
 Locating Data Sources in Large Distributed Systems

Leonidas Galanis Yuan Wang Shawn R. Jeffery David J. DeWitt

Computer Sciences Department, University of Wisconsin - Madison
1210 W Dayton St
Madison, WI 53706

USA
{ lgalanis, yuanwang, jeffery, dewitt} @cs.wisc.edu

Abstract

Querying large numbers of data sources is gain-
ing importance due to increasing numbers of in-
dependent data providers. One of the key chal-
lenges is executing queries on all relevant infor-
mation sources in a scalable fashion and retriev-
ing fresh results. The key to scalability is to send
queries only to the relevant servers and avoid
wasting resources on data sources which will not
provide any results. Thus, a catalog service,
which would determine the relevant data sources
given a query, is an essential component in effi-
ciently processing queries in a distributed envi-
ronment. This paper proposes a catalog frame-
work which is distributed across the data sources
themselves and does not require any central in-
frastructure. As new data sources become avail-
able, they automatically become part of the cata-
log service infrastructure, which allows scalabil-
ity to large numbers of nodes. Furthermore, we
propose techniques for workload adaptability.
Using simulation and real-world data we show
that our approach is valid and can scale to thou-
sands of data sources.

1. Introduction

Our vision is demonstrated by the following scenario: At
some computer terminal of a large distributed system a
user issues a query. Based on the query, the system de-
termines where to look for answers and contacts each
node containing relevant data. Upon completion of the
query, regardless of the number of results or how they are
ranked and presented, the system guarantees that all the

relevant data sources known at query submission time
have been contacted. The naïve way to implement our
vision would be to send a query to each of the participat-
ing nodes in the network. While this approach would
work for a small number of data providers it certainly
does not scale. Hence, when a system incorporates thou-
sands of nodes, a facility is needed that allows the selec-
tion of the subset of nodes that will produce results, leav-
ing out nodes that will definitely not produce results. Such
a facility implies the deployment of catalog-like function-
ality.

A catalog service in a large distributed system can be
used to determine which nodes should receive queries
based on query content. Additionally it can be used to
perform other tasks such as query optimization in a dis-
tributed environment. There are three basic designs for
building a catalog service for a distributed system: 1) A
central catalog service, 2) a fully-replicated catalog on
each participating node, or 3) a fully distributed catalog
service. A centralized design implies a resource exclu-
sively dedicated to servicing catalog requests. Existing
technology allows the construction of such servers that
could sufficiently handle thousands of nodes. Such a solu-
tion, however, requires a central infrastructure and a
scheme to share expenses among the participating peers.
To avoid this each node in the system can take over the
burden of catalog maintenance. To this end, one simple
design is the use of a fully replicated catalog on each peer
(as practiced in distributed database systems [18]). When
a new peer joins the system it downloads the catalog from
any existing peer and it can immediately query the entire
community. Nevertheless, maintenance of the catalogs
requires O(n2) number of messages for the formation of a
network of n nodes. Clearly, this is not scalable to thou-
sands of nodes.

We focus on a fully distributed architecture motivated
by recent advances in peer-to-peer computing (P2P). P2P
systems research has proposed a number of new distrib-
uted architectures with desirable traits, including no cen-
tral infrastructure, better utilization of distributed re-
sources, and fault tolerance. Particular attention has been
paid into making these systems scalable to large numbers

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

of nodes, avoiding shortcomings of the early P2P pioneers
such as file sharing systems like Gnutella [9] and Napster
[17]. Representatives of scalable location and routing pro-
tocols are CAN [21], Pastry [22], Chord [25] and Tapes-
try [32], henceforth referred to as Distributed Hash Tables
or DHTs. Each of these protocols, however, allows only
simple key based lookup queries.

This paper studies the feasibility of using existing P2P
technology as the basis for efficiently facilitating complex
queries over an arbitrary large number of data reposito-
ries. Given an arbitrary query q and a large number of
data repositories, our goal is to send q only to the reposi-
tories that have data relevant to q without relying on a
centralized catalog infrastructure. Additionally, data re-
positories must be able to join the P2P system and make
their data available for queries. Our design builds on cur-
rent P2P technologies. The contributions of this work are:
• A catalog framework for locating data sources
• A fully decentralized design of a distributed catalog

service that allows data providers to join and make
their data query-able by all existing peers.

• Techniques to adapt to the query workload and dis-
tribute the catalog service load fairly across the par-
ticipating nodes.

• An experimental evaluation of a distributed catalog for
locating data sources in large distributed XML reposi-
tories.
The rest of this paper is organized as follows: The sys-

tem model of our envisioned catalog service is described
in Section 2 where a simple example demonstrates its
application. Section 3 discusses the desired features of the
data summaries for our distributed catalog and proposes
two designs. In Section 4 we show how our system
evolves as new nodes join. Section 5 describes how the
catalog service is used in order to direct queries to the
relevant data sources. Section 6 points out load balancing
issues and proposes effective solutions. Section 7 presents
our experiments. Related work and Conclusions (Sections
8 and 9) follow at the end.

2. System Model

Conceptually the system allows an arbitrary number of
data providers or nodes to join and make their data avail-
able. Let Ni (1 < i� n) denote the n nodes, each of which
publishes a set Di of data objects. When a node Ni wants
to join the system it creates catalog information which is
the set Ci = { (kj, Sij) | Sij is a summary of kj on node Ni} .
The items kj are present in the data objects Di. In an XML
repository if Di is a set of documents, the kj’s will be a
subset of the attribute and element names in Di. Each Sij is
summary catalog information (or data summary) corre-
sponding to kj and depends on the data on node Ni. For
example, a data summary for the element price on node
Ni might contain all the unique paths that lead to price as
well as a histogram of price’s values.

The catalog service determines which nodes a query Q
should execute on using the functions query_parts() and
map(). The function query_parts extracts a set of kj’ s
from a query. Given a query Q. The function map:
{ Q} ×{ { Ci | 1 < i � n} } → { Ni | 1 < i � n} , uses
query_parts() to examine the relevant sets of data summa-
ries Sij in order to determine the nodes storing data rele-
vant to Q. Of course the catalog service may contain addi-
tional information but this paper focuses on the imple-
mentation of map when the number of nodes in the sys-
tem becomes very large.

One possible map function would be the constant
function map(Q, { Ci}) = { Ni | 1< i �n} . However, such an
implementation would not scale for large values of n since
it would require contacting every node for every query.
The study in [10] demonstrates on a real system that the
key to scalability is minimizing the number of messages
in the distributed system. Hence, our goal is to implement
map(Q, { Ci}) = { N | P1 ∨ P2} where P1: Executing Q on N
yields a non-empty results set and P2: Executing part of Q
on N is required to produce the final result set for Q.
Proposition P2 covers the case in which Q requires a join
or an intersection of data across different nodes. To
achieve our goal, our implementation of map employs a
fully distributed catalog design based on DHTs.

2.1. DHT Background

The DHTs have very desirable characteristics. Their goal
is to provide the efficient location of data items in a very
large and dynamic distributed system without relying on
any centralized infrastructure. Thus, given a key, the cor-
responding data item can be efficiently located using only
O(logn) network messages ([22], [25]) where n is the total
number of nodes in the system. Moreover, the distributed
system evolves gracefully and can scale to very large
numbers of nodes. Hence, current DHT designs provide a
means to create large fully distributed dynamic networks
of nodes for storage and efficient retrieval of objects. Our
work leverages this functionality to provide a scalable
fully distributed catalog service. Chord, which serves as
the experimental substrate of our work, is publicly avail-
able and has been successfully used in other projects such
as CFS [7]. Nevertheless, our design does not depend on
the specific DHT implementation and can work with any
of the aforementioned DHT protocols.

The Chord protocol supports just one lookup opera-
tion: It maps a given key to a node. Depending on the
application this node is responsible for associating the key
with the corresponding data item (object). Chord uses
hashing to map both keys and node identifiers (such as IP
address and port) onto the identifier ring (Figure 1). Each
key is assigned to its successor node, which is the nearest
node traveling the ring clockwise. Nodes and keys may be
added or removed at any time, while Chord maintains
efficient lookups using just O(logn) state on each node in

the system. For a detailed description of Chord and its
algorithms refer to [25].

2.2. Keys and Objects

One of the design challenges is to determine how to map
the catalog information to the DHT. Based on our concep-
tual catalog model the obvious choice for keys are the
items kj, henceforth also referred to as keys. The objects
stored are sets of data summaries Sij, and not just single
data summaries since mapping from kj to Sij is not 1 to 1.

An example using a simple XPath [29] query illus-
trates how the outlined concepts can be put into practice.
Consider four XML repositories which contain the data
shown in Table 1. Assume that element tags are chosen as
keys kj and that each summary Sij contains a set of all the
possible paths in the data that lead to kj. For example
S1, author ={ library/catalogs/book, library/reservation/book}
while S2, author = { bookstore/book} . Table 2 shows how the
DHT assigned the keys to the nodes that joined the net-
work. The summary sets are stored along with the keys.

Paths in XML Data
N1 library/catalogs/book/author,

library/reservation/book/author
N2 bookstore/book/price, bookstore/book/author
N3 bookstore/book/price, bookstore/book/author
N4 bookstore/book/price, bookstore/book/author

Table 1: Nodes with sample data

Query Q1=/library/reservation//book illustrates how the
data summaries can be used. Q1, submitted on N3, asks for
all reserved books from all the library nodes in the P2P
network (Figure 2). Determining which nodes to send Q1
to is done as follows: The tag name book serves as the
DHT lookup key. Q1 is sent by the DHT layer to N4 (step
1), which stores the portion of the catalog which contains
book information. On N4, the path in Q1 is matched
against Si,book, (1<i<4). N4 replies to N3 with the node set
{ N1} (step 2) since only S1,book matches the given query
and so N1 is the only node that stores at least one XML
document that contains a book element with a library an-
cestor. Finally, N3 sends Q1 to N1 for execution (step 3).
The example illustrates one possible way to use DHTs by
appropriately defining kj and Sij for XML repositories.

DHT Index
N1 author:{ (S1,author), (S2,author), (S3,author), (S4,author)}
N2 reservation: { (S1,res.)}
N3 --
N4 book: { (S1,book), (S2,book), (S3,book), (S4,book)} ,

price: { (S2,price), (S3,price), (S4,price)}

Table 2: Part of the DHT index on each node

3. Data Summaries

The extraction of the data summaries Sij from the set Di is
the next step in the design process. Considering how the
summaries could be used can provide insights into how
they should be extracted from the data on each node. As-
sume that our input queries are XPath expressions and the
data on the participating nodes are XML documents. Con-
sider the path expression //book//price. Assuming that
book is chosen as the lookup key for this path, the set of
data summaries { Si,book} should enable the catalog to find
nodes that have documents in which price is a descendant
of book. Consequently data summaries should contain
descendant information for book. Alternatively, if price is
used as the lookup key, ancestor information is required.
Besides structural summaries, summarizing values is
equally important. Consider the example query
//book[category = ”Peer-to-Peer”]. If there are 100,000
nodes that store book information but only 20 of them
specialize in “Peer-to-Peer” books, it would be much
more efficient to send such a query only to the 20 relevant
nodes and not to all nodes that have books.

Flexibility in data summarization is also an essential
requirement for our system since there are various data
value domains and schemas. There are many different
data summarization techniques and naturally none of them
is suitable in every case. Consequently, data providers
that join the system should enjoy the flexibility of choos-
ing from a variety summarization techniques that fit their
data. For example histograms [13] are suitable for nu-
meric values while Bloom filters [3] are more suitable for
web addresses. In some cases no summarization is neces-
sary, such as the domain of all states in the USA.

Note a fine distinction between the data summaries
provided to the system by a data source Ns and the sum-
maries actually stored on some other node Nc in the sys-

N1 N2

N3 N4

Q1
(1) Q1, book

(2) { N1}

(3) execute Q1

Q1

Figure 2: Execution of Q1

N1

Nodes

Keys

N2 successor of N1

Figure 1: The Chord identifier ring

tem. Conceptually, Nc receives a set { (kj, Sij)} from the
other nodes in the system. However, it is not required to
store each Sij as provided by the data source. Nc can store
the summary information however it desires, but should
not degrade its accuracy or otherwise change its content.

In this paper we evaluate our design on large networks
of independent XML data repositories. Two path summa-
rization methods for XML data are presented that are suit-
able for the purposes of our experiments. For both designs
we adopt the choice of keys and summaries made in the
initial example (Section 2.2): XML element tags and at-
tribute names are our keys kj. For each kj the correspond-
ing data summary Sij stores all possible unique paths to kj,
which, in essence, corresponds to structural ancestor in-
formation. During a lookup operation, the last step of an
XPath branch is used, which eliminates false positives
from the structural summaries. Other configurations are
also possible.

 The DHT layer distributes the set of keys across the
nodes in the system. The catalog CTN on node N holds
the set of the data summaries for keys assigned to N. In
essence CTN implements the map function for XPath que-
ries for all keys assigned to N. For our study we imple-
mented CTN using the methods described below. The
performance of these implementations was then measured
and the results were used in our simulation experiments.

3.1. Generic B+-Tree

This method for implementing CTN is the most generic in
the sense that it is both simple and independent of the
structure of the data summaries. The keys of the B+-Tree
are the pairs (k, N) where k corresponds to the element
tag or the attribute name and N is the node that contrib-
uted a summary S for k. Only a prefix lookup on k is re-
quired but having N in the key helps speed up the algo-
rithm in Section 5. S contains two parts: The structural
summary SS and the value summary VS, both of which
are optional.

The simplest way to implement SS is to store all
unique paths that lead to k in the data of N. The space
required for this will be usually small. Let c denote the
total number of paths that lead to k; let l denote the aver-
age depth of each path and finally, let t denote the size in
bytes allocated for storing each tag on the path. The size
of SS is then approximately s = c⋅l⋅t. To make s independ-
ent of the length of the element names, tags are hashed to
32-bit integers. Using reasonable values of 10, 4, and 4
([5]), for c, l, and t, respectively, the size of SS will be
about 160 bytes. If the size of SS becomes a performance
limiting issue in pathological cases (very large c or l)
more advanced summarization techniques ([1], [19]) can
be applied. VS depends on the value domain of k. If k has
numeric values simple ranges suffice. Bloom filters [3]
can be used when we are interested only in equality que-
ries on the value domain of k.

Given a simple XPath query Q: /a1/a2/.../an/k op x the
nodes that must receive Q are determined as follows:
Each Si that corresponds to k and node Ni is examined. Q
will be sent to Ni only if SSi contains /a1/a2/.../an and
VSi op x =TRUE (op is an operator such as ‘=’ or ‘<’). As
expected, the set { Ni} returned by this procedure will con-
tain some false positives, mainly because of the accuracy
of the value summary. The structural summary has a very
low probability of producing false positives, when a good
hash function is used, because hash collisions must occur
in every element of a path to produce a false positive.
Nevertheless, false negatives can always be avoided, as
long as the summaries are updated regularly. Note that SS
can also handle XPath queries with wildcards and “ //” .

One problem arises when the number of B+-tree en-
tries for k becomes large, in which case the system may
need to match a path against a large number of potentially
very similar structural summaries. The solution is to re-
place all keys (k, Ni) with keys (k, Ci) that correspond to
data items CSi. Ci corresponds to a cluster of nodes with
similar structure and CSi is a new compound summary
constructed by merging the structural summaries of the
nodes in Ci. The paths contained in all Sis are merged and
to each path p, a subset RN is assigned. RN contains the
nodes that either contain or don’ t contain p, depending on
which choice yields a smaller set. The other alternative
for handling large numbers of nodes is to use an index
keyed by the path.

3.2. Path Index

A path index is an alternative which is less flexible than
the previous method but more efficient for elements that
appear on large numbers of nodes. Flexibility is limited
because this design requires that the structural summaries
contain paths while the previous method works for any
structural summary. Processing one summary per node is,
however, no longer necessary. Consider again the query
Q: /a1/a2/…/an/k. The DHT will relay Q based on k to Nc
for the purposes of catalog lookup. On Nc, a B+-Tree
keyed on inverse paths will guide the lookup. The data
items in the tree are lists of nodes and each node is spe-
cially annotated if it has provided a value summary for the
specific path. Thus, if the B+-tree contains the key
k/an/…/a2/a1, retrieving the corresponding data item will
yield the nodes in the system that contain /a1/a2/…/an/k. In
order to make the key sizes of the index less variable the
tags are replaced with constant size integers using hash-
ing. Processing queries with wildcards is also possible.
For example, Q: //a1//* /an/k can be processed by initiating
a range scan using the B+-Tree key k/an, and evaluating
each subsequent B+-Tree key for at least one element of
any tag above an and an element a1 somewhere in the path
above all the others.

With this structure a node must be associated with
each path it contributes and consequently with each corre-
sponding key in the B+-Tree. For example if node N con-

tributes 10,000 different paths for tag k, a reference to N
has to appear in 10,000 data items in the B+-Tree. Simi-
larly, if a path is present on 10,000 nodes its associated
data item must contain references to all these nodes. Size
concerns stemming from these cases can be easily ad-
dressed by either clustering nodes with similar documents
into groups or by simply compressing the node lists. Our
study assumes that a scalable, efficient and reasonably
sized index is available on each participating node.

4. System Evolution

System evolution, such as bootstrapping and node arrival
and departures, is defined by the Chord protocol. The
specification, however, refers only to the keys and not to
the objects corresponding to those keys. It is up to the
application to manage storage and retrieval of the objects
corresponding to the Chord keys. This section describes
how the distributed catalog service evolves when nodes
join, leave and update their data, and how objects, which
are the sets of data summaries, are stored and accessed.

4.1. Arriving Nodes

Section 2 outlines a model according to which nodes cre-
ate the data they provide to the P2P network. Each new
node Nn that joins the system creates the set Cn which
makes the data of Nn query-able by the nodes already in
the system. First Nn contacts any node Nc in the system
(Step 1, Figure 3). Chord finds Nn’s successor Ns in the
identifier ring. The new node Nn, now part of the identi-
fier ring, injects each (knj, Snj) ∈ Cn into the system and
the Chord protocol decides which nodes should receive
the new catalog information (Step 2). Since uploading
Nn’s catalog information may take some time, not all the
data on Cn becomes immediately query-able by existing
nodes in the system. Only after all the summaries in Cn
have found their way to their hosts is Nn’s entire data visi-
ble to other nodes in the system.

Additionally, Nn becomes part of the catalog infra-
structure and is available to share the load of the catalog
service by hosting parts of the summary sets already in
the network. The Chord protocol will assign to Nn keys kj
for which Nn is the successor in the identifier ring. These
keys are located on Ns (k1 and k2, Figure 3). Our design
co-locates keys and summary sets in the interest of avoid-
ing one extra network message during lookup. Therefore,
it follows that when Nn joins the system both keys and
data summaries need to be moved from Ns to Nn (Step 3).

Moving the keys from one node to another happens
much faster than moving the summaries, because the for-
mer are smaller. Thus, each kj for which Nn becomes re-
sponsible initially points to Ns until the corresponding
data summary Sij is fully transferred to Nn (Step 2). Dur-
ing this transitional period lookups will be relayed from
Nn to Ns. Figure 3 shows the time line of Nn joining the
system.

4.2. Updates and Departures

Catalog information stored in the system may need to be
updated as the data on individual nodes changes. Update
requests are handled in a similar way as insertion of in-
formation during join (Step 2, Figure 3). Updates to sum-
maries follow the “single writer/multiple readers” model;
only a node that has created a data summary (the owner)
is allowed to change its content. Nodes that store the data
summaries do not alter their content, although they may
alter the way they are stored.

When a node N decides to leave the system, it must
hand over the catalog information to its successor accord-
ing to the Chord protocol. Furthermore, it notifies the
nodes that hold N’s catalog data. To achieve this, N uses
the keys it inserted into the system to find the nodes that
currently hold N’s catalog information. Another valid
approach is one where N does not do anything upon leav-
ing the system and lets the remaining nodes detect its ab-
sence over time.

4.3. Expected System Volatility

The system volatility, the rate at which nodes join and
leave the system, is a key factor to consider when design-
ing such a system. If this rate is expected to be high the
design should avoid moving large amounts of data across
nodes as part of system maintenance. DHTs generally try
to minimize the amount of state stored on each node in
order to be able to facilitate any level of volatility. Cata-
log information, which is moved across nodes, is not
large, but its size would probably be an issue in an envi-
ronment similar to those of other file-sharing systems like
Gnutella and Napster, in which there is a high turnover of
nodes. Our target, however, is a community of independ-
ent data providers that are interested in making their data

Ns

Join Request

k1, k2, k3

Nn

Ns Nc

Nn k1, { Si1}
k2, { Si2}
k3, { Si3}

k1 k2 k3

k1
k2

Nn inserts (knj, Sni) 1
2

Identifier ring

Ns
Nn

k3, { Si3}

k1 k2 k3

k1, { Si1}
k2, { Si2}

3

Figure 3: Node Nn joining the network

widely query-able and therefore are highly unlikely to
have the same behavior as individuals sharing music files.

We expect that nodes, having joined, will leave only
for scheduled maintenance and then rejoin. In this case
they do not need to reinsert their catalog information into
the system as they do during the initial join phase. There-
fore, the goal is to achieve high throughput of catalog
lookup requests and not to mitigate the impact of system
volatility by minimizing the amount of catalog data stored
on each node. Nevertheless, the dynamic maintenance
algorithms of DHT designs are important even in a low
volatility environment, since they allow new nodes to join
in a scalable way.

5. Processing Catalog Queries

Given an XPath query, a catalog lookup determines which
nodes in the system should receive the query. The system
can handle general branching XPath queries. Consider the
following example which is based on the sample network
introduced in Section 2.2 and the query Q2:
//book/[author=”J. Smith”]/price. Q2 retrieves the prices
of books by author “J. Smith” and has two branches:

Q21: //book/price
Q22: //book/author =”J. Smith”

Both branches must be satisfied and thus the query will be
sent only to those nodes that have both paths in their re-
positories. Figure 4 shows the steps for each query
branch. Q2 is sent to N4 (step1), where, based on price and
Q21, the set N21={ N2, N3, N4} is produced. Q2 and N21 are
then forwarded to N1, which is responsible for author
elements (step 2). Q22 contains a value predicate on au-
thor. Hence, both structural and value summaries are util-
ized to select relevant nodes. Assuming only N2 has au-
thors named “J. Smith” , the lookup using Q22 yields the
set N22={ N2} (step 3). Finally, N3 sends Q2 to N2 for exe-
cution (step 4), since it is the only node appearing in
N21 ∩ N22.

The class of XPath queries that the system can handle are
of the form p = /a1[b1]/a2[b2]/…/an[bn] op value. Each bi is
in turn a path. The path steps can include wildcards and
the ‘ //’ navigation operator. The structural part of the
XPath query is handled using the structural catalog infor-
mation. The value predicate uses the value summaries.
The implementation of query_parts selects the target tag

name of each branch of the query. The algorithm for re-
solving this general query is as follows:

1: Extract all the N simple paths spi from p. Simple
paths have the form spi=/ai1/ai2/…/ai,M i op value
(1<i<N). Let the set of candidate nodes be N = ∅.

2: Pick the next ai,M i in the set T of targets of the simple
paths.

3: Visit the node Nc responsible for ai,M i and retrieve the
set of candidate nodes Ni for spi using the catalog in-
formation on Nc.

4: Set N = N ∩ Ni, or N = Ni if N = ∅. T = T - { ai,M i}
5: If T ≠≠≠≠ ∅ go to 2.
6: N contains the nodes on which p should be submit-

ted.
Caching catalog query results or even summaries on

nodes that submit queries is feasible. Of course this would
increase performance by offloading frequently contacted
nodes, but also would raise cache maintenance and invali-
dation issues. Our study does not deal with caching cata-
log query results or data summaries since accessing the
primary copy of a data summary is guaranteed to fetch the
most up to date results. Incorporating caching as an addi-
tional layer over the present design is left as future work.

6. Catalog Lookup Scalability Issues

Current implementations of DHTs balance the load across
participating nodes by distributing keys uniformly under
the assumption that the keys are accessed uniformly. Our
system cannot be load balanced by relying solely on the
provisions of the DHT layer because some elements will
be used in queries more frequently than others. The result
will be a higher processing load for catalog queries on the
nodes that are responsible for frequently accessed ele-
ments, which invalidates the uniformity assumption of
key accesses present in DHT designs. Furthermore, it can
lead to scalability limits unless the processing load for
popular elements is distributed across more nodes in the
system. Even if the processing load of catalog lookups on
nodes is negligible compared to the processing of the ac-
tual queries on each node, such lookups still consume
resources such as available connections. This section de-
scribes techniques that allow the redistribution of the cata-
log query load dynamically based on the global query
workload. It is assumed that nodes are willing assist with
load balancing.

6.1. Structure Based Splitting

The last step in a branch of an XPath query is used as the
lookup key for locating the corresponding summary set.
When the request rate for a key exceeds a specific thresh-
old, the affected node initiates a key split which forms
new keys. This has the effect of transferring part of the
load to other nodes. The following example illustrates
how this technique works (Figure 5). Consider the tag
price and for illustration purposes, assume bike, car, boat

N1 N2

N3 N4

Q2
(1) Q2,Q21, price

(2) Q2,Q22, author, { N2, N3, N4}

Q2

(4) execute Q2

(3) { N2,}

Figure 4: Processing strategy for Q2

and house are its possible parent elements. Let N hold the
data summaries for price. Once N detects that requests for
price exceed its capacity for catalog requests it initiates a
split of price. Thus, N creates four new keys:
k1 = bike/price, k2 = car/price, k3 = boat/price and
k4 = house/price. Then N creates a new set of data sum-
maries by appropriately splitting the existing data summa-
ries of price. The new keys k1, k2, k3, k4 and the corre-
sponding partial summaries are handed to the DHT layer
and eventually end up on nodes N1, N2, N3 and N4 respec-
tively. Care is taken that N does not receive any of the
new keys. Finally, N has two choices for what to do with
the initial data summaries for price: it keeps them (split-
replicate) or it discards them (split-toss). Both approaches
are valid since, combined, the new summaries contain the
same information as the old summaries. Updates to the
price summary requested by price’s owners have to be
propagated to the affected new summaries in either case.

Once the tag price has been split, query processing

changes slightly. When some node Nq submits a query
q1=//car/price < $10,000, q1 will initially arrive on N
which is responsible for price summaries. N will then
respond to Nq that price has been split and that new keys
of level 2 should be used when submitting catalog look-
ups. Nq will cache this information and will resubmit the
catalog lookup request using the new key car/price. Even-
tually all nodes that request price catalog information will
find out about the split and replace the key price with its
corresponding level 2 key for subsequent queries. The
level of a key indicates the number of path steps contained
in it. Initially all keys are level 1.

There is, however, a class of queries that will not be
able to use a level 2 key. Consider the query
q2=//store[name=”A”]//price < $1000 submitted by node
Nq in which the parent of price is not defined. If N fol-
lowed the split-replicate policy during the splitting of
price, it will process q2 itself. If N followed the split-toss
policy, Nq being aware of this fact will have to submit
four catalog queries using the four possible keys and then
merge the results from nodes N1, N2, N3 and N4.

Query q2 makes one trade-off between split-toss and
split-replicate apparent: data replication versus more mes-

sages per query. Another arises in when the split is no
longer necessary because of changes in the global work-
load. Using split-replicate, any of the nodes N1, N2, N3
and N4 can safely discard its price summaries when it
notices that it does not receive any significant traffic. Us-
ing, split-toss, however, all nodes involved in the split
need to coordinate their actions.

In general, the structure-based splitting (SBS) algo-
rithm takes as input the key k to split and the set
Kk = { (p, v, N)} where p is a path that leads to k, v is the
value summary associated with k and N is the owner node
of the pair (p, v). Note that k itself can be the product of a
split. In this case the owner node is the node of the origi-
nal unsplit key. The output of SBS is the set { (ki, K i)} and
the mapping (k, { ki}). If a split is necessary but the key
cannot be split, the solution is replication described next.

6.2. Replication

Another method for balancing the catalog query load is to
replicate sets of summaries on other nodes. When a node
N detects that queries of one of its keys k exceeds a spe-
cific rate, it contacts one or more nodes in the system and
requests that they replicate the summary data for k. N also
creates a mapping for k’s new catalog data locations
which it hands over to nodes that request lookups on k. A
node Nq queries the specified new locations in a
round-robin fashion, after it is notified that key k has been
replicated.

6.3. Splitting vs. Replication

There are several important differences between the two
methods of load balancing. Replication is oblivious to the
content of the data summaries and works with any sum-
marization method. SBS exploits the structure summaries
to create as many partitions as there are level 2 keys. Thus
if there are a level 2 keys which contain the key k being
split, the initial request r rate is roughly divided by (a + 1)
in the case of split-replicate. Furthermore, if a new parti-
tion on a node is not receiving a significant rate of re-
quests it can be safely discarded, if split-replicate is used.
On the contrary, plain replication cannot, a priori, decide
the optimal number of new replicas. One choice is to cre-
ate only one replica on one other node in the system and
let the new node replicate further if the rate of requests is
still too high. The other choice is to create many replicas
at once, which will cause the system to react to the in-
creased load more rapidly. Another difference is that split-
replicate replicates the information only once per split.
Also, a single update in the case of SBS needs to be
propagated to only one other summary per split, whereas
in the case of replication it must go to all replicas. Prob-
lems such as those described in [11] are not an issue since
only the owner of a data summary set requests updates to
catalog information. In any case, replication is the last
resort for load balancing if no further splitting is possible.

Figure 5: Splitting of price

price
N

N1

N2

N3

N4

bike/price

car/price

boat/price

house/price

7. Experimental Results

The goal of our experiments is to demonstrate the viabil-
ity of our approach. Thus, certain traits of the DHT de-
signs are taken for granted. For instance we do not evalu-
ate how our system works under various degrees of vola-
tility, or how different parameters of the underlying DHT
affect the number of messages in the network. The focus
is to facilitate scalable catalog lookups during query proc-
essing. A simulator is used to verify the scalability of
catalog lookups in very large networks.

7.1. Experimental Data

Our goal is to use data that will be very similar to the data
one could expect in a real world deployment of our cata-
log service. This can be achieved using data from poten-
tial data providers that would find the catalog service use-
ful. Additionally, we opt for using XML data since this is
the de facto standard for platform independent data repre-
sentation and information exchange. The website
www.xml.org contains a registry in which organizations
that use XML data can register their schemas. We believe
that this data is very close to reality and therefore we use
it in our experiments. We found 30 usable schemas that
draw from various domains such as Banking, Transporta-
tion, Arts and many others. The data collection contains
3500 unique element and attribute names and 16,000 dif-
ferent paths from root elements to leaves.

7.1.1. Data Generation

The purpose of data generation is to assign the available
schemas to the nodes in the system. Each node N is as-
signed a number of schemas NS which is drawn from a
normal distribution with mean MNS and standard devia-
tions SNS. Each schema is chosen with probability pro-
portional to a weight WS. Changing WS allows regulation
of the popularity of each schema. For each chosen schema
we create a node-specific schema as follows: All the paths
that are required in the schema are also included in the
node specific schema. The paths that are not required are
included with probability PP, in order to create a more
realistic situation.

Each node must create data summaries to insert into
the catalog service. To this end each possible path that
leads to leaf is enumerated and, for each element and at-
tribute found in the node’s assigned schemas, a structural
summary is built. Note that commonly used element
names that appear in multiple schemas will contain paths
from different schemas in their summaries. In our study
we ignored namespaces.

7.1.2. Query Load Generation

The query load is generated concurrently with data gen-
eration and is done in such a way that makes the gener-
ated queries follow the distribution of the generated data
across all nodes. Each schema is assigned query credits

QC which is proportional to WS. While paths are enu-
merated, each path is picked with some probability QP to
contribute to the query pool. For each chosen path p the
size of the XPath query it yields is between two and four
80% of the time (a similar assumption is made in [1] and
[19]). The other 20% of the time the size of the query is
uniformly distributed between one and the size of the path
p. The target of the XPath query is chosen to be one ele-
ment or attribute of path p as follows: The target is the eth
item from the leaf with e exponentially distributed with
mean 2. This gives preference to tags closer to the leaf
nodes, which is more realistic. Once a query is created the
QC corresponding to the schema is decreased by one.
Thus, popular schemas contribute more queries to the
query pool than less popular ones.

7.2. Simulator Architecture

The simulator used for evaluating our catalog service is
based on the Chord protocol simulator found on the Chord
project website. The DHT substrate is used unmodified
and contains some additional optimizations (such as LRU
finger tables) not found in [25]. These optimizations fur-
ther decrease the number of network messages required
but do not affect our study. Each message between nodes
incurs a network delay exponentially distributed with an
average of 50ms. Nodes do not unexpectedly die and so
all nodes that join are available for catalog queries. The
average local processing time for Chord maintenance
tasks is uniformly distributed between 50 ms and 200 ms.

An additional layer translates an XPath query Q to the
necessary Chord lookups, based on the algorithms de-
scribed earlier. Once the query reaches the node with the
appropriate summary it is evaluated and the set N of can-
didate nodes that match the structure of the query is pro-
duced. To simulate the effect of value summaries a per-
centage (CT) of the nodes in N are discarded before N is
sent back to the query origin. Upon receiving N the origin
sends the XPath query to the nodes found in N.

Catalog related processing is simulated in more detail
than Chord specific tasks. Each node simultaneously
serves up to CR catalog requests using the proces-
sor-sharing discipline [14] while additional requests are
queued in a FCFS queue that can hold at most CQ re-
quests. The time it takes to process each catalog request is
101 ms on average and follows the distribution of the
measured times. Measurements were taken on a Pentium
III at 800 MHz, running Linux 7.2 with an IDE disk on
implementations of the structures presented in Section 3
using the data generated. These numbers represent the
time it takes if a request is processed alone and are in-
creased according to the processor-sharing discipline. The
time for XPath queries was set to be uniformly distributed
with a mean of 500 ms and a standard deviation of 500 ms
and represents the background load on the system.

The system is driven by simulated users, who pick a
query from the query pool and submit it on a random node

in the system. The number of users U is a multiple of the
number of nodes in the system so that the system becomes
loaded. Each user submits a new query after all generated
XPath queries have finished executing and after a think
time of 5 seconds and a typing time of 3 seconds as speci-
fied in the TPC benchmark specifications [26]. Note that
by setting the CT parameter to 100% no XPath queries are
generated and thus the system runs in catalog-only mode.
This setting simulates the case where each data provider
uses a dedicated catalog processor or assigns a maximum
bandwidth to catalog queries (in conjunction with appro-
priately setting CQ).

The discussion on load-balancing left the triggering of
splitting or replication unspecified. Our opinion is that in
a real system the rate of requests that will cause a load
balancing reaction is a local decision. For our simulations
however, the nodes in the system are all equivalent and
there is a common policy for all of them. A load balanc-
ing action on a node is triggered once the number of re-
quests has reached CR and new requests are put on the
FCFS queue. This indicates that the node is receiving
more requests than desired. To remedy the situation a key
must be either split or replicated. The key chosen is the
most frequently occurring key in catalog queries among
the CR requests that are served using Processor Sharing.
The load incurred by a load balancing action is also simu-
lated.

Number of
Nodes

Parameters

All Setups MNS=5, SNS=5, PP=90%,
WS=10 (for all schemas), QP=80%,
CT=100%, CR=20, CQ=500

500 U=5,000, NQ=400,000
1000 U=10,000, NQ=800,000
2000 U=20,000, NQ=1,600,000
3000 U=30,000, NQ=2,000,000
5000 U=50,000, NQ=4,000,000

Table 3: Experimental parameters

7.3. Experiments

In our experiments we focus on processing catalog que-
ries in a system that has formed, stabilized. Updates are
not considered since the update traffic is assumed to be
orders of magnitude less intense than the query traffic and
so does not affect load balancing. Furthermore, the per-
formance of data summarization techniques is not tested
since it is not the focus of this paper. The structural sum-
maries used for the experiments are 100% accurate. The
scenario of the experiments is as follows: Users start
submitting queries after thinking and typing. They submit
a new query after the previous one has finished. The ac-
tivity stops after NQ number of queries have been submit-
ted and finished. The main metrics examined are the aver-
age throughput for catalog queries and the average re-
sponse time for each catalog query. The distribution of the

catalog requests across nodes as well as the number of
load balancing actions are also of interest. We test catalog
query processing under the following different settings:

1. No load balancing (C)
2. Split-replicate load balancing (SR)
3. Split-toss load balancing (ST)
4. Replication (R) one replica at a time

The values for the parameters described previously are
taken from the Table 3.

7.3.1. Performance

This section presents the performance of the catalog ser-
vice for various settings.

0

2000

4000

6000

8000

10000

12000

500 1000 2000 3000 5000
Network size (nodes)

m
se

c

C SR

ST R

Graph 1: Average response times for catalog queries

The response times measured show that using the DHT
alone, without any provisions for adapting to the query
workload does not scale (Graph 1). (All measured 95%
confidence intervals are within at least 0.5% of the
means).

Number of Nodes 500 1000 2000 3000 5000
Average hops per
request

3.5 4.1 5.0 5.7 7.0

Table 4: Average number of network hops per request

SR shows the best scalability characteristics when
adapting to the query load, holding the average response
time below 2.1 sec. The increase in response times for SR
can be attributed to an increase in the average hops per
catalog request (Table 4) and to the increased load be-
cause of insertions caused by splits. ST does not scale as
well because it discards the split summary set. This causes
the generation of more messages per query and more
splits (Graph 6), thus increasing response time. Replica-
tion performs better than ST but worse than SR since it
cannot adapt quickly to the query load because only one
replica is created each time a node reaches the request
limit CR. SR splits a key as many times as there are next
level keys and so distributes the overload faster. In both
SR and ST there were no cases where splitting a key was
not possible.

0

1000

2000

3000

4000

5000

6000

500 1000 2000 3000 5000
Network size (nodes)

T
h

ro
u

g
h

p
u

t
(Q

u
er

ie
s/

se
c) C SR

ST R

Graph 2: Combined throughput of queries

The throughput results in Graph 2 once again show
that Chord alone cannot handle the increasing rate of re-
quests as the system grows because some nodes are over-
loaded. In the 500 node case SR, ST and R achieve the
maximum throughput rate which is 624 queries/sec. To
achieve this, only a very small number of splits and repli-
cations were required. SR also works very well for all five
sizes of networks. Both ST and R do not perform as well
as SR in the large networks of 2000, 3000 and 5000
nodes. The performance of R vs. ST is, however, reversed
relative to the response time numbers. The explanation is
that, on average, ST generates more requests and splits.
However, it reacts to the increased rate on the large net-
works faster than R because more new keys are generated
per split. Table 5 shows the number of catalog lookups
rejected by nodes in the system because they were over-
loaded. Some individual nodes drop more than 50% of the
requests if no load balancing takes place. In any case,
using SR provides double the throughput of C without
any significant loss of requests and with at least a five
times improvement in response times.

Network
sizes

C SR ST R

500 2% 0% 0% 0%
1000 4% 0% 0% 0%
2000 8% 0% 2% 0%
3000 11% 0% 4% 0%
5000 18% 1% 6% 1%

Table 5: Droped requests across all configurations

7.3.2. Data Summary Sizes

The increased performance observed using load-balancing
comes at a very low cost in terms of storage using the
path index described in Section 3.2. The average size of
the catalog on each node prior to load balancing actions is
about 12KB-15KB (for all approaches). The maximum
size of the catalog information on any node for various
network sizes is shown in the following table

network size 500 1000 2000 3000 5000
Size (KB) 165 247 495 740 1135

Using SR and R the average catalog size increases by
roughly 2KB, while the maximum catalog size on a node
does not change. ST naturally does not alter the average
catalog size with respect to C. All load-balancing tech-
niques require that each node stores a map M with the
new key mappings for keys that were split or replicated.
In the case of 5000 nodes the size of M is 35 KB and
6 KB for SR and R, respectively.

7.3.3. Request Load Distribution

Graphs 3, 4, and 5 show the distribution of the requests
across the nodes in the system for configurations of 500,
2000 and 5000 nodes (1000 and 3000 networks are omit-
ted for brevity). The nodes in the system, ranked by the
number of requests received, are on the X axis. Each
graph contains the first 50 nodes which receive roughly
34% of all requests in all configurations when no load
balancing is used.

0

5000

10000

15000

20000

25000

0 10 20 30 40 50

Nodes ranked by number of requests

N
u

m
b

er
 o

f
re

q
u

es
ts

C

SR

ST

R

Graph 3: Request distribution (500 Nodes)

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50

Nodes ranked by number of requests

N
u

m
b

er
 o

f
re

q
u

es
ts

C

SR

ST

R

Graph 4: Request distribution (2000 Nodes)

Obviously, if no actions are taken, the distribution of
requests across nodes is not balanced. Therefore load bal-
ancing is necessary for scalability. Using splitting and
replication the system achieves a fairer distribution of

requests which reflects in better throughput and response
times (Section 7.3.1).

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50

Nodes ranked by number of requests

N
u

m
b

er
 o

f
re

q
u

es
ts

C

SR

ST

R

Graph 5: Request distribution (5000 Nodes)

Using load balancing on the 500 node network leaves
the first 50 nodes handling about 27% of the query load.
While not ideal, the redistribution seems adequate to han-
dle the overall rate of requests, which is 624 queries/sec.
If the rate were higher more load balancing actions would
distribute the load more evenly. This is evident in the lar-
ger network configurations. The higher request rate
causes more splits and replications and thus the first 50
nodes receive only about 11% and 7% of the users’ re-
quests in the 2000 and 5000 node networks respectively.
It is important to note that strategy ST generates about
1.5-2.5 times more catalog requests than SR because it
discards the split summary.

0
50

100
150
200
250
300
350
400
450
500

500 1000 2000 3000 5000

Network size (nodes)

N
u

m
b

er
 o

f
sp

lit
s

(a
ll

le
ve

ls
)

SR

R

Graph 6: Number of load balancing actions for SR (all
levels) and R

As expected the network of 500 nodes required the
fewest splits since the nodes in it are subjected to the low-
est request rate of all networks. Furthermore, as stated, the
ST strategy incurs more splits than SR, since in the for-
mer, the initial summary is discarded and all the requests
that could be answered using the initial summary go to the
split replicas. This causes higher level splitting. In the
5000 node case ST causes almost twice as many splits as
SR. Graph 6 shows the increasing number of load balanc-
ing actions for SR and R as the networks grow larger. In

order to keep up with the request rate the system adapts to
the query load.

The number of new keys created by the load balancing
methods is an indicator of how fast each policy reacts to
the query load characteristics. Consider the case of 2000
nodes: R causes 149 replications. This corresponds to 149
new keys. SR causes just 111 splits but creates 1793 new
keys, which balances the query load faster. The small
number of splits relative to the total number of elements
and attributes clearly shows that dynamic splitting is pre-
ferred to splitting keys in advance. Note that in the 5000
node configuration, SR creates 5300 new keys with only
415 splits. Cascading effects were also observed when
nodes became overloaded as a result of accepting new
keys. Cascading, however, stopped once requests were
dispersed across a sufficient number of nodes.

To conclude, our experiments indicate that SR is the
most suitable strategy for load balancing a distributed
catalog based on our framework. It achieves good scal-
ability, fast reaction to the query load characteristics while
incurring a small overhead for creating new keys.

7.3.4. Alternate Query Load

We experimented with a different query workload in
which elements at all levels are the targets of paths with
equal probability. The results are similar to those obtained
with the previous workload which favors deeper paths. As
expected the distribution of the load is slightly less
skewed leading to a smaller number of load balancing
actions. The relative performance of C, SR, ST and R
remains the same.

8. Related Work

Distributed databases ([18], [28]) use catalogs to store
fragmentation information. Each site has its own replica
of the catalog and determines where to execute a query or
parts of a query. The fact that all the sites of a DDBMS
are under the control of a single authority makes this de-
sign feasible since the number of nodes in the system is
not large. The problem our design tries to address is dif-
ferent in that there is no central authority, no controlled
data fragmentation and a much larger number of data pro-
viders. More recent distributed query processor designs
such as the one in [4] recognize the need for scalable cata-
log services and advocate distributed catalogs. A distrib-
uted catalog proposal based on multiple hierarchies can be
found in [20]. This approach is not automatic since it re-
lies on manual extraction of categories from the data.

Our work builds upon recent peer-to-peer DHT proto-
cols that were inspired by earlier pioneers such as FreeNet
and Gnutella ([8], [9]). They guarantee a definite answer
to a lookup query within a bounded number of network
hops, while Gnutella and FreeNet and other peer-to-peer
studies opt for returning the first 10 or 100 matches to a
query, if any, are found without any guarantees. The dif-
ference of the earlier proposed LH* [16] from current

DHT designs is that it allows a hash table to grow by ex-
panding on servers taken from a large preexisting pool,
rather than allowing nodes to join and become part of an
existing distributed hash table.

Distributed file systems based on DHT protocols can
be found in [7] and [23]. All those studies recognize the
need for performing additional load balancing on top of
the DHT layer to achieve scalability. They resort to repli-
cation of popular files across nodes in the system, assum-
ing that sufficient storage is available.

The study in [12] advocates traditional query process-
ing techniques over data stored in the DHTs. In contrast,
our approach uses the DHTs for storing metadata, which
it uses to guide queries to the relevant data sources.

Other studies of peer-to-peer systems ([6], [30]) use
metadata on each peer to efficiently route searches to
other peers or answer searches on behalf of other peers in
the network. Their query satisfaction criterion (first 100
results render a query satisfactorily answered) is, how-
ever, geared more towards the need of file sharing indi-
viduals.

Sun’s JXTA Search [27] provides searches of data
sources that actively produce data (such as news sites).
The system builds indices on the queries a data source can
answer and distributes them across JXTA hubs to which
data sources connect. Thus, the way catalog information
is distributed across the hubs is determined by where the
data providers connect. It is anticipated that providers of
similar topics will connect to the same hubs. In our case
catalog information location is independent of where pro-
viders join the system.

DNS [2] is a distributed hierarchical catalog service
which is widely used. The naming service it provides is
very a similar concept to our mapping of queries to data
repositories. The analogy is that our system identifies
relevant servers from a query instead of a symbolic name.

9. Conclusions

We presented a design based on established technol-
ogy that allows the implementation of completely decen-
tralized catalog services for large numbers of nodes. In
addition to leveraging existing technology we identified
application-specific circumstances that require enhance-
ments in the form of load-balancing in order to achieve
scalability. Using simulation we demonstrate that our ap-
proach is valid and has good scalability characteristics.

References
[1] A. Aboulnaga, A. R. Alameldeen, J. F. Naughton. Estimating

the Selectivity of XML Path Expressions for Internet Scale
Applications. VLDB 2001.

[2] P. Albitz, C. Liu. DNS and BIND. (4th Ed.) O’Reilly and As-
sociates, 2001.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allow-
able errors, Communications of the ACM, July 1970.

[4] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz,
S. Seltzsam, K. Stocker. ObjectGlobe: Ubiquitous query proc-
essing on the Internet. VLDB Journal 10(1): 48-71 (2001).

[5] B. Choi, What are Real DTDs Like. WebDB 2002.
[6] A. Crespo, H. Garcia-Molina. Routing Indices for Peer-to-Peer

Systems, ICDCS 2002.
[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica.

Wide-area cooperative storage with CFS. SOSP 2001.
[8] FreeNet: http://www.freenetproject.org
[9] Gnutella Resources. http://gnutella.wego.com/
[10] L. Galanis, Y. Wang, S. R. Jeffery, D. J. DeWitt. Processing

Queries in a Large Peer-to-Peer System. CAiSE 2003 (to ap-
pear)

[11] J. Gray, P. Helland, P. O’ Neill, D. Shasha. The Dangers of
Replication and a Solution. Readings In Database Systems, 3rd
edition p372.

[12] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, I. Stoica. Complex Queries in DHT-based Peer-to-
Peer Networks. IPTPS ’02.

[13] Y. Ioannidis, V. Poosala. Histogram-Based Solutions to Di-
verse Database Estimation Problems. Data Engineering Bulle-
tin 18(3).

[14] L. Kleinrock. Queueing Systems, Volume 1: Theory, John
Wiley & Sons, New York, 1975.

[15] J. Kubiatowicz et al. OceanStore: An Architecture for Global-
Scale Persistent Storage. In Proc. ASPLOS 2000.

[16] W. Litwin, M. Neimat, D. A. Schneider: LH* - Linear Hashing
for Distributed Files. SIGMOD Conference 1993: 327-336

[17] Napster. http://www.napster.com
[18] M. T. Özsu, P. Valduriez. Principles of Distributed Database

Systems, Second Edition. Prentice-Hall 1999.
[19] N. Polyzotis, M. N. Garofalakis. Structure and Value Synopses

for XML Data Graphs. VLDB 2002.
[20] V. Papadimos, D. Maier, K. Tufte. Distributed Query Process-

ing and Catalogs for Peer-to-Peer Systems. CIDR 2003
[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker.

A Scalable Content-Addressable Network. in Proc. of the 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications.

[22] A. Rowstron, P. Druschel, Pastry. Scalable, distributed object
location and routing for large-scale peer-to-peer systems.
IFIP/ACM Intl. Conference on Distributed Systems Platforms.

[23] A. Rowstron, P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility.
SOSP 2001.

[24] S. Saroiu, P. K. Gummadi, S. Gribble. Exploring the Design
Space of Distributed and Peer-to-Peer Systems: Comparing the
Web, TRIAD, and Chord/CFS. IPTPS ‘02

[25] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek,
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In Proc. SIGCOMM 2001.

[26] TPC-C Benchmark Standard Specification Revision 5.0.
[27] S. Waterhouse. JXTA Search: Distributed Search for Distrib-

uted Networks. White Paper http://search.jxta.org
[28] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Linsey, P. Ng,

R. Obermarck, P. Selinger, A. Walker, P. Wilms, R. Yost. R*:
An Overview of the Architecture. IBM Research Report
RJ3325.

[29] XML Path Language (XPath) 2.0
http://www.w3.org/TR/xpath20/

[30] B. Yang, H. Garcia-Molina. Efficient Search in peer-to-peer
networks. In Proc. ICDCS 2002.

[31] B. Yang, H. Garcia-Molina. Designing a Super-Peer Network,
In Proc. ICDE 2003.

[32] B. Y. Zhao, J. Kubiatowicz, A. Joseph. Tapestry: An Infra-
structure for Fault-tolerant Wide-area Location and Routing.
UCB Tech. Report UCB/CSD-01-1141.

