
Scalable Distr ibuted Aggregate Computations through
Collaboration

Leonidas Galanis 1, David J. DeWitt 2

1 Oracle USA, 500 Oracle Pkwy, Redwood Shores, CA 94065, USA
leonidas.galanis@oracle.com

2 University of Wisconsin – Madison, 1210 W Dayton St, Madison, WI 53706, USA
dewitt@cs.wisc.edu

Abstract. Computing aggregates over distributed data sets constitutes an
interesting class of distributed queries. Recent advances in peer-to-peer
discovery of data sources and query processing techniques have made such
queries feasible and potentially more frequent. The concurrent execution of
multiple and often identical distributed aggregate queries can place a high
burden on the data sources. This paper identifies the scalability bottlenecks that
can arise in large peer-to-peer networks from the execution of large numbers of
aggregate computations and proposes a solution. In our approach peers are
assigned the role of aggregate computation maintainers, which leads to a
substantial decrease in requests to the data sources and also avoids duplicate
computation by the sites that submit identical aggregate queries. Moreover, a
framework is presented that facilitates the collaboration of peers in maintaining
aggregate query results. Experimental evaluation of our design demonstrates
that it achieves very good performance and scales to thousands of peers.

1. Introduction

Peer-to-Peer (P2P) computing has gained both scientific and social importance
recently due to the success of systems such as Freenet [3], Gnutella [6] and Napster
[12]. Harnessing P2P technology has the potential to produce systems that combine
good scalability with minimal infrastructure cost. P2P systems are designed to start
out small and seamlessly evolve to very large distributed systems with thousands of
participants. The P2P computing paradigm has inspired many research projects to
focus on a large variety of open problems. [15], [16], [22] and [25] provide the basis
for low-level location services, otherwise known as Distributed Hash Tables (DHTs).
[2], [11] and [18] illustrate how to use DHTs to build distributed file systems. [8] and
[5] attempt to process complex queries in large P2P systems. The result has been the
emergence of a concept known as data centric networking ([7] and [21]). With the
advent of P2P systems, finding interesting data efficiently has become a major focus
of research in the networking community.

Aggregate computations on data from distributed data sources constitute an
important class of queries. P2P tools promise to make such queries feasible and
therefore more frequent. If an aggregate computation is interesting to multiple peers in
the network, the data sources participating in the computation can expect to receive
the same query multiple times. Thus a new problem arises: The many-to-many query

problem (M2M), which places scalability limits on query processing in P2P systems.
To better illustrate the M2M problem, consider an application that brings together
commodity traders from around the world in a large P2P commodity trading system
without a centralized infrastructure. Traders post their sale and bid prices based on
information obtained by querying each other. Typically, participants determine their
asking price or bid after consulting the maximum bid and minimum sale price for a
commodity across all traders. In the absence of a central server, a trader has to query
all other traders in order to determine the maximum bid and the minimum sale price.
Thus, if m sellers and n bidders are trading on one particular commodity, each trader
has to answer m+n-1 identical queries. Furthermore, the total number of messages
that must be exchanged among the participants and the total number of queries
executed in the system is (m+n)⋅(m+n-1). Using a central server instead of a P2P
system, each participant would require only 2 queries to retrieve the minimum sale
price and the maximum bid, which translates to 2⋅(m+n) messages for (m+n) queries
and another (m+n) messages for the (m+n) updates of bids and sale prices.
Consequently, any P2P system would still not scale well for this type of application
due to the high message traffic and query processing load. On the other hand, a
central server can scale by adding additional hardware. The challenge is to make a
P2P infrastructure scale gracefully under the M2M query scenario by leveraging
existing resources.

This work presents a framework for efficiently processing many-to-many aggregate
queries over large P2P networks in a scalable fashion. Our approach requires the same
number of queries and messages as would be required with a centralized system by
leveraging DHT technology and catalog services ([5]). The contributions of this work
can be summarized as follows:
• A method for defining the special handling of aggregate computations that follow

the many-to-many query pattern.
• An efficient query processing strategy that leverages existing P2P technology and

allows for scalable processing of many-to-many aggregate queries.
Experimental validation of our approach demonstrates its scalability potential and,

at the same time, shows the adverse impact of the M2M query problem on P2P
applications. We believe that our design opens up new possibilities for novel
distributed applications, since distributed aggregation is going to be increasingly
essential for efficiently surveying large amounts of distributed data.

The paper is organized as follows: Section 2 outlines the overall system
architecture. Section 3 delves into the detailed design of the distributed aggregate
computation layer. Section 4 presents the results of the experiments. The paper ends
with related work (Section 5) and concluding remarks (Section 6).

2. System Architecture

The software stack on each peer consists of four layers: 1) a Distr ibuted Hash Table
layer (DHT), 2) the Catalog Service (CS) layer, 3) the Aggregate Computation
(ACL) layer, and 4) a query engine with access to the local data. The design does not
dictate a specific data model or query language, but all examples will assume
XML [24] data sources and XPath [23] queries.

The DHT layer is based on existing technology ([15], [16], [22] and [25]). Its
purpose is to support the efficient and scalable location of keys or object identifiers
used by the higher-level layers of the system. In essence, DHTs are fully distributed
hash tables that employ protocols for efficiently directing requests for specific keys to
the nodes in the network that are responsible for those keys.

The Catalog Service (CS) layer is the data discovery tool. Each node employs a
CS that, when given an arbitrary Xpath query, locates the relevant data sources.
Subsequently, the query only needs to be submitted to a subset of the peers in the
distributed system. To provide this functionality, the CS requires that each data source
provide a summary of its data in a special form when it joins the distributed system.
The CS is based on the framework presented in [5].

The Aggregate Computation Layer (ACL) maintains the registered aggregate
queries that have been submitted by the various nodes in the P2P network. The ACL
is the focus of this paper and its detailed design is presented in Section 3.

3. Distr ibuted Aggregation

Any node can establish special handling of aggregate queries by requesting the
creation of an aggregation point (AP) if it discovers that it frequently needs to contact
a large number of nodes in order to compute an aggregate or if it becomes
overwhelmed with large numbers of identical requests that are part of an aggregation
computation. The ACL creates an aggregation point when provided with an activation
record (AR) that contains the following fields:

Aggregate Function: This field determines the aggregate function (average,
minimum, maximum etc) that is applied by the peer responsible for the aggregation
computation maintenance to the incoming data.

Target Data: This field contains a query that defines the data needed for
computing the aggregation. The target element or attribute of the query determines the
catalog service peer ([5]) that is the peer that will create and maintain the AP.

Scope: The scope can be either global or local. Global scope means that the
aggregate function should be computed over all peers with relevant data, while local
scope computes one value for each peer.

Group By: The group by field refines the aggregation by defining on or more
aggregate groups (similar to the SQL “group by” construct). Each group is assigned to
a node that maintains the aggregate computation for the specific group.

Table 1 Activation Record for the commodity traders example

Aggregate MAXIMUM Scope GLOBAL
Target Data //bidder/item/current_bid Group By //bidder/item/@item_id

An aggregation point corresponds to one or more groups depending on the
group_by field. Each group is assigned to the Aggregation Point Host (APH) that is a
node in the P2P network. The APH is selected among the peers in the P2P system
based on the activation record. A DHT key is computed using all the fields of the AR.
This key determines which peer will currently serve as the APH and thus assume
responsibility for the aggregate computation.

To illustrate the creation of an activation record, consider again the example of
commodity traders. Suppose bidders are peers that post their bids online as XML

documents and update them as they trade. The current price a bidder is willing to pay
for a commodity item i can be accessed using the path pbid = //bidder/item
[@item_id = i]/current_bid. Sellers naturally want to find the bidder with the
maximum bid. Thus, if there are a large number of sellers of commodity i, and a large
number of bidders, an aggregation point is needed to avoid M2M and make trading
more efficient. Table 1 shows what the required activation record looks like. The
aggregate function is the maximum and the scope is global. The target path is ptarget =
//bidder/item/current_bid. Hence, current_bid is the catalog key that determines the
DHT key for catalog information and so the peer that maintains the AR. The group by
field is the path pgroup_by(x) = //bidder/item/@item_id = x. The pgroup_by field essentially
assigns each traded item to a different DHT key.

NS

NC

AP
(1)

NB,k

(2)

…
…

PAP,x

(3) Updates

acurrent_bid

Queries

…

PAP,i

a)
 (1) QA NC

…

NA

PAP,y

PAP,x

(2)
(3) QA

…

acurrent_bid

b)

Fig. 1 a) Installation of an Aggregation Point b) Redirection of query QA to node PAP,y

Under normal operation the catalog service would use current_bid to identify the
relevant data sources. However, if an AP is installed, the mode of query processing
changes. Each node uses Aggregation Key Map (AKM), which acts as a subscription
system that associates catalog keys with their activation records. Fig. 1a outlines the
process based on the commodity traders example. Suppose that peer NS, which hosts
sellers of commodity i decides to request the creation of the aggregation point AP that
is defined by the activation record described in Table 1. The request will be forwarded
to the peer NC that holds catalog information for current_bid (step 1). NC will
generate the association acurrent_bid = current_bid → MAXGLOBAL(ptarget, pgroup_by(x))
and insert it in the AKM. Note that multiple associations for a given key can exist in
the AKM and they are selected based on the actual query. Then, NC forwards
acurrent_bid to all peers NB,k that host bidders and to NS (step 2). NC knows about all
such peers since it is hosting catalog information for current_bid. Upon receipt of
acurrent_bid each NB,k is expected to send updates about the current bid for all traded
commodities to specific other peers that form the set of aggregation point hosts
(APH) (step 3). The DHT layer, using the information in acurrent_bid, can uniquely
determine each peer in APH. For example, for commodity item i, the APH PAP,i is
determined by hashing the list (MAX, GLOBAL, ptarget, pgroup_by(i)) to retrieve a DHT
key ki. Thus PAP,i becomes the maintainer of the requested aggregation for commodity
i. Aggregation responsibility is tied to the key ki and not to the peer PAP,i. This way if
PAP,i leaves, the DHT ensures that ki points to a different peer.

The question that remains is how peers other than NS find out about the new
aggregation points. This turns out to be straightforward since NC is the designated
node for all inquiries regarding current_bid (Fig. 1b). Thus, any other node NA which
receives a query such as QA = MAX(//bidder/item [@item_id = y]/current_bid) will
request catalog information from NC (step 1). NC will then provide NA with the

association acurrent_bid (step 2). Having this information NA can identify PAP,y as the
peer to visit in order to obtain the answer to QA (step 3). Furthermore, NA locally
caches acurrent_bid and thus only needs to contact NC once.

The peers in APH can become heavily loaded if they are assigned very popular
commodities. In this case load balancing is necessary. We have devised a method that
deals with high request rates for both queries and updates. Due to space limitations we
do not present the load balancing mechanisms. (see [4] for details).

4. Exper imental Evaluation

The experiments are based on a Distributed Commodity Trading (DCT) scenario
derived from [14]. The potential for eliminating the centralized auctioneer and the
“ fixed time trading rounds” ([14]) is the motivation to realize DCT. In our scenario
traders are users of a large P2P network and buy and sell commodities. Each trader
interchangeably follows a seller session or a bidder session. During a seller session
the trader queries for the bidder with the maximum bid for one of its commodities and
if successful proceeds with the sale. During a bidder session the trader tries to
determine a reasonable bid for a commodity by querying the selling prices in the
network. Thus, traders constantly query each other, which leads to the manifestation
of the M2M problem. Complete description of the scenario is available in [4].

Table 2 Mean measured CPU and Disk service times of a peer running

Query Load XPath Catalog Lookups
CPU (ms ± ms) 540 ± 57 34 ± 11
Disk (ms ± ms) 1800 ± 324 75 ± 11

4.1. Exper imental Methodology

We use simulation and a prototype system (Sect. 4.4) to evaluate our architecture.
Simulations follow a two-step methodology that combines system measurements with
simulation. First measurements were taken from a system that consists of an XPath
query engine, a catalog layer and an aggregation layer (Section 2). This system was
loaded with both trading data and catalog information. Then workloads of XPath
queries, catalog information lookups and aggregate computations were executed and
measurements were collected (Table 2), which yields the nominal peer performance
([4]). The XMark benchmark data generator [20] was used to generate about 1GB of
data for auctions that have a structure similar to our trading scenario data. Catalog
information lookups were measured using 256 MB of catalog data as described in [5].
The system used for measurements was a 2.4 GHz Pentium 4 PC running Linux with
an IDE Hard Disk and 512 MB of RAM. To obtain variance across the peers during
the simulations in the P2P network the nominal performance is multiplied by a factor
that is uniformly distributed between 0.8 and 1.2. The second step involved building a
discrete event simulation model using CSIM [1] consisting of nodes interconnected
with a DHT. The nodes in the P2P network are modeled as single CPU, single disk
workstations using the measurements from the first step. The prototype system
experiments used our departmental cluster with 40 nodes similar to the one used for
single node measurements.

4.2. Simulation Setup

Simulations for two peer-to-peer and one central server system were implemented.
This section describes their characteristics and their basic differences. Both peer-to-
peer systems simulate a DHT that is a generic version of Chord [22]. Following the
observation made in [8] we did not use a detailed network model, opting instead for a
simple delay model where network delays are exponentially distributed with a mean
of 50ms. We assumed that network bandwidth was not a limiting factor since only a
small amount of data is transferred in each network message. A catalog service as
presented [5] is also present on both P2P systems and is used by traders to locate
other traders.

The impact of network volatility on a peer-to-peer system depends on the specific
DHT implementation. Therefore our experiments examine stable peer-to-peer systems
in order to obtain results that are independent of the underlying DHT implementation
and demonstrate the raw impact of the Aggregation Layer framework in improving
performance.

The first P2P version that utilizes the aggregation layer has two variants: AL
(Aggregation Layer) and LBAL . The difference is that the second variant employs
load balancing (LB) [4]. The second P2P setup does not have an aggregation layer
and comes in two variants GC (General Catalog) and GCI . GC utilizes the catalog
service to discover traders, but directs XPath queries to the traders’ peers in order to
collect data values and compute the maximum bid and the minimum selling price.
These XPath queries are issued simultaneously to all traders and the aggregate is
computed after the results are retrieved. This setup suffers under the M2M query
problem. The GCI variant utilizes a local index that makes XPath queries for
retrieving bids and sale prices as fast as the aggregate computations and catalog
information lookups in the variants AL and LBAL , and is used for a fairer
comparison to AL and LBAL .

The central server system is intended as a reference point for evaluating the
performance of the peer-to-peer variants. It consists of an ideal cluster of with as
many nodes as the corresponding P2P system. The traders access their accounts from
their workstations connected to the Internet, thus experiencing network delay for each
query and update request. The central server system also comes in two variants: CS
and CSI . The CSI variant employs the same fast local index as GCI .

4.3. Performance Results

The goals of this section are to determine the extent to which the aggregation layer
improves performance and identify those cases where load balancing is required. A
very important parameter in all configurations is the number of unique traded items T,
which affects both P2P systems similarly. The smaller T is, the larger, on average, is
the number of traders for a particular item. The consequence for each node in GC and
GCI , and for each aggregation point in AL and LBAL is more requests on average.

The first series of experiments involved peer-to-peer networks from 100 to 100,000
nodes. The numbers of bidders and sellers in the P2P network are approximately
equal and each node hosts one trader. The number of items assigned to each trader is
uniformly distributed between 5 and 15. The popularity of the traded items follows
the 80/20 rule (a.k.a. Pareto’s principle) observed in many real world settings: 20% of

the items are chosen by traders 80% of the time. The centralized versions of the
system have exactly the same trader and commodity distributions. The configuration
with 10,000 nodes is presented first to demonstrate our key findings when varying the
number of unique traded items (commodities).

0
500

1000
1500

2000
2500

3000
3500

4000
4500

100 500 1000 2500 5000 10,000

Number of items

se
ss

io
ns

/s
ec

GC GCI AL LBAL

CSI

CS

Fig. 2 Seller session throughput for 10,000 nodes

The throughput of seller sessions (Fig. 2) as a function of the different number of
items traded is the first set of results presented (relative error at most 1% with 95%
confidence). Bidder sessions follow a similar trend [4]. The throughput for CS and
CSI is insensitive to the number of unique traded items (dashed lines). For both P2P
systems a small variety of items has an adverse effect as expected. Nevertheless, the
impact of a small number of items is more significant on GC and GCI than on AL .
For 1000 items, the throughput of AL is 9.6 times better than GCI while for 10,000
items AL is 1.5 times better. At the same time as the number of items decreases, the
need for load balancing becomes apparent: for over 2500 items AL and LBAL have
similar performance. In the case of 100 items, however, LBAL is over 4 times better
than AL .

Table 3 Average trader session durations for 10,000 nodes

#items CS CSI GC GCI AL LBAL
100 N/A N/A 15.60 s 2.04 s
500 N/A 47.1 s 4.09 s 1.84 s
1000 236.1 s 22.9 s 2.61 s 1.79 s
2500 153.4 s 9.2 s 1.73 s 1.58 s
5000 72.0 s 4.41 s 1.56 s 1.52 s
10,000

3.13 s 1.48 s

30.2 s 2.24 s 1.51 s 1.49 s

Table 3 shows the average duration of traders’ sessions. Session durations are
indicative of the usability of each configuration. Short sessions imply short query
response times, which in turn imply more accurate values for minimum sale price and
maximum bid. The high session durations for GC and GCI show that they are not
usable. As expected, LBAL does a very good job by keeping the duration of sessions
below 2 sec. Without load balancing, the average session duration for AL with 100
items climbs to 15.6 sec. The throughput and response time numbers show that GC is
virtually unusable. GCI is viable in the 5000 and 10,000 item setups but still lags far
behind both AL and LBAL in terms of system throughput The absence of data for
GC (for 100 and 500 items) and GCI (for 100 items) was the result of event backlogs

in the simulator, which led to high memory image sizes, forcing the simulations to
abort.

0

1

2

3

4
5

6

7

100 500 1K 5K 1K 50K 100K
Number of nodes

sp
ee

d-
up

 fa
ct

or

1% 5% 10% 25%

0

5

10

15

100 500 1K 5K 10K 50K 10K
Number of nodes

sp
ee

d-
up

 fa
ct

or

10% 25% 50% 100% 16.8 17.1

Fig. 3 a) Speed-up of LBAL over AL. b) Speed-up of LBAL over GCI

While we have obtained results for a variety of network configurations, due to
space limitations scalability results are summarized in Fig. 3a and Fig. 3b. Fig. 3a
shows the speed-up of LBAL over AL in trader session throughput. The percentages
in the legend denote the number of items in each network as a percentage of the total
number of nodes. The graph, in essence, shows which combinations of network size
and traded items make load balancing a necessity. For instance, in the 100 node
network load balancing is not necessary. In the 500 node network the load balancing
benefits are observable. In the larger networks load balancing of aggregate
computations becomes a necessity as demonstrated by the achieved speed-up. Let
r = number of unique traded items / number of nodes. In large networks (number of
nodes > 1000) the smaller r is, the larger is the speed-up of LBAL over AL due to
load balancing. These results suggest that if r � 25% the speed-up achieved using load
balancing is not significant.

0

5,000

10,000

15,000

4 8 12 16 20
Number of traders per node

se
ss

io
ns

/s
ec

GCI AL

�

�

��

��

�� �� �� ��
�	
��
�������
�

�
�
�
�
�
�	
�

��
�	���	�
�����������
�

Fig 4a) Combined trader throughput for 10,000 nodes, 50,000 unique items and varying
number of traders b) Speed-up of PAL over PGC

Fig. 3b shows the trader session throughput speed-up of LBAL over GCI . The
percentages have the same meaning as in Fig. 3a. The percentages are now larger as
GCI would not work on large networks (>10,000) with a small variety of traded
items. GCI appears somewhat usable when the number of traded items is large (>50%
of total number of nodes): With r = 50% GCI is about two to four times slower than
the systems with the aggregation layer (AL , LBAL). For r = 10% or 25% GCI is
clearly not scalable, which is indicated by the increasing speed-up.

Fig 4a shows how the combined session throughput varies with the number of
traders per node in GCI and AL . The network has 10,000 nodes and 50,000 unique
items, which favors GCI . While AL starts out slightly better than GCI it becomes 4
times better (20 traders).

a) b)

a) b)

4.4. Prototype Exper iments

We implemented a prototype system to confirm the simulation results. The system is
written in Java and uses Pastry [16] as the DHT and Berkeley DB XML as the storage
and query engine layer, which is accessed through the Java native interface. For the
experiment we used 40 machines from our departmental Linux cluster. A trader with
15 commodities, on average, is emulated on each machine. The non-aggregation layer
configuration PGC corresponds to GCI in our simulations and the aggregation layer
configuration PAL corresponds to AL . Due to space constraints we only present Fig
4b that shows the speedup of trader sessions of PAL over PGC achieved in the
system with 40 nodes and a varying number of unique commodities (items). The
aggregation layer achieves significant speed-up in a working prototype system and
confirms the simulation results.

5. Related Work

Related work in P2P architectures has been mentioned in Sect. 1. Here we present
work more closely related to distributed aggregation, which is a relatively new subject
in the context of P2P systems. Willow [16] organizes nodes in a single tree.
Aggregate computations percolate automatically up the tree whenever there are data
changes or new aggregate queries are installed. However, these updates are not
instantaneous and converge eventually. The Aggregation Layer presented here
follows a best-effort approach by having a flat structure. SOMO [25] similar to our
approach layers on top of a DHT and, like Willow, organizes the aggregate
computations in a tree. SOMO has a generic gathering procedure that can be
programmed to perform aggregate computation. This procedure is invoked
periodically, in contrast to the updates and requests to the aggregation points of the
Aggregation Layer, which are on demand. The aforementioned projects are a sample
of many similar ongoing projects addressing distributed aggregation in P2P systems.

SCRIBE [19] is an application layer multicast publish/subscribe system that uses a
PASTRY [16] to define rendezvous points for managing group communication on a
specific topic. It uses topic identifiers to assign topics to peers similarly to our use of
catalog keys to assign aggregation points to peers. A basic difference between our
approach and SCRIBE is that aggregation point hosts do not implement
publish/subscribe functionality, and are thus much simpler. Their purpose is to
passively collect data and maintain an always up-to-date aggregate. Distributed
aggregation methods in [10] presents distributed aggregate computations using
gossip-based protocols in P2P networks. Its focus, however, is on how quickly
aggregate computations converge to the actual value and not how to facilitate large
volumes of aggregate queries over distributed data sets.

6. Conclusions

In this paper we presented the case for the many-to-many query problem that is bound
to be a concern in very large distributed systems where queries require data from
multiple data sources. Using existing technology we developed a framework that can

solve this problem for a broad class of important queries by harnessing the resources
of the peers in the distributed system. Our experimental evaluation using both
simulations and a real working prototype shows how severe the M2M problem can be
and how our architecture efficiently solves it in a P2P environment.

References

1. CSIM Development Toolkit for Simulation and Modeling. http://www.mesquite.com.
2. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica. Wide-area cooperative storage

with CFS. SOSP 2001.
3. FreeNet. http://www.freenetproject.org
4. L. Galanis. Towards a Data-Centric Internet. Ph.D. Thesis. 2004 Univ. of Wisconsin.
5. L. Galanis, Y. Wang, S. R. Jeffery, D. J. DeWitt. Locating Data Sources in Large

Distributed Systems. VLDB 2003
6. Gnutella Resources. http://gnutella.wego.com/
7. J. M. Hellerstein. Toward Network Data Independence. SIGMOD Record, Vol. 32, No. 3,

Sept. 2003.
8. R. Huebsch, J. M. Hellerstein, N. Langam, B. T. Loo, S. Shenker, I. Stoica. Querying the

Internet with PIER. VLDB 2003
9. Kazaa. http://www.kazaa.com.
10. D. Kempe, A. Dobra, J. Gehrke: Gossip-Based Computation of Aggregate Information.

FOCS 2003
11. J. Kubiatowicz et al. OceanStore: An Architecture for Global-Scale Persistent Storage. In

Proc. ASPLOS 2000.
12. Napster. http://www.napster.com
13. Network Time Protocol (NTP). http://www.ntp.org.
14. E. Ogston, S. Vassiliadis. A Peer-to-Peer Agent Auction. AAMAS’02.
15. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A Scalable Content-

Addressable Network. in Proc. of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications.

16. R. van Renesse and A. Bozdog. Willow: DHT, Aggregation, and Publish/Subscribe in One
Protocol. International Workshop on Peer-to-Peer Systems (IPTPS) 2004.

17. A. Rowstron, P. Druschel, Pastry. Scalable, distributed object location and routing for
large-scale peer-to-peer systems. IFIP/ACM Intl. Conference on Distributed Systems
Platforms.

18. A. Rowstron, P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. SOSP 2001.

19. A. Rowstron, A. Kermarrec, M. Castro, P. Druschel. Scribe: The design of a large-scale
event notification infrastructure. Intl. Workshop on Networked Group Communication
2001.

20. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, R. Busse. XMark. A
Benchmark for XML Data Management. VLDB 2002.

21. S. Shenker. The Data-Centric Revolution in Networking. Keynote VLDB 2003.
22. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. SIGCOMM 2001.
23. XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/
24. XML Extensible Markup Language. http://www.w3.org/XML.
25. Z. Zhang, S. –M. Shi and J. Zhu. SOMO: Self-Organized Metadata Overlay for Resource

Management in P2P DHT. International Workshop on Peer-to-Peer Systems (IPTPS)
2003.

26. B. Y. Zhao, J. Kubiatowicz, A. Joseph. Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. UCB Tech. Report UCB/CSD-01-1141.

