
J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 273–288, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Processing Queries in a Large Peer-to-Peer System

Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. DeWitt

University of Wisconsin-Madison Computer Sciences Department
 1210 West Dayton Street, Madison, WI 53706, USA

{lgalanis, yuanwang, jeffery, dewitt}@cs.wisc.edu

Abstract. While current search engines seem to easily handle the size of the
data available on the Internet, they cannot provide fresh results. The most
up-to-date data always resides on the data sources. Efficiently interconnecting
data providers, however, is not an easy problem. Peer-to-peer computing is the
latest technology to address this problem. However, efficient query processing
in peer-to-peer networks remains an open research area. In this paper, we pres-
ent a performance study of a system that facilitates efficient searches of large
numbers of independent data providers on the Internet. In our scenario, each
data provider becomes an autonomous node in a large peer-to-peer system. Us-
ing small indices on each node, we can efficiently direct queries submitted on
any node to the relevant sources. Experiments with a large peer-to-peer network
demonstrate the feasibility of our approach.

1 Introduction

Information on the Internet is constantly growing and changing. Search engines and
current web repositories ([9], [10] and [16]) can efficiently handle the amount of data
on the web and provide fast searches over the data they have crawled and indexed.
Nevertheless, they cannot provide the most up-to-date results or search the data stor-
age back-ends of sites that dynamically generate web pages. The only way to access
the most recent versions of available data is to directly submit searches to each data
source. Therefore, it is not surprising that most content publishers provide their own
search service.

A single web query may require a very large number of sites to provide results.
Hence, a system is needed that is able to efficiently identify the relevant data sources.
A candidate approach would be to organize all the data sources in a large peer-to-peer
(P2P) network where queries are answered by the relevant sites. Such a distributed
system has several advantages. There is no central point of failure and no central re-
pository necessary to facilitate searches. The absence of a global authority allows sites
to enter and leave the system at will, as well as independently manage their data. Fi-
nally, each query will always retrieve the most up-to-date results.

Deployment of such a P2P system allows efficient searches across the entire con-
tent of a large number of sites. To achieve this, the system must exhibit certain quali-
ties. For each query, it is necessary to efficiently locate all the relevant data sources.
Additionally, the entire system must scale to a large number of sites without compro-
mising site independence or performance.

Motivated by the emerging need to query data distributed across many independent
data sources, we have built a prototype distributed query processing system for que-

mailto:dewitt}@cs.wisc.edu

274 L. Galanis et al.

ries on XML data. Our system makes use of data items that change infrequently and
often appear in queries, such as metadata and words characteristic of a specific site.
Indices over these data items map this data to the corresponding sites and use these
indices to direct queries. When sites join the system, they exchange information that
allows for the construction of these indices. Thus, query content drives selection of
promising data sources.

Our prototype distributed search engine, the low-level layer of the query processing
system, was used to run experiments using real data on a test bed consisting of up to
200 peers. We studied system performance with various levels of information ex-
changed among nodes in the system. The amounts of exchanged information ranged
from no information, which is similar to a Gnutella-like ([8]) processing strategy, to
full summary information replicated on each node. Our experiments show a larger
than expected performance increase as the number of messages passed at query time
is reduced. As more information about peers in the network is stored on each node,
network bandwidth usage is reduced due to a large reduction in the number of mes-
sages exchanged. Consequently, when each node stores complete summary informa-
tion about all peers in the P2P network, the average query response time drops by a
factor of as much as 75 and query throughput improves by as much as a factor of 20
over a Gnutella-like approach. Our approach efficiently connects data providers, al-
lows queries to retrieve the most up-to-date data, preserves site autonomy, and puts
reasonable demands on the bandwidth of the network.

This paper is organized as follows: In Section 2, we present the system architecture
of our approach. Section 3 describes the join policies for peers. Section 4 outlines the
methods for selecting peers relevant to queries. Section 5 describes our experimental
setup. We present the results of our experiments in Section 6. Section 7 reviews re-
lated work and Section 8 draws conclusions and presents future research directions.

2 System Architecture

Each node in the peer-to-peer system consists of an XML search engine and a com-
munication infrastructure that allows communication among peers. The local XML
search engine [29] enables document searches based on both structure and content.
Along with the local indices, each node maintains additional indices that facilitate the
forwarding of queries to data providers that have relevant data. When peers join the
peer-to-peer system, they exchange information with peers already in the network for
two main reasons: a) They need to make their presence known to the system and ad-
vertise their data and b) they want to obtain index information about other peers in the
system from the peers to which they are directly connected.

Advertising a node’s data to other nodes in the system requires a meaningful sum-
marization of gigabytes of data. Fortunately, XML provides mark-up tags that de-
scribe a data collection. Usually, a large XML data collection has a relatively small
set of descriptive XML elements. Furthermore, a data collection at a node may have
text words that are characteristic of that node. We will refer to XML elements and
text words collectively as keywords. For example, an art auction site can be distin-
guished by the fact that it stores elements called item, price, or current_bid and con-
tains text words such as “painting” or “sculpture”. The elements for an online retailer
could be item, price, and brand. It would also have different characteristic text words

Processing Queries in a Large Peer-to-Peer System 275

such as “electronics” or “books”. XML metadata and classification techniques such as
[12] and [3] provide further ways to summarize the content of peers. Throughout this
paper it is assumed that the XML tags provided by the participating nodes
have-system wide defined semantics. The system does not try to compensate for se-
mantic heterogeneity, which is an orthogonal problem. Section 4 outlines why our de-
sign is still valid even in the presence of semantic heterogeneity.

2.1 XML Search Engine

Our search engine framework supports the execution of containment queries that fully
exploit the structure in XML documents. For example, the query (in XPath notation
[25]) //book//author//name=”John Smith” returns all documents that contain books
by John Smith. Each search engine indexes its local data using inverted lists, which
map keywords to documents. These indices enable the processing of containment
queries as in the Niagara system [14]. Our version uses B+-Trees to implement in-
verted lists and employs an improved version of the Multi-Predicate Merge Join algo-
rithm presented in [29]. A search engine that facilitates complex queries over struc-
tured data distinguishes our system from file-sharing systems.

2.2 Peer Indices

In addition to its local inverted indices, each node maintains indices containing infor-
mation residing at other peers in the network. The peer index (PI) is a simple inverted
list that maps keywords to peers in the network and is used for selecting peers based
on query content. Each peer stores in its PI all keywords published by other peers
during joining. Using the PI, a query can be sent directly to nodes that are likely to
have results. Section 4 presents how our prototype system uses the peer indices.

The number of keywords in the PI, and thus the size of the PI, depends on how
many keywords each peer decides to publish when it joins the system and how many
keywords each peer decides to retain in its PI. We expect a node to only publish a
small subset of its keywords, such as words that are often found in queries or that are
especially representative of its local data. XML tags are especially good candidate
keywords since they are regarded as being descriptive of the actual data. PI entries for
tags can also contain structural information which allows the system to further distin-
guish among data sources.

The simplicity and generality of the PI concept makes it applicable to data collec-
tions other than XML. We chose XML for our prototype system because it seems to
be the emerging standard for information exchange and data integration. In general,
any distributed data collection that can be queried using some query language can
benefit from PIs. The rough guideline is as follows: Items that appear in queries and
are characteristic of a data collection should be put in the PI. For example in the con-
text of relational data one could put attribute and table names in the PI in order to fa-
cilitate query routing given a SQL query. Furthermore, selected data values (such as
names of cities) can also be incorporated into the PI.

2.3 Horizons

Knowledge of all the peers in the system may seem limiting for scaling the system to
a very large number of peers. By introducing a horizon, a node can bound the number
of peer IDs that it stores in its PI.

276 L. Galanis et al.

Definition 1: A node N enforces a horizon if it stores in its PI only a subset of the
peers in the network. IDs of peers outside of N’s horizon are substituted with IDs of
peers within N’s horizon. Queries that need to be sent to peers outside N’s horizon
are relayed by nodes within N’s horizon.

When a peer joins the P2P network, it starts with an initial PI obtained from another
peer and then modifies its PI based on local storage constraints and query workload
characteristics, evicting infrequently used keywords and nodes. Thus, a peer’s horizon
evolves to contain information about frequently queried keywords and nodes that usu-
ally return relevant results. The evolution of a PI horizon is depicted in Fig. 1. The
size and shape of the horizon is dependent on N’s storage constraints and query
workload. The tradeoff is that a small horizon will result in more messages for a
query that retrieves data outside the horizon, whereas a large horizon will require
more storage space for peer information.

3 System Evolution

A peer becomes part of the P2P network by joining. The general case of a join be-
tween two nodes, shown in Fig. 2, arises when node N1 contacts node N2 by sending a
join request. Both nodes have already joined with other nodes and belong to existing
join graphs.
Definition 2: A Join Graph is a non-directed graph G(V, E) where V = {Ni | node Ni

has joined with at least one Nj � Ni} and E = {(Ni, Nj) | node Ni has joined with Nj}.
Definition 3: The Distance of two nodes Ni and Nj (d(Ni, Nj)) is the number of hops on

the shortest path from Ni to Nj in the Join Graph.
The join graph represents a logical overlay network and illustrates how nodes joined
with one another. It does not correspond to the underlying network topology. Thus,
the distance between two nodes does not necessarily reflect the communication cost
between them. The system uses the join graph for every message that has to flow to
others peers in the system, such as join update messages and update messages that
nodes create when their data changes.

N2 N1

(1) N2 joins the P2P net-
work and receives the PI
of N1

N2 N1

(2) N2 modifies its PI
based on local query
workload.

Horizon of N1

New Horizon of N2

Fig. 1. The evolution of a peer index

Processing Queries in a Large Peer-to-Peer System 277

When peers join the system, they receive information about already existing peers.
Thus, a newly joined node ends up with a PI that contains information about all ex-
changed keywords in the system and all the peers in its initial horizon. Joining starts
when a peer N1 contacts another peer N2 and requests to join the P2P network. The
joining nodes exchange messages containing information about their local data and
their peer index. This new information is then sent to each node’s neighbors. The re-
sulting messages flow throughout the join graph and are processed exactly once on
each node. Thus, a join between two peers creates a wave of messages that eventually
reaches all the peers in the system. The result is a peer-to-peer network in which each
node has a summary of the data on all other peers.

Propagating information to every node in the network whenever a new node joins
may seem limiting for the network’s scalability. We, however, expect our system to
be used by data repositories that want to make their data available as long as possible
with only short down-times, rather than by individual users that share media files. It is
expected that a peer may go down for a short time. When it comes back up, however,
only an update containing the returning node’s changed data, if any, needs to be
propagated through the network.

N2 N1

N4

N3

N7

N5

N6

N8
Request

Response

Join Updates

Fig. 2. Node N1 joins with node N2

We employ a simple network join algorithm that guarantees all nodes eventually
obtain a summary of the data on all other peers. However, if nodes do join and leave
frequently, alternative methods of joining can be employed. One such approach would
be to use an incremental join. As with the simple join algorithm, the incremental join
begins with a newly arriving peer receiving a PI from a directly connected peer. How-
ever, update messages about the new peer are not propagated to all neighbors. As the
new peer issues queries, it piggybacks selected keyword data on its query messages.
The data that is attached to the message is based on factors such as the content of the
query, the length of time the node has been connected, and the size of the message.
Through this process, the new peer informs other peers incrementally. Conversely,
when other peers’ queries arrive at the new node, it receives information about the
rest of the network. Thus, the system gradually evolves to a state which is the result of
the global query workload. The dynamic evolution of the PIs is an open issue left as
future work.

278 L. Galanis et al.

Based on the premise that each node chooses a set of keywords that is characteristic
of its data, one can argue that this set will remain fairly stable over time. Periodically
or when triggered by update events, a node may decide to inform its peers about new
or modified local data. It constructs an update message and propagates this throughout
the system along the edges of the join graph. When a peer receives an update, it proc-
esses it, replacing old entries in the PI or removing obsolete ones.

Fig. 3. Peer selection example for the query //category[text() contains “Collectibles”]”

4 Efficient Searches Using PIs

Using the peer indices constructed during node joining, nodes can direct searches to
the nodes that are most likely to have results. This section describes how the system
uses those indices. The simple example shown in Fig. 3 illustrates the basic mecha-
nism of selecting candidate peers for a given query. To retrieve all XML documents
that contain a category element that contains the word “Collectibles”, one would use
the query Q = //category[text() contains “Collectibles”]. Executing Q on the local in-
verted index, the system retrieves a collection of local documents that satisfy Q. Que-
rying the PI yields two sets of peers, P1 and P2, for the element category and the word
“Collectibles,” respectively. Each peer in P1 has category elements in its index and
each peer in P2 has “Collectibles” words in its index. The set P1 � P2 contains peers
that are likely to have results, while it is reasonably certain, assuming all updates have
been received, that peers in (P1 – P2) � (P2 – P1) will not have any qualifying docu-
ments. Thus, if the system sends the query to peers in P1 � P2, we will get all possible
results and at the same time will not take up resources of peers in (P1 - P2) � (P2 - P1).
Note that if either of the inputs of the intersection does not have any peers associated
with it, the system reverts to a union, expanding the set of candidate peers in hope of
finding results. For example, if P2 were empty, the system would send the query to all
or some of the category peers in case they return any results. Due to space limitations
and the fact that our experimental data does not benefit from structural information in
the PIs we do not present the structural details in this paper.

The semantic meaning of the tag category and the word “Collectibles” may not be
uniform across the nodes that will receive the query. Hence, the results may contain

Local Index
category “Collectibles”

CONTAINS

Peer Index
category “Collectibles”

Qualifying
Documents

Candidate
Peers

P1 P2

Processing Queries in a Large Peer-to-Peer System 279

documents that will not match what the user had in mind but will definitely match the
query correctly. A post-processing step on the results based on themes as proposed in
[2] can achieve semantic correctness. In any case, the goal of contacting only a small
subset of the nodes in the system will have been achieved. Section 5 shows how im-
portant it is to reduce the number of nodes contacted given a query.

5 Experimental Setup

We have compared several strategies for P2P query propagation on a 100-node cluster
of PCs, which was used to stage 100-node and 200-node peer-to-peer networks. We
create a scenario where a large number of data providers publish frequently changing
data and desire to make it searchable by their peers. Four aspects make up our meth-
odology: the scenario, the data, the peer-to-peer system set-up, and the simulation of
users submitting queries to nodes in the system.

5.1 Scenario

Our scenario considers a large distributed auctioning system. Nodes are independent
auction sites with subscribers who sell their items and bid on ongoing auctions. Each
auction site specializes in specific categories of items. Users at each site would like to
be able to pose queries that will be answered by all peers in the peer-to-peer system
that may have relevant data. Sites may join the system by contacting any peer they
choose. The result is a system that has a large number of nodes in a logical network
similar to those in existing peer-to-peer systems.

 <Item id="1045782232">
<Name>US Navy Flag Cards</Name>
<Category>Collectibles</Category>
<Category>Cards</Category>
<Currently>$24.00</Currently>
<Quantity>1</Quantity>
<Number_of_Bids>0</Number_of_Bids>

Fig. 4. XML document excerpt

5.2 Data

Since we wanted to evaluate these strategies on real and not synthetic data, we
crawled eBay’s US site ([7]) and downloaded data for 6,500,000 items on auction at
that time. This data was then used to feed a modified version of the XMark [20]
benchmark data generator to augment the synthetic data it creates. This process pro-
duced about 45GB of XML data. Fig. 4 shows an excerpt of the item data.

We use the category hierarchy of eBay to divide the data among the peers. The
category spectrum is divided into chunks that contain approximately the same number
of items. Sets of chunks are assigned to each peer, which in turn, creates local in-
verted indices on elements and text words. We believe that this set-up represents a re-
alistic environment of independent, interconnected, specialized auction sites.

280 L. Galanis et al.

Table 1. Linux cluster properties

System Property Value
CPU PIII 1GHz Dual Processor
Physical Nodes 100
Number of CPUs 200
RAM 1GB
Disk IDE
OS Linux 6.2 Kernel 2.2.19
Interconnection Network 100 Base-T
Java VM IBM VM 1.3.0

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 15

Number of immediate neighbors

N
u

m
b

er
 o

f
n

o
d

es

100 Node Network 200 Node Network

100 Nodes 200 Nodes
Mean fan-out 3 3.5
Diameter 9 10

Fig. 5. Distribution of join edges in the 100 and 200-node networks

Table 2. Experimental system parameters

Parameter Value
Unique Element Tags 41
Unique Category Words 4081
Total Categories 5828
Categories Per Node 109 (� 65)
Category Words Per Node 128(� 81)
Documents Per Node 60,000-70,000
Keywords Per Node ~110,000
Average Local Index Size ~450 MB
Search Engine Buffer Pool Size 100 MB
Number of Users Per Node 12
User Think Time 15 seconds
User Type Time 9 seconds
Query Processing Threads Per Node 60
Result Collector Timeout 3 Minutes

Processing Queries in a Large Peer-to-Peer System 281

Table 3. Correspondence of horizon size to query processing strategy

Fixed Radius Horizon Size Query Processing Strategy
1 Routing indices (H1)
2-7 Intermediate levels of system information

stored on each node (H2-H7)
Infinite Full Summary Information (FSI)

5.3 System Set-Up

A 100-node dual-CPU cluster of PCs running Linux 6.2 (see Table 1) was used to
emulate the nodes of a peer-to-peer system. For each peer-to-peer network, we create
a join graph. Fig. 5 shows the basic characteristics of the networks used. Before run-
ning queries, nodes join with each other in order to produce the pre-defined network.
While running, the nodes simulate wide area network delays (60ms exponentially
distributed). A list of system parameters is shown in Table 2. Our prototype is imple-
mented in Java with BerkeleyDB [1] used as the storage manager.

The experiments used fixed radius horizons. This allowed the study of various lev-
els of peer information on each node and their impact on overall system performance.
Definition 4: A node N has a fixed-radius horizon of h if it stores peer IDs only for
nodes Ni for which the distance d(N, Ni) ��h. The value h is the radius of the horizon.
With a fixed-radius horizon, a peer only stores information about peers nearby in the
join graph and maps the remaining peers to nodes on the horizon boundary. The cor-
respondence of fixed-radius horizon size to query propagation strategy is shown in
Table 3.

5.4 Queries and User Simulation

Users in our scenario submit search queries in order to retrieve relevant documents
from the system. Those queries can be arbitrarily complex, but contain predicates that
allow the selection of candidate peers. Because nodes in our scenario specialize in
auction item categories, we use the category element content to guide the selection of
peers that receive queries. For example, the following query asks for all open auctions
that contain an item named “Silver Dollar” that belongs to the “Collectibles” cate-
gory: //open_auction//item[category.text() contains “Collectibles” AND name.text()
contains “Silver Dollar”]. The peer selection predicate in this case is: category.text()
contains “Collectibles”. For the experiments presented in this paper, queries with
only category selection predicates were used. To generate the peer selection predi-
cates for our queries, conjunctions of category words were used to generate a large
pool of queries (about 200,000). Each node is assigned a number of queries and a
number of users that randomly submit queries from the node’s pool. The users work
in cycles thinking and typing as described in [22] before submitting a query. Each
user waits a specific time T after submitting a query for the network to return results.
T is proportional to the moving average M of the response times of the last 100 que-
ries. We set T = 15�M. This feedback mechanism allows the query rate to converge to
a value the system can handle and models user behavior. Users adapt their waiting
time to the system’s performance.

282 L. Galanis et al.

117

1547

2221
2424

823

0

1000

2000

3000

GT H4 H5 H6 FSI

Q
u

er
ie

s
p

er
 M

in
u

te

Fig. 6. 100 Nodes, throughput

858

3917
4235

2371

0

1000

2000

3000

4000

5000

H5 H6 H7 FSI

Q
u

er
ie

s
p

er
 M

in
u

te

Fig. 7. 200 Nodes, throughput

6 Experiments

The experiments evaluate system performance for two network sizes (100 and 200
nodes) with various fixed radius horizon sizes and full summary information. Results
from the naïve case of sending each query to every immediate neighbor (Gnutella-
like) are also presented as the baseline approach. Before running experiments, a
simulator was used to calculate the expected number of messages that peers would
exchange during query processing. The inputs to the simulator are the indices created
during joining. The results of the simulation were used to help verify the system ex-
periments.

To take measurements, we used a time window W, usually 20-30 minutes long,
during which all users in the system were submitting queries. For each configuration,
the average query response time over all the queries within the time window W was
computed along with the overall average query throughput. Query response time was
defined to be the time to the first result. The average number of messages per query
was also computed by normalizing the number of actual messages exchanged by the

Processing Queries in a Large Peer-to-Peer System 283

total number of queries executed during the time window. All 95% confidence inter-
vals of the measurements are within at most �7% of the corresponding mean values.

The data for the 200-node network was obtained by cloning the data and indices
from the 100-node network instead of redistributing and re-indexing. This approach
allows us to alter only the size of the network. The node selectivity of queries, the size
of the local inverted indices, and the number of keywords that nodes exchange remain
constant.

5.0

1.4 0.6 0.4

29.0

0

10

20

30

GT H4 H5 H6 FSI

R
es

p
o

n
se

 t
im

e
(s

)

Fig. 8. 100 nodes, response time

2.2
0.8 0.6

11.3

0

5

10

15

20

H5 H6 H7 FSI

R
es

p
o

n
se

 t
im

e
(s

)

Fig. 9. 200 nodes, response time

6.1 Throughput and Response Time

We performed experiments with a number of different configurations, including the
full summary index case (FSI), configurations with fixed width horizon sizes of 4
(H4), 5 (H5), 6 (H6), and 7 (H7), and a Gnutella-like configuration (GT) without any
PIs. The results obtained are presented in Figs. 6, 7, 8, and 9. These results clearly in-
dicate that the best performance is obtained by maintaining full summary information
about each node in the system: In the 100-Node network the average throughput and
query response times are 2,420 queries/min and 0.4 seconds, respectively. In the

284 L. Galanis et al.

200-Node network the corresponding values are 4,240 queries/min and 0.6 seconds
respectively. The improvement in query throughput in the 100-node case is 2,071%
over the Gnutella-like configuration GT. The response time is 72 times better. Note
also that query messages in GT travel only for 5 hops in the network and thus retrieve
only 55% of the results found by the FSI configuration. To retrieve all possible re-
sults, messages in GT would need to travel for even more hops, which would make
the performance of this approach even worse. We also observed degrading perform-
ance as the radius of the horizon decreased, which is a result of the total number of
messages processed by the system as discussed below. Note that GT is not reported
for 200 nodes since the result of the queries were useless due to system overload.

65.7

8.9
4.5 3.1 2.5

0

10

20

30

40

50

60

70

GT H4 H5 H6 FSI

Fig. 10. 100 nodes, average number of messages per query

5.7
5.1

8.1

13.2

0

5

10

15

H5 H6 H7 FSI

Fig. 11. 200 nodes, average number of messages per query

6.2 Analysis

The average number of messages per query that the system processed during the time
window while measurements were being collected is presented in Figs. 10 and 11.
The observed message counts fairly closely match the results obtained from the

Processing Queries in a Large Peer-to-Peer System 285

simulation. As expected, the overall performance of the system and the number of
query messages exchanged are strongly correlated with one another. The significantly
large number of messages the system processes in the case of GT explains its unac-
ceptable performance. In our experimental set-up, smaller horizons lead to as many as
four times more messages (e.g. H4 vs. FSI on 100 nodes).

0%

20%

40%

60%

80%

100%

H1 H2 H3 H4 H5 H6 H7 H8

200 Nodes

100 Nodes

Fig. 12. Percentage of queries out of horizon

To explain the observed number of messages, we calculated the percentage of que-
ries that left their origin horizon, shown in Fig. 12. These results suggest that the in-
crease in the number of messages in smaller horizons is a consequence of the fact that
more queries need to exit their respective horizons. Each time a query goes beyond
the horizon of its originating node it incurs at least one extra message because it must
be relayed to at least one node before reaching the destination. In our experiments, the
performance of H6 with 100 nodes and H7 with 200 nodes is very close to FSI be-
cause only a small percentage of the queries leave the horizons of their originating
nodes. Thus, the goal should be a system in which at least 90% of the queries stay
within their origin horizon. Only FSI can guarantee this. If, however, FSI is not feasi-
ble due to large PI sizes, the system should evolve in a way that decreases the prob-
ability of a query going out of a horizon.

Table 4. Average number of messages per query

GT H1 H3 H4
100 Nodes 123 30 16 9
200 Nodes 279 110 66 31

Our experiments demonstrate significant performance increases when the number
of messages passed at query time is reduced. While it is expected that a naïve query
propagation strategy would be inefficient, it is surprising how poorly any strategy that
routes queries through other peers performs compared to the FSI. Recent efforts ([5])
have focused on efficiently routing queries to the best neighbor. In our scenario,
routing, which is essentially H1, performs much better than GT as can be seen in Ta-
ble 4. We, however, feel that its use is not justified for two reasons: a) It attempts to
replicate functionality already found in current Internet protocols and b) the number
of messages it incurs is much higher than that using other small horizons as Table 4

286 L. Galanis et al.

demonstrates. H1 is significantly better than GT, but at the same time much worse
than H3 and H4. Additionally, our experimental results demonstrate that H4 does not
perform as well as FSI. In order to achieve satisfactory query performance, we believe
it is worth allocating the necessary resources needed for FSI.

6.3 Join Processing Times

Even though best performance during query processing is our main focus, the cost of
joining must be considered. Consider the case where one additional node joins a net-
work of 199 nodes. In our set-up, the new node spends about 4 seconds processing a
join response from an existing node, while each existing node spends 0.3 seconds
processing join updates. The new node will know summary information about all
other nodes in the system in 4 seconds. All existing nodes propagate join updates
prior to updating their index. Thus, all the nodes in the system will become aware of
the new node after about D���������	�
�����	��������������������
���������������t-
work delay d = .06 seconds). As another example, assume that two existing networks
of 100 nodes each join to form a network of size 200. In this scenario, each node will
spend about 2s processing a join update message. The update message will contain
peer information for 100 nodes. Hence, every node will have summary information
about all other nodes in the new network after about 2.6s (D = 9, d = .06). It is clear
that in an environment in which nodes do not exhibit the volatile behavior of users
sharing music files performing the join we propose is essential for achieving better
query throughput.

7 Related Work

Current research efforts with peer-to-peer systems can be largely attributed to the
widespread use of file-sharing systems such as Napster [15] and Gnutella [8]. Napster
is used for searching collections of media files using centralized indices to which cli-
ents connect and upload their file lists and search other users’ lists. However, Napster
is a hybrid peer-to-peer solution since it employs a centralized index for searches.
OpenNap servers [17] work as Napster index servers, but forward queries they cannot
answer themselves to a neighbor. A comprehensive study of an OpenNap network ap-
pears in [27]. They propose a mathematical model, which they validate on a network
of 5 servers. Gnutella is a pure peer-to-peer application that allows searches to flow
through a network of interconnected peers. In Gnutella, each peer forwards a search to
all its immediate neighbors in a breadth first manner. This simple way of executing
searches has been widely criticized for its abuse of network bandwidth. Our study
quantifies how wasteful the flooding strategy can be. Recently, support for super-
peers has been added to the Gnutella protocol. A study of super-peer networks ap-
pears in [28]. In both cases no query content based node selection is performed.

The attempt to reduce wasted bandwidth in the Gnutella network has prompted sev-
eral research efforts. A simulation study of routing indices is presented in [5]. The
goal is to choose the best neighbor of a node to forward the search until the desired
number of results is reached. This approach only evaluates routing and does not ex-
plore directly contacting relevant peers. Techniques for improving Gnutella perform-
ance are presented [26]. Among them is a technique that indexes content of nodes in

Processing Queries in a Large Peer-to-Peer System 287

the neighborhood. The index is not used for routing but for answering queries on be-
half of other nodes.

Distributed lookup services have been investigated in [6], [13], [19] and [21]. Sup-
ported queries are restricted to object lookups by their keys. In addition, identifiers
help route lookups to the relevant data pools. In contrast, our focus is on complex
queries on data content. Distributed database systems ([18], [24]) have addressed
query processing in a wide area environment, but usually assume full control over all
the nodes in the system and the existence of detailed catalogs, and thus do not allow
ad-hoc formation of peer-to-peer networks.

Sun’s JXTA Search [23] provides searches of data sources that actively produce
data, such as news sites. The goal is to retrieve the most up-to-date data, which is not
possible using a fully centralized index like Google. At the same time, they try to
avoid flooding those data sources with queries, by building indices on the queries a
data source can answer. The indices reside on index servers (called hubs), to which
affiliated data sources connect. There is no strategy for forwarding queries to other
hubs, as they anticipate that nodes of similar topics will connect to the same hubs and
that a small number of hubs is sufficient to index large numbers of information pro-
viders. However, they have not evaluated their approach on a large number of hubs.

8 Conclusions and Future Work

We have presented a performance study of a peer-to-peer system of autonomous
XML search engines with a variety of strategies for P2P query processing. In essence,
the join mechanisms pre-compute query destinations and store them in the peer indi-
ces. The intended use of our research prototype is as a low-level layer for our distrib-
uted query processing system that needs to discover all relevant XML documents for
a given query in the philosophy of the Niagara System. Results from large-scale ex-
periments on a pure peer-to-peer system demonstrate significantly improved query
throughput and response time over current peer-to-peer architectures. The prototype
we have implemented will be used as a test bed for future research into join algo-
rithms, as well as various query processing techniques.

References

[1] BerkeleyDB. http://www.sleepycat.com.
[2] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam, K. Stocker.

ObjectGlobe: Ubiquitous query processing on the Internet. VLDB Journal 10(1): 48-71
(2001)

[3] J. Callan, M. Connell, A. Du. Automatic Discovery of Language Models for Text Data-
bases. SIGMOD 1999 Conference.

[4] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. SIGMOD 2000 Conference.

[5] A. Crespo, H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems. Tech Report
http://dbpubs.stanford.edu:8090/pub/2001-48

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica. Wide-area cooperative stor-
age with CFS. SOSP 2001

[7] eBay. http://www.ebay.com
[8] Gnutella Resources. http://gnutella.wego.com/.

http://www.sleepycat.com/
http://dbpubs.stanford.edu:8090/pub/2001-48
http://gnutella.wego.com/

288 L. Galanis et al.

[9] GoXML. http://www.goxml.com
[10] Google. http://www.google.com
[11] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, D. Suciu. What Can Databases Do for

Peer-to-Peer. WebDB Workshop 2001.
[12] P.G. Ipeirotis, L. Gravano, M. Sahami. Probe, Count, and Classify: Categorizing Hid-

den-Web Databases. SIGMOD 2001 Conference.
[13] J. Kubiatowicz et al. OceanStore: An Architecture for Global-Scale Persistent Storage. In

Proc. ASPLOS 2000.
[14] J.F. Naughton, D.J. DeWitt et al. The Niagara Internet Query System. IEEE Data Engi-

neering Bulletin 24(2): 27–33(2001)
[15] Napster. http://www.napster.com
[16] B. Nguyen, S. Abiteboul, G. Cobena, M. Preda. Monitoring XML Data on the Web.

SIGMOD 2001 Conference
[17] OpenNap Project. http://opennap.sourceforge.net
[18] M. T. Özsu, P. Valduriez. Principles of Distributed Database Systems, Second Edition.

Prentice-Hall 1999
[19] A. Rowstron, P. Druschel. Storage management and caching in PAST, a large-scale, per-

sistent peer-to-peer storage utility. SOSP 2001
[20] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, R.

Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI, Amsterdam,
The Netherlands, April 2001.

[21] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In Proc. SIGCOMM 2001.

[22] TPC-C Benchmark Standard Specification Revision 5.0.
[23] S. Waterhouse. JXTA Search: Distributed Search for Distributed Networks. White Paper

http://search.jxta.org
[24] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Linsey, P. Ng, R. Obermarck, P. Selinger,

A. Walker, P. Wilms, R. Yost. R*: An Overview of the Architecture. IBM Research Re-
port RJ3325.

[25] XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/
[26] B. Yang, H. Garcia-Molina. Efficient Search in peer-to-peer networks. In Proc. ICDCS

2002.
[27] B. Yang, H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. In Proc. VLDB

2001.
[28] B. Yang, H. Garcia-Molina. Designing a Super-Peer Network, In Proc. ICDE 2003.
[29] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G. Lohman. On Supporting Containment

Queries in Relational Database Management Systems. SIGMOD 2001 Conference.

http://www.google.com/
http://www.napster.com/
http://opennap.sourceforge.net/
http://search.jxta.org/

	1 Introduction
	2 System Architecture
	2.1 XML Search Engine
	2.2 Peer Indices
	2.3 Horizons

	3 System Evolution
	4 Efficient Searches Using PIs
	5 Experimental Setup
	5.1 Scenario
	5.2 Data
	5.3 System Set-Up
	5.4 Queries and User Simulation

	6 Experiments
	6.1 Throughput and Response
	6.2 Analysis
	6.3 Join Processing Times

	7 Related Work
	8 Conclusions and Future Work

