS 1301). Submit all code via
email.

Late policy: 0–24 hours late ⇒ –10%. 24–48 hours late ⇒ –30%. 48–72 hours late ⇒ –50%. Thereafter
no credit. You may discuss problems at a high level with classmates, but you must solve and code them
yourselves.

Question 1 (5 points)

In the interpolated form of smoothing, unigram, bigram, and trigram language models are each estimated
using maximum likelihood estimates, and are combined as:

Pint(w3|w1, w2) = λ1Pml(w3|w1, w2) + λ2Pml(w3|w2) + λ3Pml(w3)

where 0 ≥ λ1, λ2, λ3 ≤ 1 and λ1 + λ2 + λ3 = 1. Prove that Pint defines a probability distribution over
words in the vocabulary for any context w1, w2.

Question 2 (20 points)

In the absolute discounting model of smoothing, all non-zero MLE frequencies are discounted by a constant
amount δ where 0 < δ < 1:
Absolute discounting: If C(wn|w1 . . . wn−1) = r,

Pabs(wn|w1 . . . wn−1) =

{
(r−δ)
N r > 0

(V−N0)δ
N0∗N otherwise

(Here C(wn|w1 . . . wn−1) is the number of times w1 . . . wn has been seen, Pabs is the absolute discounting
estimate, V is the size of the vocabulary, N is the total number of times w1 . . . wn−1 has been seen, and N0

is the number of word types that were unseen after this context.)

Under linear discounting the estimated count of seen words is discounted by a certain fraction, defined by a
constant α where 0 < α < 1.
Linear discounting: If C(wn|w1, . . . , wn) = r,

Plin(wn|w1 . . . wn−1) =

{
(1−α)r

N r > 0
α
N0

otherwise

1. Show that absolute discounting yields a probability distribution for any context w1 . . . wn−1.

1. Show that linear discounting yields a probability distribution for any context w1 . . . wn−1.



Question 3 (25 points)

For this problem you will be implementing the EM algorithm for learning the interpolation weights λ1, λ2, λ3

(see Problem 1). Review pages 13 and 14 of lecture 2 and implement the algorithm entitled “An Iterataive
Method.” Use orwell-train.txt as your training data (used to estimate Pml) and orwell-test.txt
as your held-out data (used to calculate Count2). Train EM using the first 1000, 2000, 3000, 4000, 5000
training sentences, and finally with the entire training set. Plot the obtained values of λ1, λ2, and λ3 as a
function of the number of training examples. What happens to λ1 as the training set increases? Why does
this behavior make sense? Compute and plot the test-set perplexity for each of the six training runs, and plot
the resulting values as a function of the training size. Why does the result make sense?

IMPLEMENTATION NOTES:

• When computing log-probabilities use base-2 log.

• Remember to include two dummy “start” states before each sentence. Ignore them when computing
probabilities, but condition on them when considering the first two words in the sentence. Include
a single dummy “end” state after each sentence. Treat this as any other word, and include it for
probability computations.

• The first time any word is seen in the training data, treat it as an unknown word (give it a special
symbol such as “UNK”). When words in the test set have never been observed in the training set (or
observed only once and treated as “UNK”), treat them as “UNK.”

• If a numerator is zero, treat the whole fraction as zero.

• If your implementation is correct, the held-out perplexity will decrease at every iteration of EM.

• Initialize the weights to be uniformly 1/3 (This will make it easier to grade. In practice we would
want to add some noise to break symmetries).

• Stop EM when the weights have converged (i.e. they are only changing by miniscule values).

• My implementation is 93 LOC (in python)

Question 4 (25 points)

For this problem you will be implementing a class-conditional character bigram model for language identifi-
cation (see page 15 of the notes for Lecture 3). We will train our model on files en1.txt - en16.txt,
jp1.txt - jp15.txt, sp1.txt - sp15.txt and we will test our model on en17.txt, jp16.txt,
sp16.txt. In each document, tokenize the words based on white-space, and include a special begin and
end character for each word (but as before, only count the end character when calculating probabilities).
Use add-delta smoothing. Graph the probability according to your model that each of the test documents is
English, Japanese, or Spanish (i.e. three numbers for each test document) as a function of of the smoothing
parameter delta: δ = 100, 120, 140, 160, 180, 200. Explain what is happening.

IMPLEMENTATION NOTES:

• When computing posteriors, don’t forget to estimate and take the class prior into account.



• When computing probabilities use the log-domain to avoid underflow. However, make sure to convert
back to regular probabilities for the graph. You will need to normalize then too – consider adding a
constant value to each log-probability (e.g. the negative of the max of the three logs) before exponen-
tiating, to avoid underflow or overflow. Here is my code for doing so:

def normalize(l1,l2,l3):
m = max([l1,l2,l3])
l1 = exp(l1 - m)
l2 = exp(l2 - m)
l3 = exp(l3 - m)
sm = l1 + l2 + l3
return (l1 / sm, l2 / sm, l3 / sm)

• When implementing add-delta smoothing, assume that there are 27 total characters for each language
(the 26 letters of the alphabet plus the end symbol). i.e., add δ to each numerator and 27 · δ to each
denominator.

• My implementation is 123 LOC (in python), but with lots of redundant cut and paste.

Question 5 (25 points)

In this problem, we consider the unsupervised scenario, where the goal is to cluster the set of documents by
language, without the benefit of ever observing the labels. We will use (soft!) EM with a class conditional
character bigram model (see previous problem, and page 6 in the Lecture 4 slides). Implement the EM
algorithm, using the same data-set as the previous problem (with no distinction between training and testing
documents – use them all). As before, we will use add-delta smoothing.

• First try initializing with uniform posteriors for each document (1/3,1/3,1/3). Describe What happens.
Why does this happen?

• Now initialize with the following posteriors for each document (33.1/100, 32.9/100, 33/100).

• Describe what happens with each of the following values of delta: δ = 0.01, 0.1, 1.0. Try to explain
why these results make sense.

• Step (2) on the lecture slides doesn’t show the the formula for expected counts of the the class priors.
To compute these, simply sum the posterior probability that each document is a particular language,
and divide by the total number of documents.

• As before, stay in the log domain whenever possible to avoid underflow.


