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abstract

Software continues to be vital to the modern world, and as its ubiquity increases, its
correctness becomes ever more valuable. Unfortunately, fundamental mathematical
constraints on static analysis preclude the possibility of easy answers to the problem
of correctness.

Modern software engineering relies upon software testing as an approximate
method to establish correctness. Software testing, as exemplified by the use of
test suites, provides the approximation desired, but does not present an obvious
method to determine the accuracy of the approximation. Mutation testing is a
technique that provides both an estimate of the quality of a test suite, as well as an
avenue for its improvement.

Mutation testing is an area of active research, and while it is a useful tool for
a software engineer, it is not a panacea for the problems of software testing. This
dissertation covers research performed with the goals of both improving the state
of the art in mutation testing, as well as applying mutation-testing techniques to
solve other problems in software engineering.

This dissertation proposes new techniques in the field of mutation testing along
three primary lines of research:

1. “Wild-caught mutants”. We propose a technique for the automatic genera-
tion of new mutation operators through the analysis of source-code control
repositories.

2. Guided mutation testing. We propose a set of techniques to foster prioritiza-
tion of time-consuming mutation-testing operations.

3. Automatic construction of test suites. We propose a technique that uses
mutation-testing tools to aid in the process of automatic test-case generation
and the automatic construction of entire test suites.
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1 introduction

Modern civilization relies heavily on software, so much so that there is a recurring
joke in the programming-languages-research community that “software is every-
where” slides (or, for that matter, introductory paragraphs) are also everywhere. It
is an unfortunate reality that, despite its omnipresence, it is common for software
to contain serious flaws. A core focus of the field of software engineering is the
detection and eradication of these flaws.

We are, however, constrained by fundamental, mathematical limits on what can
be accomplished through analysis itself. The standard solution for defect detection
in the software-engineering industry is the test suite. Ultimately, any attempt to
describe the behavior of an arbitrary program must be an approximation due to
the mathematical limits on the accuracy of program analysis, and test suites do not
escape these limits. Test suites are necessarily imperfect, but provide an effective
way to detect defects introduced in programs as they evolve over time.

Good test suites are among the most important tools available to ensure the
quality of software. However, bad test suites help nobody, and evaluating the
quality of a test suite itself is challenging. Furthermore, any determination of the
quality of a test suite must also, necessarily, be an approximation. Mutation testing
provides a method to approximate the quality of a test suite.

Mutation testing of a test suite with respect to a program provides one way to
measure the test suite’s quality. In essence, mutation testing measures the adequacy
of the test suite, which is intended to provide an estimate of the ability of the test
suite to detect faults inserted into the program in the future (DeMillo et al., 1978;
Hamlet, 1977).

The conceptual basis of mutation testing is that one can identify weaknesses in
test suites by mutating the program under test—that is, modifying the program by
making a small, random modification—and executing this newly created mutant
against the program’s test suite. By generating large numbers of mutants, and
counting how many of them are detected by the program’s test suite, this process
measures the quality of a test suite by determining its sensitivity to small changes
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in the program.
Several mutation-testing frameworks exist, but most of these frameworks func-

tion by randomly modifying the source code of the system under test. These
frameworks consist of a set of rules, called mutation operators, which are applied
to the source code at various points to create mutants. These mutants are then
tested against the project’s test suite. If the test suite is able to detect the mutant
(via a failed test case), the suite is said to have killed the mutant; this result provides
evidence to the engineer arguing for the robustness of the test suite. The measure of
sensitivity referred to earlier is the percentage of mutants that are not killed (“live
mutants”): the smaller the percentage of live mutants, the better.

Our research aims to provide new techniques in mutation testing to improve
both of these core functionalities: the evaluation of test suites, as well as their
improvement by the addition of new test cases.



3

1.1 Motivation
Software engineering is an ever-evolving field, and the central focus of our research
is to contribute to its improvement.

The three primary areas of our research are motivated as follows:

Wild-Caught Mutants

Conventional mutation-testing approaches make random (or effectively random)
modifications to the target program’s code according to some fixed set of substitu-
tion directives, such as replacing “>” with “>=”. Just et al. (2014b) have shown
that this strategy is a useful proxy for real faults.

However, the conventional approach to mutation testing has a basic limitation:
the ad hoc patterns used do not necessarily reflect the types of changes made to
source code by human programmers. Consequently, the measured adequacy does
not necessarily reflect how effective the test suite is at identifying the kinds of
defects that real programmers might introduce.

By using the revision histories of software projects, we have developed a method
for automatically creating new mutation operators that resemble real-world changes
made by programmers. We call such mutants wild-caught mutants. The objective of
our research and development of the “wild-caught-mutants” technique has been to
reexamine mutation testing by using mutation operators that more closely resemble
defects introduced by real programmers.

Guided Mutation Testing

While it provides useful information about a program’s test suite, the value of mu-
tation testing itself is fundamentally limited by its computational cost. On the scale
necessary for robust mutation testing, compilation itself is a substantial burden.
Once a mutant is created and compiled, the test suite must be executed. Because the
time needed to execute the test suite can be arbitrarily high, another computational
roadblock is created. This disadvantage can manifest in the unfortunate situation
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that without the use of tremendous computational resources, the results of an ex-
ecution of a mutation-testing system can be out of date before completion. That
is, the process can take so long that the underlying code has changed significantly
through normal development in the time required for the mutation-testing system
to operate. This computational barrier significantly limits the wider adoption of
mutation testing.

Our aim is to create techniques that improve the real-world applicability of
mutation testing by lowering these computational barriers. We propose techniques
that employ machine learning to predict successful compilation, semantic equiv-
alence, and the severity of faults introduced through mutation, thereby allowing
mutation testing to provide useful feedback while consuming fewer computational
resources.

Test-Case Generation

Beyond simply evaluating the quality of test suites, we also seek to improve them.
Test-suite development often focuses on code coverage, but this strategy has lim-
its (Inozemtseva and Holmes, 2014). Instead, we attempt to construct stronger test
suites through the combination of mutation testing and target-oriented fuzzing. A
live mutant provides an example program usable by the engineer to expand the test
suite—so long as the mutant program is semantically different from the original
program and an input that kills the mutant can be found to create a new test case.

Our goal is to construct both individual test cases, as well as entire test suites.
Our strategy to accomplish these goals is to first find live mutants, and then kill
them through the application of target-oriented fuzzing. When performed on an
individual mutant, a successful application of the technique will yield a test case.
When the results of analysis of an entire corpus of mutants are aggregated, the
result is a test suite. We believe that our technique can be a powerful tool for an
engineer seeking to build a stronger test suite for their project, either by adding
individual test cases or generating an entire test suite.

While our ultimate goal is to enable the development of a system for improving
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test suites quickly and with relatively low cost, we extend the concept a step further:
Beyond just the generation of test cases, we attempt to provide an argument for the
inclusion of our generated test cases within a project’s test suite. We combine a
live mutant from the results of mutation testing with an input causing the mutant
and original program to exhibit different behavior to justify to the engineer that
our constructed test case is useful—not only do we create a new test case, but we
provide an example fault detected by the new test case.
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1.2 Contributions
Ultimately, this thesis is focused around the development of new techniques in
mutation testing, both in mutation testing itself as well as its application to the
broader field of software engineering.

These contributions are grouped in three broad categories.

Wild-Caught Mutants

We describe a technique—“wild-caught mutants”—that automatically creates muta-
tion operators that others have identified as being missing from previous mutation
approaches (Just et al. (2014b)).

We provide a tool-chain for mutation-operator extraction that implements the
wild-caught-mutants technique. This tool-chain allows the user to harvest mutation
operators from most common programming languages and then apply them to a
system under test to perform mutation testing of a test suite.

We report on experiments in which we extracted mutation operators from a
corpus consisting of the 50 most-forked C-based projects on GitHub. We found
that wild-caught mutants can capture faults that traditional mutation operators
are unable to reproduce. Compared to existing mutation operators, the mutation
operators obtained by the wild-caught-mutants technique lead to mutants that are
roughly as hard to “kill” as mutants from traditional mutation operators. However,
they offer a richer variety of changes, and thereby provide a more extensive way to
evaluate the quality of a test suite.

Guided Mutation Testing

We describe a set of techniques for training machine-learning models to predict
qualities of mutants created during the process of mutation testing. Through the
use of models trained with these techniques, an engineer carrying out mutation
testing can generate “interesting” mutants for testing a test suite, with the engineer
having the ability to specify what particular features they find interesting.
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We provide a tool-chain for prioritizing mutants. This tool-chain allows the
user to use either “off-the-shelf” or custom-trained models to prioritize mutants
generated by a mutation-testing framework. We use our wild-caught-mutants
system as the underlying mutator, but other mutation-testing frameworks can
be adapted for use with the technique. While one of the features we predict—
compilation—is more relevant to our wild-caught-mutants system (as most other
systems do not suffer from the low compilation rate of wild-caught mutants), our
tools predict other more universally relevant features as well.

We report on experiments in which we analyzed five Java-language projects
with voluminous test suites. Models were trained in three different modalities using
mutants derived from each project individually and as a group; these models were
used to determine both how well each individual model functions on its source
project, as well as how well it generalized to other projects. From these data we
establish both the cost and benefit of custom-training our models to individual
projects.

Test-Case Generation

We describe a technique for creating new and useful test cases for a program. We
identify potential new test cases via mutation-testing of the program, using target-
oriented fuzzing to create a new test case for each live mutant.

We provide a tool-chain for generating these test cases. Our tool-chain allows
an engineer to “plug-in” a mutation-testing system to create live mutants, and then
generate new test cases by killing these mutants.

We report on experiments in which we generated new test cases for the analyzed
program, and constructed several test suites for it. We used this process to determine
how well our technique can both generate an individual test case (given a live
mutant) and build an entire test suite from a minimal starting point.

Our tool-chain is able to construct both individual test cases, as well as entire
test suites. Moreover, it can construct a test suite that has similar performance
characteristics to a hand-constructed test suite—as measured by size, code coverage,
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and the ability to kill mutants—but at a fraction of the cost in time and dollars.
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1.3 Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 presents an overview
of my research and its broader context written for an audience not involved in
computer-science research. Chapter 3 presents a description of “wild-caught
mutants,” a new technique for generating mutation operators from the source-
control histories of software projects. Chapter 4 presents a discussion of machine-
learning algorithms developed to predict qualities of mutants generated through
the mutation-testing process. Chapter 5 described the method for automatically
generating test cases through a combination of mutation testing and target-oriented
fuzzing. Chapter 6 concludes.
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2 science communication

Some of you may remember the days when computers seemed extremely fragile;
the “blue screen of death” is less of a boogeyman today than it was a couple of
decades ago, and your phone rarely crashes. This change is due in large part to
advancements in the field of software engineering. What we may have called
supercomputing in the past is now nearly ubiquitous in its current guise of “the
cloud.” As a civilization we have not only gotten better at writing programs, but
also (and perhaps more importantly) understanding them.

Against this backdrop there may be a certain unusual character to my work to
a casual observer. After all, in an era where the most common interaction with
a computer is the use of a pocket-sized device with access to the sum of human
knowledge, it may seem unwarranted to use what amounts to supercomputing
resources to provide incremental improvements to the understanding of individual
programs.

My research is within the programming-languages group at the University of
Wisconsin–Madison, and more specifically within the area of software engineering.
My work has been focused on mutation testing—roughly, the idea that one can attain
useful knowledge about a program and its associated artifacts by making small,
random changes to it and observing the behavior of these “mutants” by executing
the program on all elements of a large test suite. This technique is computationally
expensive: compiling a large program can be time-consuming, executing the test
suite of a robustly-engineered project even more so. The computational expense of
the process is great enough that my work would be impossible without access to
the high-throughput computing environment available here at the university, and
some discussion of why this computing power is needed is merited.

To set the stage for what my work does, I will—briefly—discuss the history in
hopes of explaining how we got here and why there’s no simple solution to the
problems my work addresses.
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2.1 History (and Prehistory)
It is difficult to definitively identify the beginning of software engineering as a field.
The concepts of programming existed before the digital computer, and computer
scientists discussed issues relating to the correctness of computer programs by at
least the 1940’s. But it was the 1960’s that saw both the coining of the term—in
1965—and the first software-engineering conference—in 1968.

However, thirty years before software engineering existed as a specific concept,
critical work in computer science was being done that still resonates to this day.

Alonzo Church and his more-famous graduate student, Alan Turing, performed
some of the earliest work in the area of computability—that is, the possibility of
computing the answer to a problem or to a class of problems. Church and Turing
developed the earliest mathematical models of computation—Church’s lambda
calculus and Turing’s Turing machines—to study this concept.

Much of this critical early work in computer science was focused on two related
problems: the decision problem and the halting problem. The decision problem asks if
it is possible for a computer program1 to determine if any formula is universally
valid given some set of rules. The halting problem asks if it is possible to construct
a computer program P that analyzes another program Q and determines whether,
for a given input to program Q, execution will terminate. 1936 saw both of these
problems answered in the negative—with Church providing the proof that the
decision problem cannot be solved in all cases, and Turing providing the proof for
the impossibility of the halting problem.

Both of these proofs speak to the general case. It is definitely possible to detect
some valid formulas or equations that always hold, and it is possible to determine if
some programs will halt (or continue infinitely). The devil in the details is that it
cannot be done for all possible cases.

These proofs together provide an upper limit to what can be achieved in the area
of program analysis. If I may (over-)simplify the ultimate goal of program analysis,

1It is worth noting that work on this problem predates modern computers by several years, and
the problem was originally phrased in terms of algorithms—that is, a specific list of instructions—as
opposed to computer programs, which simply did not yet exist.
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it is to determine what a program does. We have known for 84 years (at least, as
of this writing) that it is impossible for program analysis to determine whether
or not a program will ever terminate, given some specific input. Unfortunately,
many of the features of a program we wish to ascertain are considerably more
complicated—and equally impossible to determine. Because exact answers are
impossible, what we are left with is approximations.

If we fast-forward some thirty years after Church and Turing’s seminal work, we
see an emerging field focused on what was then called the “software crisis.” While
the difficulties encountered may seem obvious in retrospect, during the early years
of software engineering as a field, the scope of the challenges encountered in the
authoring and maintenance of software were surprising to many early practitioners.
Chief among these challenges was the determination of correctness—especially
because the fundamental limits to program analysis were already well known.

A critical heuristic to address the correctness problem was devised. Inputs to
a program would be recorded, and the desired output given the input would be
recorded as well. This input/output pair is known as a test case, and a collection of
them is called a test suite. While it is mathematically impossible to write a program
that determines what another program does—at least in the general case—the use
of test suites results in an approximation of the correctness of the program. That is,
if a program satisfies all of its test cases, it is, to some approximation, correct. The
failure of specific test cases alerts an engineer to faults in the program, allowing
those faults to be detected and corrected more easily.

The common industry practice, called regression testing, is to construct and re-run
a test suite to test the behavior of a program after it has been modified by an engineer,
to ensure that the program is still correct, relative to the test suite. It is unfortunately
easy for an engineer working in some area of a program to inadvertently cause a
bug to show up in another area. Regression testing makes it possible to identify
some of these bugs during the development and testing process. This process is
critical to modern software engineering; it is common for the engineers overseeing
projects to mandate that a regression test be performed for every change to the
program submitted by a developer working on the project.
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Today, we call the person responsible for this testing process—and thus, ulti-
mately, responsible for the approximation of program behavior—a software engi-
neer.
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2.2 Mutation Testing
Mutation testing was originally proposed by DeMillo, Lipton, and Sayward in
1978 (Demillo et al., 1978). Further work followed in the late 1970’s and a tool
performing the task first appeared in 1980. Unfortunately the technique has, even
from its beginnings, been extremely intensive in terms of computational resources,
so it would take another twenty years of increases in computational power to see
substantial research activity in the field.

Mutation testing as an idea is inseparable from test suites. A test suite, as
discussed earlier, represents an approximation of the behavior of a program. We
know that it is not a perfect approximation, but we would like to know exactly how
imperfect of an approximation a particular test suite is. Mutation testing provides
one way to obtain such an estimate. It is worth noting that ultimately this method
creates an approximation of the quality of an approximation, because any exact
measure is mathematically impossible. Such is the cruelty of the halting problem.

This problem—estimating the quality of a test suite—is where mutation testing
comes in. The basic idea is that one can evaluate the quality of a test suite by
changing the program for which the test suite was constructed and observing if the
test suite can identify that the behavior of the changed program is different from
that of the original program. We call the program modified in this way a mutant,
and say that the test suite kills the mutant if it is capable of detecting a behavioral
difference. Every mutant evaluated in this way provides one of two things to the
engineer using the technique:

• If killed, the mutant provides some evidence of the quality of the test suite.

• If live, the mutant provides a modification to the program not detected by the
test suite, which is an opportunity to improve the test suite by developing a
new test case that kills the mutant.

We call the proportion of mutants killed by the test suite the test suite’s mutation-
adequacy score. After performing a full run of mutation testing, the engineer then
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receives the mutation-adequacy score of the test suite, as well as a list of mutants
not killed, and thus suggestions of potential changes to the test suite. These live
mutants generated through the mutation-testing process do not directly contribute
to the test suite, but instead only serve as guidance indicating potential changes
undetectable by the suite. My work in test-case generation uses these live mutants
as a basis for the expansion of a test suite.

Mutation testing is not without its problems. As mentioned before, it is extremely
expensive in terms of computational resources. While mutating programs is rel-
atively fast, the compilation process required after the mutant is created can be
time-consuming, and executing the test suite on each mutant generated to compute
the suite’s mutation-adequacy score is typically even more expensive computation-
ally.

Computational costs are not the only problem. It is possible for a mutant to be
different syntactically from its parent program—that is, its source code has some
difference—but semantically identical—that is, it functions exactly the same as
its parent. These mutants are called equivalent mutants, and a consequence of the
decision problem discussed above is that it is mathematically impossible to catch
all of them. This limitation creates a set of effective false negatives created by the
process. An equivalent mutant will not be caught by a test suite (provided the
program being tested is deterministic, at least), and an equivalent mutant presented
to an engineer presents no opportunity to improve the test suite because the suite
cannot be extended to kill the mutant. Thus, equivalent mutants both make a test
suite’s mutation-adequacy score less accurate and waste the time of an engineer
reviewing the results of the process.

These problems have limited the adoption of the technique; much of my work
has been focused on improving the state of the art of mutation testing.
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2.3 Improvements to Mutation Testing
Traditional mutation-testing tools function by making small, random modifications
to a program. These modifications are made through the use of a set of potential
changes called mutation operators. These operators typically make small changes to
the program, such as changing the behavior of a comparison (from “greater than”
to “less than,” for example), or duplicating (or removing) some operation from
the program.

One limiting factor of this system is that these changes are, ultimately, arbitrary.
Standard mutation operators are chosen by the designer of the mutation-testing
tool during the development process of the tool. As a result, while the mutants
created with these systems can provide insight into the test suite being evaluated,
these changes do not necessarily look like the sorts of changes human programmers
make.

My initial research into mutation testing provided a new technique—called
“wild-caught mutants”—that offers a solution to mutation operators not tracking
human-authored changes.

Modern software-engineering projects virtually all use source-control systems.
A source-control system is a program that records the history of the source code
of a project, collecting all changes to the code, so the engineers using it can revert
the project to a specific point in time. This feature is especially useful in finding
faults in a program—if the time when a fault was introduced to a program can be
determined, the source-control system can show the engineers what changes were
made at that time, and that information can be used to quickly identify the cause of
the fault. The combination of the central repository of source code with the ability
to roll back time has proven to be so powerful to software engineers that the use of
source control has become ubiquitous within the field.

The wild-caught-mutants technique leverages this history of changes to create
new mutation operators. During the harvesting phase of the techniques, my tool-
chain analyzes all of the recorded changes in a project’s history in an attempt to
identify small changes that can be turned into mutation operators. These changes



17

must be relatively small—each typically modifying only a single line of code—and
be able to be stored in an abstract form so that they can be applied to other programs.
This abstraction mostly functions to allow patterns to be matched in other programs
without information specific to each program having to match—the structure of
source code is maintained, but features that vary wildly between programs, such
as variable names, are treated as wildcards to allow the patterns to match.

Once the harvesting process is completed, the tool-chain emits the set of mu-
tation operators it collected, which can then be used for mutation testing. My
tool-chain has been designed from the start to make as few assumptions as possible
about the underlying code, and as a result it functions with most programming
languages. The harvesting process, while specific to individual languages, can be
further customized for individual projects; a user of the system can harvest a set of
mutation operators either from publicly available source-control repositories, or by
analysis of the history of their own project. In either case, the harvested mutation
operators can then be used to create sets of mutants for mutation testing.

I was able to show that this technique was able to create new mutation operators
that were not found in existing mutation-testing tools, and do so automatically
through the analysis of the source-code repositories of existing projects.

One limitation of the system became apparent during the experimentation—due
in large part to design decisions allowing the tool-chain to be largely language-
independent, the compilation rate of mutants generated by the system was low
compared to traditional mutation-testing tools. My next major project was an
attempt to solve this problem, as well as some related issues with mutation testing.

Compilation is the process of converting a program from human-readable (and,
really, more importantly: human-writable) source code to a binary format ready
to be executed on a computer. While relatively fast for small projects, this step in
the build process can consume a large amount of computing resources for large
projects, and as a result having a mutation-testing system that generates mutants
with a low compilation rate is a problem. To solve this—and some related issues—I
developed techniques for guided mutation testing.

Guided mutation testing is the idea that mutation testing can be improved
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by prioritizing a subset of mutants for more detailed analysis. I approached this
problem by using machine-learning techniques to model both the mutation operator,
as well as the source code where the mutation operator is applied, and used these
models to predict some features of the resulting mutant. My experience with wild-
caught mutants made successful compilation an obvious feature to start with, but
compilation was not the only prediction made by the system.

My primary goal with guided mutation testing was to reduce the computational
power required for mutation testing. As a result, the use of machine-learning
techniques may seem counterintuitive, because training machine-learning models
can be extremely costly in terms of computational resources. While it is definitely
true that training is expensive, the evaluation of machine-learning models—that
is, the computation of a prediction once a model has been fully trained—is very
fast, and in the standard use case of the technique, the system will be employed
in evaluation mode vastly more frequently than it is trained. Furthermore, while
the primary use case is to allow custom-trained models to help a specific software-
engineering project, users have the option of using “off-the-shelf,” pre-trained
models instead, thus requiring no additional resources for training.

Using this technique, I was able to train machine-learning models to predict
with high accuracy whether or not a mutant would compile, allowing a user to
filter out most non-compiling mutants before taking that step. However, that was
not the only feature I trained models to predict.

Equivalent mutants are mentioned in the previous chapter as a problem with
mutation testing. As a result of the impossibility of the decision problem (discussed
in the history of software engineering above), there cannot exist a perfect technique
for determining if two mutants are semantically equivalent. There are, however,
other forms of equivalence that can be detected. One of these forms of equivalence
is binary equivalence.

The compilation process converts human-written source code into computer-
understandable machine code. Many elements of source code that allow humans
to understand and modify it easily—such as comments, variable or function names,
and even formatting of the layout of the text to improve readability—are meaning-
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less to a computer and get stripped out by the compiler before the machine code is
generated. As a result, is is easily possible for two programs with different source
code to have identical machine code. I call two programs binary equivalent if their
machine code is identical—regardless of the similarity of their source code.

Binary equivalence only captures a subset of semantically equivalent mutants,
but this form of equivalence can be determined without error. Notably for the
mutation-testing process, analysis of a binary-equivalent mutant is pointless, be-
cause it is the exact same program as the original. In addition to the prediction of
successful compilation, I was also able to identify most binary-equivalent mutants
through a trained machine-learning model.

While mutation-testing fundamentally relies upon the analysis of mutants, not
all mutants are equally useful to the process, even after non-compilable and binary
equivalent mutants are filtered out. I used machine-learning models to predict one
further feature of mutants: discernment.

If we view mutation testing as a mechanism both to evaluate the quality of a
test suite, as well as provide a basis for its expansion through the identification of
its weaknesses, not all mutants are equally valuable. At one extreme, a mutant that
causes the program to stop execution essentially immediately after it starts would
be so catastrophic that every test case in a suite may detect it. Simultaneously, as our
detection of equivalent mutants is imperfect, a mutant found by no test cases may
be equivalent. Thus the ideal mutant is one that we expect to make a behavioral
change (so that it is not an equivalent mutant), but makes a subtle enough change
that it is not trivial to detect. Discernment is the metric I used to quantify this quality.
A discerning mutant is one that is expected to trigger a small number of test cases,
given a large-enough test suite. That is, create a change in program behavior that is
detectable, but not one that is so catastrophic that any functioning test case would
be expected to kill it.

I was able to show the ability to predict these three qualities—successful compi-
lation, binary equivalence, and discernment—through use of the guided-mutation-
testing technique. Use of the technique allows an engineer to strip down the mutants
generated from mutation testing to a small set of mutants more likely to provide
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immediate results.
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2.4 Test-Case Generation
My work in mutation testing has not been focused entirely on improving the tech-
nique. My most-recent work has been a collaboration with other researchers—Zi
Wang and Thomas Reps—in the area of test-case generation, producing exciting2

results. As mentioned earlier, mutation testing provides both an estimate of the
quality of a test suite, as well as guidance for the construction of new test cases. My
work in test-case generation automates the process of building new test cases from
the results of mutation testing.

Test suites are vital to the modern software-engineering process, but they do
come with costs. The test cases within these test suites require effort to create, and
their execution requires computational resources. Beyond the engineering time
spent in the construction of the test suite, computational resources are consumed
every time a regression test is performed. High-quality test suites are necessarily
large, and eventually can grow large enough that executing them in their entireties
can become prohibitively expensive.

My goal with my test-case-generation research is to address both of these issues
with software testing. The technique introduced in my work not only allows the
generation of new test cases, but also allows a user to generate test cases in such
a way as to maximize the utility of the test cases created, so as to avoid adding
extraneous cases to the test suite.

If we look at a computer program in its most abstract sense it can be viewed as,
effectively, a mathematical function, one that maps some input to some output:

output = program(input) (2.1)

As such, a test case can be thought of as the pair 〈input, output〉, where a program
passes the test case if its output when given the provided input matches the test
case’s recorded output. It follows, then, that it is easy to describe a test-case-

2When reading this description, please understand that I am an academic computer scientist,
and my definition of “exciting” may not line up directly with the definitions in use by all readers of
this work.
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generation algorithm: choose a random sequence of data as an input, record the
program’s output, and call this a test case. While this algorithm produces valid test
cases, the resulting test cases typically evaluate only the program’s input validation—
that is, the part of the program that (hopefully) detects that its input is garbage
and responds appropriately. While testing a program’s input-validation routines is
valuable, input validation is (typically) only a small part of the program, and thus
this algorithm provides limited value when one’s goal is testing the entire program.
Furthermore, every test case generated this way adds more computational costs
to every regression test conducted. This additional cost necessitates test cases to
have some level of quality; because every test case added to the suite imposes
computational costs in the future, test cases have to provide an amount of value to
the engineer that justifies not only the cost of their creation, but the cost of their
execution over time.

So, more interesting test cases are needed. My work here builds upon mutation
testing in the hopes of generating test cases that meet a basic threshold of interest.
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3 wild-caught mutants

3.1 Introduction
Good test suites are among the most important tools available to ensure the quality
of software. However, bad test suites help nobody, and evaluating test suites
themselves is challenging. Mutation testing of a test suite with respect to a program
provides one way to measure the test suite’s quality. In essence, mutation testing
measures the sensitivity of the test suite, which is intended to provide an estimate
of the ability of the test suite to detect faults inserted into the program in the future
(DeMillo et al., 1978; Hamlet, 1977). Conventional mutation-testing approaches
make random (or effectively random) modifications to the target program’s code
according to some fixed set of substitution directives, such as replacing “>” with
“>=”. Just et al. (2014b) have shown that this strategy is a useful proxy for real
faults.

However, the conventional approach to mutation testing has a basic limitation:
the ad hoc patterns used do not necessarily reflect the types of changes made to
source code by human programmers. Consequently, the measured sensitivity does
not necessarily reflect how effective the test suite is at identifying the kinds of
defects that real programmers might introduce.

The objective of our research has been to reexamine mutation testing by using
mutation operators that more closely resemble defects introduced by real program-
mers. Thus, the high-level goal of our work is as follows:

Find a method for creating potential faults that are closely coupled with defects
created by actual programmers.

We have developed a method for identifying such mutation operators by using the
revision histories of software projects. We call such mutants wild-caught mutants.

When interpreting a revision history, it may be difficult to determine pre-
cisely when a defect was introduced. For this reason, we use instead the reversal
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of what is likely to be a correction in the revision history. That is, the orienta-
tion of a mutation operator that we recover is backward with respect to the di-
rection of the patch from which it was recovered in the revision history. From
a patch of the form “before-code → after-code,” we create a mutation opera-
tor “patternA ⇒ replacementB,” where patternA is a pattern created from code
fragment “after-code,” and replacementB is a rewrite created from code fragment
“before-code.”1

After we present the details of our method for extracting such mutation opera-
tors, there are a number of natural research questions that we consider. For starters,
we wish to know whether wild-caught mutation operators subsume the manually
curated mutation operators widely used until now:

Research Question 1: Does the the operator-harvesting method of the wild-
caught-mutants technique find existing mutation operators?

Conversely, perhaps wild-caught mutants exhibit useful qualities that go beyond
past work:

ResearchQuestion 2: Does the operator-harvesting method of the wild-caught-
mutants technique find operators that are not existing mutation operators?

We also want to know whether our approach leads to improved mutation testing:

Research Question 3: Do wild-caught mutants exhibit behavior that is quan-
tifiably different than existing mutation operators—and, if so, in what ways?

While backward patches seem more likely to (re)introduce bugs, which is
good from the standpoint of mutation testing, forward patches may also describe
interesting human-generated changes.

1While a patch “before-code→ after-code” could introduce a defect—and hence our recovered
mutation operator would represent a correction—our system confines itself to small and typically
single-line patches, which one might expect to be corrections more often than defect introductions.
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Figure 3.1: Overview of mutation-operator extraction and insertion through the
mutgen/mutins toolchain
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Research Question 4: Does harvesting from forward patches yield many
additional mutation operators, and do the behaviors of these new operators
differ significantly from those harvested from backward patches?

The contributions of our work can be summarized as follows:
We describe a technique to automatically create mutation operators that others

have identified as being missing from previous mutation approaches (Just et al.
(2014b)).

We created a toolchain for mutation-operator extraction that implements the
wild-caught-mutants technique. This toolchain allows the user to harvest mutation
operators from most common programming languages (using mutgen) and then
apply them to a system (using mutins) to perform mutation testing of a test suite.

We report on experiments in which we extracted mutation operators from a
corpus consisting of the 50 most-forked C-based projects on GitHub. We find
that wild-caught mutants can capture faults that traditional mutation operators
are unable to reproduce. Compared to existing mutation operators, the mutation
operators obtained by the wild-caught-mutants technique lead to mutants that
roughly as hard to “kill” as mutants from traditional mutation operators. However,
they offer a richer variety of changes, and thereby provide a more extensive way
to evaluate the quality of a test suite. Harvesting from forward patches provides
a significant number of operators not obtained from backward patches. There is
some support for the conjecture that, compared to forward-harvested operators,
backward-harvested operators can introduce defects that more closely resemble
defects introduced by real programmers.

Organization. The remainder of the chapter is organized as follows: Section 3.2
offers an overview of our approach, then describes mutation-operator extraction
and mutant insertion in detail. Section 3.3 presents our experimental setup, followed
by experimental results in section 5.7. Section 3.5 considers threats to the validity of
our approach. Section 3.6 discusses related work. Section 3.7 describes supporting
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materials that are intended to help others build on our work. Section 5.10 concludes.

3.2 Harvesting and Insertion
As shown in fig. 3.1, our system consists of two tools: mutgen, for extracting
reusable mutation operators, and mutins, for applying these operators to the code
of a system under test. The extraction process—referred to as harvesting—generates
a mutation-operator set from a corpus of diff -formatted code patches. Our insertion
tool, mutins, can then apply these mutation operators to a new code base distinct
from that used during harvesting. The main input to mutgen is a corpus of patches
for harvesting; the main input to mutins is a target code base to mutate. Both
tools are parameterized by a second input, a language definition, which specifies
the syntactic elements of the language on which they operate (see section 3.2). In
other words, our implementation of the wild-caught-mutants approach is really a
framework that can be retargeted easily to work on other languages.

Our toolchain operates in three phases: idiomization, harvesting, and insertion.
Idiomization augments the language definition to conform more closely with the
patch corpus or system under test. This preprocessing step is performed by mutgen
and is described in section 3.2. Harvesting extracts novel mutation operators from
the patch corpus. This process is also performed by mutgen and is described in
section 3.2. The final insertion step applies harvested mutation operators to the
system under test. It is implemented by mutins and described in section 3.2.

Language Definition

We define a language as a set of operators, keywords, quote delimiters, and com-
ments (both block comments and single-line comments). Our language parser is
essentially a lexical analyzer. We chose to utilize a strictly lexical—as opposed to
AST-based or similar—as to allow our system to be more flexible with regard to its
inputs. A purely lexical model does not require the harvester to be able to compile
any part of its input corpus and can operate on code fragments without additional
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K auto break case char const continue d e f a u l t
K do double e l s e enum extern f l o a t f o r goto
K i f i n l i n e i n t long r e g i s t e r r e s t r i c t re turn
K shor t signed s i z e o f s t a t i c s t r u c t switch
K typedef union unsigned void v o l a t i l e while
O = += −= ∗= /= %= &= |= ^= <<= >>= ++ −−
O + − ∗ / % ~ & | ^ << >> ! && | |
O == != < > <= >= [ ] −> . ( ) , ? :
Q ’ "
C /∗ ∗/
c //

Figure 3.2: Language-definition file for C. The first character on each line specifies
keywords (K), operators (O), quoted string literals (Q), block comments (C), or
single-line comments (c).

context. However, our language-definition files are simpler than those required
by a full lexical-analyzer generator (e.g., flex), in part because we do not need to
feed tokens into a full compiler. Additional simplification is possible by leveraging
commonalities seen in the basic syntax of C and other C-influenced languages, such
as C++, Java, and C#. These commonalities allow us to recognize tokens with high
accuracy using the following strategy:

• Operators are consumed greedily from the input stream.

• Text from one quote delimiter to a matching quote delimiter is parsed as a
single string literal.2

• Text identified to be not part of an operator is read until whitespace or an
operator is encountered; once isolated in this fashion, the text is classified as
follows:

– If the text exists in the keyword list, it is classified as a keyword.
– If the text begins with a digit, it is classified as a numeric literal.

2Escaped quote delimiters are not handled, but would not be hard to add.



29

– Otherwise, it is classified as an identifier.

While simple, these rules are such that mutgen can effectively parse most languages
that lack semantic whitespace.3

Using such a simple language definition—and not, e.g., a context-free grammar
for the language used in the corpus—supports our goal of using patch histories as
a source of mutation-operator sets. The patches processed by mutgen to harvest
mutation-operator sets have varying and unpredictable contexts: one may easily
encounter a patch that begins or ends mid-expression or mid-comment. Therefore,
we do not parse the input with respect to a context-free grammar for the language
of the corpus. Instead, we perform purely lexical analysis, generating a stream of
tokens as determined by rules in the language definition. This approach also allows
our system to be more flexible with regard to its inputs. The harvester need not be
able to compile any part of its input corpus; it can injest incomplete or invalid code
fragments as well as complete code.

Comments create a challenge during harvesting. The patches we process can
begin and/or end mid-comment. Thus, we cannot guarantee that the tokens gen-
erated when analyzing a particular patch correspond to actual code, as opposed
to a natural-language comment. We address this problem in both the extraction
and insertion phases. During extraction, we use heuristics to identify (and discard)
patches that are likely to be comments; section 3.2 discusses these heuristics in
more detail. During insertion, we have the full system under test—and therefore
the complete context for any potential insertion—so we can identify comments
precisely and exclude them from mutant insertion.

Idiomization

The language-definition file covers all of a language’s keywords and operators.
However, some identifiers are used so often, and in such standardized ways, as to
effectively be additional keywords. We call these identifiers idioms and the process

3Python’s semantically-meaningful whitespace could be handled as well by materializing and
later dissolving explicit indent/outdent tokens: a standard Python lexing/parsing technique.
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Table 3.1: Most frequent inferred idioms in our experimental corpus

Idiom Incidence
0 1 350 306

0x00 984 949

dev 695 548

1 578 986

set 491 888

Idiom Incidence
2 489 152

u32 386 045

y 379 709

u8 311 762

file 310 500

Idiom Incidence
s 294 490

line 227 925

data 227 376

inode 216 908

o 215 515

of identifying them idiomization. We collect identifiers that occur within the corpus
above a user-selected threshold. This threshold can be specified by minimum
incidence in the corpus, minimum frequency, or a “top-k” limit of accepted idioms.
Subsequent extraction passes treat these identifiers as additional keywords.

For example, NULL is missing from the C language definition given in fig. 3.2.
This omission is correct: NULL is a standard C macro but is not a C keyword per se.
Adding NULL to this definition by hand would be easy, and would expand the pool
of admissible candidate mutation operators. Unfortunately, the arbitrary choices
required by this method do not necessarily scale. Automated idiomization provides
a pragmatic method to augment a base language definition with identifiers that are
used idiomatically in practice.

Depending on differences in the subject of the patch corpus and the system
under test, idiomization has the potential to identify idiomatic keywords that appear
rarely or never in the system under test. Therefore, we make idiomization optional,
and also allow the system under test to be used as its own source of idiomization.

Table 3.1 lists some of the most commonly identified idioms derived from our
experimental corpus. The influence of the Linux kernel is apparent in several
entries.

Syntactic Mutation

Mutgen identifies candidate mutation operators by isolating small changes (defined
as having fewer than a configurable number of lexical tokens) from the revision
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− i f (x)
+ i f (x && y)

(a) Admissible can-
didate

− : i f . ( $1 . )
+ : i f . ( $1 .&& $_ . )
(b) Mutation operator extracted
from fig. 3.3a

− i f (x && y)
+ i f (x)

(c) Inadmissible
candidate: requires
synthesizing “y”

− i f (x > 0)
+ i f (x > 1)

(d) Candidate
made admissible by
idiomization of “0”

Figure 3.3: Example candidate mutation operators.

history it reads as input. For a patch to be considered for extraction, it must contain
a contiguous section of removed and replaced code that we divide into a “before”
and “after” block. A single patch (that is, a single diff -formatted file) can contain
multiple blocks of modified code, and each individual contiguous block is treated
as a separate candidate mutation operator.

Corresponding blocks of each identified section are broken into a stream of
tokens as described by the language definition (see section 3.2). Mutgen makes
no attempt to understand the underlying semantics or grammar of a processed
language.

Mutins does not attempt synthesis of identifiers or literals, so mutgen requires
that candidate mutation operators not require the synthesis of new information.
In particular, it must be possible to assemble the before state solely from identifiers
and literals matched in the after state, along with any keywords drawn from the
idiomization-enhanced language definition. Once the before and after blocks are
tokenized, mutgen then analyzes both to determine whether this requirement is
satisfied. A candidate mutant that meets the requirement is called an admissible
candidate. Figure 3.3a shows an admissible candidate mutation operator: building
the before text requires no new identifiers or literals beyond those that appeared in
the corresponding after text.
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Conversely, an inadmissible candidate is one that would require synthesis of new
information to turn its after state back into its before state. The candidate mutation
operator in fig. 3.3c would be discarded as inadmissible: its before state includes the
identifier “y,” which is not found anywhere in the after state.

The idiomization process discussed above allows for limited synthesis of terms
not present in the after state. Thus, idiomization turns some otherwise-inadmissible
candidates into admissible ones. The candidate mutation operator in fig. 3.3d would
be inadmissible if we had to synthesize the “0” in the before state. However, “0” is
so common that it is always recognized as an idiomatic keyword in practice. Thus,
the before state of fig. 3.3d can be constructed from the after state by replacing “1”
with the idiomatic keyword “0”.

Figure 3.3b shows the tokenized mutation operator extracted and generalized
from fig. 3.3a. In the mutation-operator language of mutgen and mutins, “:” indi-
cates a keyword, where the text that follows identifies the keyword itself. Likewise,
“.” indicates an operator, where the text that follows specifies the operator text. For
identifiers and literals that appear in both the before and after states, we number
after identifiers and literals starting from 1. “$i” represents the ith identifier or
literal. This notation lets us represent mutation operators that are polymorphic
with respect to identifier names and literal values. Thus, the generalized mutation
operator in fig. 3.3b can match a wide variety of “ if ” statements, not merely those
that test the value of “x && y,” as in fig. 3.3a. “$_” marks identifiers and literals
that do not appear in the before text.

As seen in fig. 3.3b, mutation operators are stored in a plain-text format that
humans can easily read and edit. This feature allows a user to create hand-written
mutation operators for use in our mutation-testing system.

Figure 3.4 shows some candidate mutation operators identified by mutgen.
Figure 3.4a shows a patch that fixes a missing else keyword. From this patch, we
harvest a mutation operator that can remove any else keyword immediately after
a right curly bracket. The patch in fig. 3.4b generalizes into a mutation operator
that can add a semi-colon to certain while statements. Figure 3.4c yields a mutation
operator that, when applied to C code, can strip a modulo operation applied to a
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− }
+ } e l s e

(a)

− while ( i < n ) ;
+ while ( i < n)

(b)

− TMPFILE
+ TMPFILE % 512

(c)

Figure 3.4: Examples of real candidate mutation operators found within the experi-
mental corpus.

single identifier.

Filtering Heuristics

Our initial expectation that admissible candidate mutation operators would be
rare proved to be untrue. On the contrary, our initial run of mutgen over the patch
corpus used in our experiments yielded over twenty million mutation operators:
more than it was reasonably possible to evaluate. Manual inspection revealed that
many of these were not worth keeping. For example, some would only mutate
comments or were so complex as to be unlikely to match token sequences from
other code bases. We therefore extended mutgen with heuristic filters to detect
and discard operators with less-promising potential. Mutgen’s complete filtering
sequence, applied in the order given below, is as follows:

1. Too many tokens: Candidates that consist of large amounts of code are so
specific that they will probably not match in any other code base. Therefore,
we discard candidates that affect eleven or more tokens.

2. Too few tokens: Conversely, single-token candidates would match too fre-
quently to be practical. Therefore, we require that either the before or the after
text contain at least two tokens. Note that identifier shifts (section 3.2) can
still apply to single-token before and after texts.

3. ASCII art: Candidates that contain three or more repeated operators are
assumed to be comments and excluded. This situation commonly arises in
line-spanning ASCII art such as “∗∗∗∗,” “−−−−,” or “////.”
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4. Comment detected: Using the language definition (section 3.2), we can rec-
ognize candidates that include the start or end of a comment. Mutating
comments is not useful in mutation testing, so we exclude such changes.

5. Needs synthesis: Per section 3.2, we discard candidates for which the pattern
contains identifiers or literals not present in the replacement. Our current
version of the toolchain does not support the synthesis of identifiers (outside
of the limited identifier conversion in identifier shifts or through the use of
identifiers treated as keywords through idiomization) that would be required
to apply these mutation operators to a target program.

6. Too many identifiers: As for “Too many tokens,” a candidate involving too
many identifiers is unlikely to be applicable to new code. We discard candi-
dates that affect more than four identifiers.

7. Too many adjacent identifiers: A candidate containing three “identifiers” in
a row is more likely to be natural-language text than programming-language
source code; we assume that these candidates involve comments and exclude
them from harvesting.

8. Identical tokenized strings: Generalizing a candidate into a reusable muta-
tion operator can make the before and after token streams identical, yielding
a “mutation” operator that changes nothing. This situation can arise, for
example, when the candidate merely affects whitespace. We discard these
candidates.

9. Unbalanced brackets: All mainstream languages include bracketing tokens
that must appear in matched pairs, such as round parentheses, square brack-
ets, and curly braces. Mutation operators can introduce mismatches when
our harvester splits one commit into multiple separate changes, each of which
affects only one side of a matched-bracket pair. We discard candidates that
introduce mismatched counts of opening and closing round parentheses,
square brackets, or curly braces. Introducing this filter increased the compi-
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lation rate of mutants produced by the toolchain from about 8.7% to about
14%.

10. Duplicated mutation operator: Similar candidates can yield identical gener-
alized mutation operators. We discard redundant copies.

Several of the above filters rely on configurable thresholds. Adjusting thresholds
for total tokens or potential identifiers can dramatically change the total harvested
mutation operators, while also changing the probability that each mutation operator
can be matched with (and therefore inserted into) another code base. Some tuning
may be needed for specific languages or coding styles. For example, function
application can lead to multiple adjacent identifiers in many functional languages:
“sum x y z” in ML or “(sum x y z)” in Lisp instead of “sum(x, y, z)” in C. In such
languages, the “Too many adjacent identifiers” filter should only be used with a
high threshold.

The result of applying these culling heuristics was to reduce the generated set
from over twenty million mutation operators, most of them unusable, to roughly
forty four thousand, of which a larger proportion can be applied to other code
bases. Section 3.2 discusses the empirical behavior of these filters in greater detail.

Effect of Filtering Heuristics

Figure 4.4 depicts the filtering process as applied to Space. Flow begins at the top
with 20 063 907 candidates and proceeds downward. Each filter removes some
candidates and allows others to proceed to later stages. The width of each curved
arrow represents the absolute number of potential mutation operators discarded
at each stage; the actual count is reported immediately after the colon in each
stage’s description. For example, “Duplicated mutation operator” discards 219 569
candidates. The diminishing width of the straight flow descending along the right
edge of the diagram is proportional to the number of candidates retained after all
preceding steps. Numbers in parentheses are the fraction of surviving candidates
discarded, expressed as percentage of candidates considered at each stage, not as a
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Potential mutation operators: 20 063 907

Too many tokens: 6 249 527 (31%)

Too few tokens: 9 203 131 (67%)
ASCII art: 10 800 (0.23%)

Comment detected: 36 003 (0.78%)
Needs synthesis: 3 469 826 (76%)

Too many identifiers: 465 178 (42%)
Too many adjacent identifiers: 246 056 (39%)

Identical tokenized strings: 102 424 (27%)
Unbalanced brackets: 53 823 (19%)

Duplicated mutation operator: 219 569 (97%)
Harvested mutation operators: 7570

Figure 3.5: Potential mutation operators discarded and retained at each filtering
stage

percentage of the 20 063 907 potential mutation operators gathered at the start. For
example, the “Duplicated mutation operator” filter discards 97% of the mutation
operators that had not already been eliminated in any preceding stage.

In absolute terms, “Too few tokens” is the major gatekeeper, accounting for
nearly half of the initial candidates that do not make it through to the end. “Too
many tokens” and “Needs synthesis” also discard large portions of the initial pool.
The latter could potentially be relaxed by deeper semantic analysis to allow more
ambitious synthesis beyond our idiomization technique. The other filters seem
minor relative to the large starting candidate pool, but notice that each of these
still discards tens or hundreds of thousands of candidates. “ASCII-art” detection
is highly selective and therefore has the least impact, discarding just 0.23% of the
potential mutation operators it considers, but even this filter eliminates 10 800
candidates that would have been pointless to turn into mutation operators. When
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operating at these large scales, even relatively small contributors can be important.

Identifier Shifts

We call the second type of wild-caught mutant extracted by mutgen an identifier
shift. During the extraction process, it is common for mutgen to identify a patch
that consists solely of a change of one identifier to another. While the syntactic-
mutation technique explicitly avoids synthesis during the insertion process (with
the exception of a limited form permitted through idiomization), we capture these
single-identifier changes, calling them identifier shifts, to allow an additional, limited
form of synthesis.

Any patch that is observed to replace solely one identifier with another is marked
as a candidate identifier shift. At the end of extraction, all candidate shifts with
incidence above a configurable threshold are encoded as identifier shifts within
the mutation-operator set. All identifier shifts extracted during the harvesting
process are used both “forwards” and “backwards.” That is, a single identifier-shift
mutation operator can replace either the “before” identifier with the “after” or vice
versa.

Table 3.2 shows example identifier shifts harvested from the corpus used in our
experiments.

Insertion

Once the harvesting process produces a mutation-operator set, our mutant-insertion
tool mutins can then apply mutation operators to a code base.

Mutins works by tokenizing all source-code input files using the same language-
definition specification and rules discussed in section 3.2. It then selects a mutation
operator from the mutation-operator set. By default, the selection is done randomly,
but the user may specify either a particular mutation operator in the mutation-
operator set by index, or specify a seed for the random-number generator.4

4Mutins uses the Mersenne Twister(Matsumoto and Nishimura, 1998) random-number genera-
tor, both for the generation of high-quality random numbers, as well as to allow seeds to be used
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Table 3.2: Most frequent identifier shifts in our experimental corpus

Before After Incidence
__init __devinit 12 967

module_exit module_platform_driver 12 897

DEVICE_PRT DBG_PRT 10 097

of_device platform_device 8704

m y 6912

CONFIG_PM CONFIG_PM_SLEEP 6617

CONFIG_EMBEDDED CONFIG_EXPERT 6148

mach plat 5963

A_UINT8 u8 5658

device platform_device 5610

Once the mutation operator is selected, mutins then attempts to match the
mutation operator’s pattern to any subset of the token stream generated from
parsing the source code. All possible matches are identified, and if any exist, one
is chosen randomly if the insertion index is not specified by the user. Mutins then
replaces the tokens in the source file—preserving whitespace—with the tokens
from the replacement in the mutation operator.

To avoid inserting mutants into non-executable portions of the source code,
mutins uses the comment rules defined in the language-definition file—see fig. 3.2—
to identify comments during the insertion process, and does not apply mutation
operators to token sequences that lie within comments. In contrast to the harvest-
ing process, the mutation-insertion process has the entire source file available for
analysis, and so can more reliably identify comments because the full context is
visible.
across systems and allow faithful reproduction of random sequences.
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3.3 Experiments

Repository Mining

We obtained mutation operators by mining public GitHub repositories that contain
C code. We wanted to target the repositories with the largest number of commits;
however, the GitHub API does not provide a way to search based on the number
of commits. As a proxy for number of commits, we opted instead to select those
repositories with the most forks, which is accessible via GitHub’s API. The num-
ber of forks would seem to be a reasonable heuristic for projects with significant
activity—and thus a higher rate of development, and commits from more devel-
opers. Qualitatively, the assumption appears to be warranted: the top 20 project
repositories under this metric include the Linux kernel (Torvals, 2017), memcached
(memcached community, 2017), and Redis (Sanfilippo, 2017). For our experiments,
we used the full revision histories of the top 50 project repositories, which consisted
of approximately 600 thousand commits containing roughly 20million individual
diff blocks spanning 850million lines of text.

Target Program

We used the 50 project histories to rerun (part of) an experiment reported by
Andrews et al. (2005a), substituting the wild-caught mutation operators obtained
from the 50 GitHub project histories for the set of mutation operators used by
Andrews et al.

Andrews et al. experimented on programs from the SIR repository (Do et al.,
2005). For each program, Andrews et al. generated a number of test suites by
randomly choosing a subset of the tests in the program’s full test suite. They then
measured the mutation adequacy of each randomly chosen test suite by running
each test suite over the set of all mutants of the program created by applying
a single mutation operator at a single site in the program. By collecting these
measurements, Andrews et al. constructed a model of the statistical distribution
of the mutant-detection rate over arbitrary test suites, which they compared to a
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similarly constructed approximation of the distribution of hand-seeded faults.
To test the effectiveness of mutation testing, Andrews et al. worked with a

wide variety of programs from SIR, including the Siemens suite. Among these,
Space (Vokolos and Frankl, 1998; Wong et al., 1999) was the only program that they
tested for which real faults were available instead of hand-introduced ones. Because
we were interested in understanding how wild-caught mutants fare against a test
suite’s detection rates for real faults, we worked only with Space. As distributed
by SIR, Space has 38 buggy variants and one “gold” version with no known faults.
Andrews et al. used the bug-free gold version; we did the same to allow direct
comparison with Andrews et al.’s findings.

Procedure

Following the method of Andrews et al., we generated 5000 100-case test-suite
subsets from Space’s set of 13 496 total test cases. Next, we ran mutins on Space,
to identify each possible point at which a wild-caught mutation operator can be
applied. We recorded each possible insertion in a list that could be fed to our
test-suite-execution framework at a later time. We then divided the space of muta-
tion insertion points into batches to be run in parallel on a large-scale computing
platform capable of serving over 300million hours of compute time annually.

We inserted each mutation and compiled the result; if compilation succeeded,
we ran each of the 5000 100-case test-suite subsets. The data was gathered in parallel
because there are no interdependences among any of the runs of a test-suite subset.

Once all test batches completed, we recorded the number of mutants that suc-
cessfully compiled. We also computed the mutation-detection ratio, Am(S), for each
compiled mutant and each test suite, defined as follows:

Definition 3.1. Let S be a test suite. Then the mutation-detection ratio Am(S) is defined
as follows:

Am(S) =
# of mutants detected by S

# of mutants not equivalent to the original program
.
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The denominator of Am(S) requires determining whether each mutant is equiv-
alent to the original program, which is undecidable in general (Budd and Angluin,
1982; DeMillo et al., 1978; Offutt and Pan, 1996). Therefore, Andrews et al. (2005a)
adopt, and we reuse here, a decidable approximation:

Am(S) =
# of mutants detected by S

# of mutants detected by program’s complete test suite.

In other words, any mutant that triggers no failure in Space’s extensive 13 496-case
complete test suite is assumed to be equivalent.

3.4 Results

Research Question 1: Do Wild-Caught Mutation Operators Cover
Existing Mutation Operators?

Just et al. (2014b) describe a set of mutation operators provided by the Major
mutation framework (Just, 2014):

• Replace constants. Mutgen can extract mutation operators that replace con-
stants in the system under test both through the idiomization technique
(effectively turning literal constants into language keywords, which can then
be extracted in the form of a syntactic mutation operator) or identifier shifts.
If specific conversions are not found within the corpus from which mutation
operators are harvested, a mutins user can manually add mutation operators
that replace specific constants.

• Replace operators. All operators seen in the language-definition file used
as an input to mutgen are capable of being extracted as syntactic mutation
operator. Operator replacements can also be added manually to the mutation-
operator set.
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• Modify branch conditions. Operators to modify branch conditions can be
extracted as syntactic mutation operators. (section 3.2).

• Delete statements. Mutgen does not yet support the harvesting of statement
deletions, but there is no impediment to doing so. In the terminology of
Section 5.1, from a patch of the form

ε→ after-code,

we can create a statement-deletion operator of the form

patternA ⇒ ε.

Our framework allows for the replication of all four classes of mutation operators,
although mutgen does not currently harvest statement-deletion operators. Future
work will support the harvesting of these mutation operators; mutins already
supports such mutation operators if mutgen were capable of producing them.

The PIT Mutation Testing suite(Coles, 2017) supports a set of eleven non-
experimental mutation operators, many of which duplicate mutation operators
provided by the Major mutation framework:

• Conditionals Boundary Mutator, Conditionals Mutator, Invert Negatives
Mutator, Math Mutator, Negate Increments Mutator. Mutins can replicate
these mutation operators in the same manner as Major’s Replace operators
mutation operators, as all of these mutation operators consist of replacing
individual operators (or omit a unary minus from a larger expression, in the
case of Invert Negatives).

• Return Values Mutator. Mutins can duplicate this mutation operator via id-
iomization (to harvest common literal numeric values 0 and 1) or via syntactic
mutation operators for the language-specific keywords true, false , and null5.

5The PIT framework operates on Java; while these keywords do not exist in the C language
definition used in the experimentation in this chapter, a Java language definition for mutgen prop-
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• Void Method Calls Mutator Mutins does not currently support statement
deletion, of which this mutation operator is an instance.

• Inline Constant Mutator. Mutins can replicate this mutation operator through
idiomization as in Major’s Replace constants mutation operator.

• Remove Conditionals Mutator, Constructor Calls Mutator, Non Void Method
Calls Mutator. Mutins can utilize harvested mutation operators of these types,
so long as an example of a change of the type exists within the input corpus.

Our framework allows for the replication of ten out of the eleven non-experimental
mutation operators supplied by PIT, again failing to directly reproduce statement
deletion.

Research Question 2: Do Wild-Caught Mutation Operators
Extend Existing Mutation Operators?

In their study of whether real faults are coupled to mutants, Just et al. (2014b) found
that for 27% of the real faults in their study, none of the triggering tests detected
any additional mutants. They manually reviewed those faults, and classified them
as follows: (i) cases where a mutation operator should be strengthened; (ii) cases
where a new mutation operator should be introduced; and (iii) cases where no
obvious mutation operator can generate mutants that are coupled to the real fault

In our experiments, we found that several of the mutation operators identi-
fied by Just et al. appeared among the mutation operators harvested by mutgen.
Specifically, we are able to harvest mutation operators that are consistent with the
classifications of Just et al.:
Stronger mutation operators
erly identifies them as keywords and treats them as such during the harvesting process without
idiomization.
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• Argument swapping. Mutgen is capable of harvesting patches that rearrange
function arguments, which become mutation operators that perform the
inverse rearrangement.

• Argument omission. Mutgen is capable of harvesting patches that contain a
function call modified to have additional arguments, which become mutation
operators that match a function call and replace it with one that has fewer
arguments.

• Similar library method called. The identifier-shift technique (Section 3.2) allows
mutgen to harvest mutation operators of this category by identifying patches
in which a single identifier is replaced by another.
Just et al. specifically mention a Java fault caused by a call to indexOf, where a
call to lastIndexOf should have been performed. Our experiments, which used
a C corpus, found multiple occurrences of the analogous C transformation: a
strchr ⇒ strrchr identifier shift.

New mutation operators

• Omit chaining method call. Mutgen was able to identify mutation operators of
this type, where the fault is a missing call to a one-argument function whose
return type is equal to (or a subtype of) its argument’s type. Specifically, it
found patches in which a missing call to an SQL string-sanitization function
was inserted.

• Direct access of field. While we were unable to find this mutation operator
among the harvested operators—most likely because we were using only C
patches—this mutation category could be generated by a combination of an
identifier shift and a syntactic mutation operator.

Other mutation operators

• Specific literal replacements. The idiomization technique (Section 3.2) allows
mutgen to identify specific literals to be used in mutation operators. To iden-
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Table 3.3: Experimental results when harvesting from backward or forward patches

Aspect Backward Forward
Extracted syntactic mutation operators 7570 8069

Extracted identifier shifts 5000 5000

Total number of syntactic mutants 139 289 183 683

Total number of applied identifier shifts 1876 1876

Successfully compiled syntactic mutants 20 803 21 617

Successfully compiled identifier shifts 127 127

Compilation rate 15% 12%
Average Am(S) 0.81 0.81
Median Am(S) 0.81 0.81

tify literals that are more relevant to the system under test, the implementation
allows the system under test to be used as its own source of idioms.

Figure 3.6 illustrates that these operators are all within the harvesting capabilities of
mutgen. Just et al. provide diff -formatted patches to illustrate faults not coupled
to existing mutation operators; mutgen is able to harvest mutation operators auto-
matically from the provided patches.6 The patches provided by Just et al. were in
Java; while our experiments exclusively used C, our toolchain is language agnostic
and we were able to create a Java language-definition file and extract mutation
operators from the provided Java patches. In addition to being able to harvest such
mutation operators from diff -formatted patches, a user of our system can also
manually specify additional mutation operators in all of the above categories.

Research Question 3: Do Wild-Caught Mutation Operators Differ
From Existing Mutation Operators?

Research Question 3 asks whether wild-caught mutants exhibit behavior that is
quantifiably different than existing mutation operators. Table 3.3 summarizes some

6For some of these patches, it is necessary to supply command-line arguments to change the
values of mutgen’s options from their defaults—specifically, those relating to total-identifier count
and the commonality threshold for harvesting identifier shifts.
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− return solve (min , max) ;
+ return solve ( f , min , max) ;

(a) Math-369 fix as found in Just et al. (2014b)

− : re turn $1 . ( $2 . , $3 . ) . ;
+ : re turn $1 . ( $_ . , $2 . , $3 . ) . ;

(b) Math-369 fix as generalized by mutgen

− i n t indexOfDot = namespace . indexOf ( ’ . ’ ) ;
+ i n t indexOfDot = namespace . las t IndexOf ( ’ . ’ ) ;

(c) Closure-747 fix as found in Just et al. (2014b)

indexOf ⇒ las t IndexOf

(d) Closure-747 fix as generalized to an identifier shift by mutgen

− return . . . + too lT ipText + . . . ;
+ return . . . + ImageMapUti l i t ies . htmlEscape ( too lT ipText ) + . . . ;

(e) Chart-591 fix as found in Just et al. (2014b)

− : re turn . . . .+ $1 .+ . . . . ;
+ : re turn . . . .+ $_ . . $_ . ( $1 . ) .+ . . . . ;

(f) Chart-591 fix as generalized by mutgen

− FastMath . pow(2 ∗ FastMath . PI , −dim / 2)
+ FastMath . pow(2 ∗ FastMath . PI , −0.5 ∗ dim )

(g) Math-929 fix as found in Just et al. (2014b)

− $1 . . : pow . ( : 2 .∗ $1 . . $3 . , .− $4 . / : 2 . )
+ $1 . . : pow . ( : 2 .∗ $1 . . $3 . , .− : 0 . 5 .∗ $4 . )

(h) Math-929 fix as generalized by mutgen, with “pow,” “2,” and “0.5” keywords added by
idomization

Figure 3.6: Examples of mutation operators proposed by Just et al. (2014b) and
identified by mutgen
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− return getPc t (( Comparable<?>) v) ;
+ return getCumPct (( Comparable<?>) v) ;

(i) Math-337 fix as found in Just et al. (2014b)

getPc t ⇒ getCumPct

(j) Math-337 fix as generalized to an identifier shift by mutgen

− lookupMap = new HashMap<CharSequence , CharSequence >() ;
+ lookupMap = new HashMap<Str ing , CharSequence >() ;

(k) Lang-882 fix as found in Just et al. (2014b)

− $1 .= : new $2 .< $3 . , $3 .> . ( . ) . ;
+ $1 .= : new $2 .< $_ . , $3 .> . ( . ) . ;

(l) Lang-882 fix as generalized by mutgen

− i f (u ∗ v == 0)
+ i f ((u == 0) | | (v == 0) )

(m) Math-238 fix as found in Just et al. (2014b)

− : i f . ( $1 .∗ $2 .== : 0 . )
+ : i f . ( . ( $1 .== : 0 ) . | | . ( $2 .== : 0 . ) . )

(n) Math-238 fix as generalized by mutgen, with “0” keyword added by idiomization

Figure 3.6: Examples of mutation operators proposed by Just et al. (2014b) and
identified by mutgen



48

basic metrics from the mutation-testing experiment with Space.

Mutation-Detection Ratio Andrews et al. (2005a) defined the sample-based
mutation-detection ratio Am(S) (see definition 3.1 in section 3.3), and measured
it as 0.75 when existing mutation-testing techniques were applied to Space (Do
et al., 2005) and Space’s test suite. Using the same sample-based technique, we
measured an Am(S) value of 0.81 for the mutation-operator set created via the
wild-caught-mutants technique. This indicates that the mutation operators ob-
tained by the wild-caught-mutants technique lead to mutants that roughly as hard
to kill as mutants from traditional mutation operators.

Compilability Using the wild-caught mutation operators, the compilation-success
rate of the mutants created for Space was around 14% (see table 3.3). Although,
this rate is substantially larger than our original guess that the compilation-success
rate would be less than 5%, the rate is comparatively low: Andrews et al. (2005a)
reported a compilation-success rate of 92% for Space. However, because of the
large number of mutation operators harvested, mutation testing via wild-caught
mutants still appears feasible; our set of 34 439 compilable mutants is more than
three times larger than Andrews et al.’s 11 379-mutant set (34 439 = 20 802 forward
mutants + 21 617 backward mutants - 7980 duplicate mutants).

The majority of failed compilations (64%) arise from simple parsing errors.
Another 21% fail because mutation has turned the left operand of an assignment
into a non-assignable expression (i.e., not a C lvalue). Other frequent compilation
errors include 5% due to invalid operands to binary operators (e.g., “+” applied
to a pointer and a double) and 3% due to using an undeclared identifier. Compi-
lation errors of these kinds are to be expected, given the lexical level at which we
operate. Traditional mutation operators limit changes to ones that are unlikely to
ever introduce parsing errors. For example, negating an if condition or replacing a
“<” with a “<=” will not break compilation except under truly exceptional circum-
stances. Thus, the high compilation rates of traditional mutants arise essentially by
construction. The wild-caught-mutants approach offers no such guarantees. That
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means we waste more time on failed compilations, but it also means that we have
the potential to change code in much more interesting ways.

Research Question 4: Are “Forward” and “Backward” Patches
Different?

While considering patches in the backward direction (“backward patches”) intu-
itively seems more likely to (re)introduce bugs, which is good from the standpoint
of mutation testing, we also tried harvesting mutation operators by considering the
same set of patches in the forward direction (“forward patches”).

Overlap We found that the overlap is considerable between the sets of mutation
operators harvested by considering patches in the “forward” and “backward” direc-
tions, but there is significant non-overlap: of the 13 929 unique mutation operators
found using both techniques, 5860were found only from backward patches, 6359
were found only from forward patches, and 1710 were found by both techniques.

Mutation-Detection Ratio The mutants caused by mutation operators harvested
by forward and backward patches are ultimately equally difficult to kill: average
and median Am(S) scores are 0.81 in each direction, per table 3.3. This may seem
surprising, if backward patches truly represent bug reintroduction. However, one
must keep in mind that the “gold” version of Space used in our experiments passes
its entire, extensive test suite. The test suite, then, effectively traps Space into a
rather narrow set of allowed behaviors. Any deviation from that, whether to fix a
fault or not, is likely to trigger at least one test case failure. Given the constraints
of an extensive test suite, any change will look like a new fault, whether derived
from backward or forward patches. Ultimately, forward patches may still describe
interesting human-generated changes, and therefore harvesting them can be a
worthy enhancement to backward-patch harvesting.
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Ability to Reproduce Faults in Space To evaluate the differences between muta-
tion operators harvested from forward and backward patches, we examined the
faults in the 38 faulty versions of Space. We classified each fault as to whether the
two kinds of harvested mutation operators could reintroduce them, if mutation
testing were carried out on the “gold” version.

• Seven faulty versions (3, 4, 5, 6, 20, 21, and 28) had faults that would be
reintroduced by some mutation operator harvested from backward patches.

• One faulty version (30) had a fault that would be reintroduced by a mutation
operator that was harvested from both the “forward” and “backward” patches.

• Five faulty versions (1, 2, 18, 23, and 33) had faults that could potentially be
reintroduced by mutins, but with mutation operators that were not harvested—
in either direction—from the 50 GitHub projects that we analyzed. Of the
five, faulty version 18 had a fault that could potentially be reintroduced via an
identifier shift, albeit one that we did not harvest; the faults in the remaining
four are expressible as syntactic mutation operators.

The remaining 25 faulty versions required mutations outside of the scope of our
current techniques. The majority of these are expressible as syntactic mutation
operators, but involve too many lexical tokens to survive our filtering heuristics.

While these results are limited in scope, they provide weak support for the conjec-
ture that, compared to forward-harvested mutation operators, backward-harvested
operators can introduce defects that more closely resemble defects introduced by
real programmers. Ultimately, while the ideal is to insert “bug-like” changes into
the target program, a robust test suite must also be able to identify behavior changes
introduced by human programmers, which our wild-caught mutants—whether
derived from bug fixes or not—simulate.

3.5 Threats to Validity
There are several threats to the validity of our work.
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We employ small changes—10 lexical tokens or fewer, and typically single-line—
to generate our mutation operators. These size-limited patches represent a distinct
subset of all possible changes to code, and as a result we do not derive mutation
operators from all valid patches observed. We enact this limitation because the
more complex each individual harvested mutation operator is, the less likely it is
to be matched in any particular piece of code to which it is applied. Smaller and
simpler mutation operators yield a substantially higher proportion of matchable
mutation operators; syntactic mutation operators larger than those we harvest
clutter the system, but are rarely able to be applied to a system under test.

The idealized goal of mutation testing is to measure a test suite’s quality, by
measuring its ability to detect faults of the kind that might be inserted into the
program in the future. One may question whether reversals of past changes are good
candidates as predictors of the kinds of future faults that one wants the test suite
to detect. Our experiment with the 38 faulty versions of Space provides a small
amount of evidence that backward-patch harvesting is a better source of such
candidates than forward-patch harvesting.

Even if our specific harvesting approach proves to be sub-optimal, the general
idea of supporting mutation testing using information harvested from a revision-
control system would still have much potential. A possible improvement, which
we plan to investigate in follow-on work, is to extend the harvesting operation
to include information from a bug-tracking system, such as Bugzilla (Bugzilla
development team, 2016). Śliwerski et al. (2005) investigated how the combination
of a revision-control system and a bug-tracking system provides a way to identify
fix-inducing patches in the revision history.7 Such an approach would provide
three sources of input for harvesting mutation operators: (i) the fix-inducing patch;
(ii) the corrective patch; and (iii) the commonalities between the fix-inducing patch
and the corrective patch.

Rather than experiment shallowly across a large benchmark suite, we chose to
focus on evaluating in depth a single application: Space, from the SIR repository (Do
et al., 2005). This decision allowed us to make direct comparisons with the empirical

7As defined by Śliwerski et al., a fix-inducing patch is one that causes a later bug fix.
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findings of Andrews et al. (2005a). However, if Space is unlike other real-world
code, then this difference would harm the external validity of our findings—i.e.,
the extent to which our conclusions can be generalized to other situations. In spite
of that risk, Space is an appealing subject for an experiment on the effectiveness of
mutation testing. It is not a synthetic benchmark, but rather is a mature piece of
software that has been subject to years of production use. Among the programs
studied by Andrews et al., only Space had variants with real faults instead of hand-
introduced ones. Moreover, at 9124 lines of code, Space is larger than the programs
in the Siemens suite. For Space, mutins generated 241 517 single-mutation mutants,
of which 34 439were compilable. The set of 241 517mutants is a non-trivial set, but
was still small enough that, for each mutant, we could run 5000 100-case test-suite
subsets.

3.6 Related Work
To the best of our knowledge, the wild-caught-mutants technique is novel; however,
several other projects have used related ideas. Some of the latter techniques could
be used to enhance our methods for extracting mutation operators.

Śliwerski et al. (2005) describe a technique to identify fix-inducing patches
within a revision history, and propose applying similar tactics to identify failure-
inducing patches. Many others have used similar strategies, all based on recognizing
specific keywords (such as “fixed” or “bug”) or bug IDs (such as “#42233”) in
commit messages (Kim and Ernst, 2007; Boogerd and Moonen, 2008; Fischer et al.,
2003; Mockus and Votta, 2000; Čubranić and Murphy, 2003). Mutgen could be
extended to use these techniques to attempt to identify “higher-quality” mutation
operators by inferring properties of the changes induced by specific patches in the
source corpus.

Le et al. (2016) mine revision histories to extract bug-repairing patches, and use
these as a basis for program repair. We provide a technique that, effectively, does
the opposite—we use mined patches to break code instead of fixing it.
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Coccinelle’s semantic patches are generalized patches that can be applied to code,
much like our syntactic mutation technique (Padioleau et al., 2006). However, Coc-
cinelle works with manually authored patches, whereas we harvest new mutation
operators automatically. Coccinelle applies semantic changes to multiple blocks of
code, and has been applied to bug detection (Lawall et al., 2010, 2009), whereas
we focus on breaking code for the purpose of mutation testing. The mutation-
testing context lets our toolchain utilize simpler patches, as well as harvest them
automatically.

As a follow-on to Coccinelle, Palix et al. (2010) developed Herodotos, a system to
track the evolution of patterns in code through analysis of a revision history. We
share Palix et al.’s interest in the evolution of code, although we focus on pairwise
diffs between adjacent revisions rather than entire revision histories. Herodotos
requires more manual intervention than our toolchain, most notably to create and
generalize the initial patterns to be tracked across revisions. This approach is sensi-
ble for Herodotos, which ultimately drives interactive code-understanding tools.
However, our batch-testing usage scenario calls for a fully automated approach.

Nam et al. (2011) describe a technique for identifying bug-fixing commits in
a source-control repository and calibrating mutation testing to utilize mutation
operators that more closely resemble the reverse of changes observed in bug-fixing
commits. Nam et al. look for keywords in commit messages, as many others have
done, and also manually inspect commits to confirm that they are indeed fixes. Our
approach is more automated, as we harvest all patches that fit our purely syntactic
filtering heuristics. Likewise, Nam et al. craft several new mutation operators
by hand, whereas our approach automates the entire process of harvesting and
generalizing new mutation operators. Our automation-focused approach may be
less selective, but it allows us to work with a corpus two orders of magnitude larger
than that used by Nam et al.
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3.7 Experimental Artifacts
Our core mutation tools, consisting of mutgen and mutins, are available at https:
//github.com/d-bingham/wildcaughtmutants.

We also provide tools to demonstrate our experiments at https://github.com/
d-bingham/fse2017artifact. However, reproducing our complete set of exper-
iments would require months of processor time (and as such was executed on
a high-throughput computing platform). Therefore, this experimental artifact
recreates scaled-down versions of the experiments described in section 3.3.

The artifact allows the user to harvest a set of mutation operators from scraped
GitHub repositories (omitting the full Linux kernel source due to space and time
concerns). Once a set of mutation operators are harvested from this corpus, the
artifact then generates thirty randomly-chosen mutants (chosen as mutation op-
erators and insertion indices into the Space program), attempts to compile them,
and evaluates the mutated programs against Space’s test suite. With the pass/fail
results from each test case, the artifact then generates random “virtual” test suites
to calculate Am(S) scores for the generated mutants.

The artifact can be executed via a provided shell script or through the use of a
Docker(Merkel, 2014) container, allowing demonstration of a small portion of our
experiment in a highly portable manner.

3.8 Conclusion
For mutation testing to provide a useful measure of the sensitivity of a test suite, it
must produce not only faults within the system under test, but faults that mimic
those caused by the actual developers working on a project. Just et al. demonstrated
that faults introduced through mutation testing can serve as proxies for real faults
introduced by developers and be effectively used to evaluate the sensitivity of
a testing suite, although they also described limitations of existing sets of muta-
tion operators. We expand upon that work by automatically harvesting mutation
operators—wild-caught mutants—and comparing the capabilities of the harvested

https://github.com/d-bingham/wildcaughtmutants
https://github.com/d-bingham/wildcaughtmutants
https://github.com/d-bingham/fse2017artifact
https://github.com/d-bingham/fse2017artifact
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mutation operators to those of existing mutation operators.
Andrews et al. (2005a), discussing threats to validity, caution that “It is also

expected that the results of our study would vary depending on the mutation opera-
tors selected….” Our findings provide strong empirical support for this expectation.
As opposed to existing “synthetic” mutation testing techniques, every mutation we
create is based on a (reversed) change that some real programmer made to some
real piece of code. Our wild-caught approach produces novel mutation operators,
in turn creating defects that are about as difficult to kill as those arising from exist-
ing synthetic mutation operators or Space’s 38 naturally-arising faults. Whether
existing synthetic mutation operators or our wild-caught mutation operators can
objectively be characterized as more “realistic” remains an open question.

“Realism” arguments aside, it is clear that developers benefit if their test suites
can be challenged by bugs that resemble those they might expect programmers to in-
troduce. Our wild-caught-mutants technique can be a source of such bugs. Instead
of crafting mutation operators by hand, we believe that our results demonstrate
that wild-caught mutants provide a stronger method for evaluating the sensitivity
of test suites.
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4 guided mutation testing

4.1 Introduction
High-quality test suites are one of the most valuable tools available to the modern
software engineer. Unfortunately, there are substantial costs associated with the
development of test suites—to say nothing about the costs associated with improving
existing test suites. Mutation testing is a technique that allows a practitioner to both
assess the quality of their test suite and improve it, but it has substantial—often
prohibitive—costs associated with it.

Most mutation-testing frameworks function by randomly modifying the source
code of the system under test. These frameworks consist of a set of rules, called
mutation operators, which are applied to the source code at various points, creating
a new, modified program called a mutant. This mutant is then tested against the
project’s test suite. If the test suite is able to detect the mutant (via a failed test
case), the suite is said to have killed the mutant; this result provides evidence to
the engineer arguing for the robustness of the test suite. A live mutant, however,
provides an example program usable by the engineer to expand the test suite—so
long as the mutant program is semantically different from the original program
and an input that kills the mutant can be found to create a new test case.

This technique, however, is fundamentally limited by its computational cost. On
the scale necessary for robust mutation testing, compilation itself is a substantial
burden. Once a mutant is created and compiled, the test suite must be executed.
Because the time needed to execute the test suite can be arbitrarily high, another
computational roadblock is created. This disadvantage can manifest in the un-
fortunate situation that without the use of tremendous computational resources,
the results of an execution of a mutation-testing system can be out of date before
completion. That is, the process can take so long that the underlying code has
changed significantly through normal development in the time required for the
mutation-testing system to operate. This computational barrier significantly limits
the wider adoption of mutation testing.
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Our aim is to create techniques that improve the real-world applicability of
mutation testing by lowering these computational barriers. We propose techniques
that employ machine learning to allow mutation testing to provide useful feedback
while consuming fewer computational resources. Specifically, our high-level goal
is as follows:

Improve the applicability of mutation testing through the development of
techniques that prioritize mutants for testing.

We have developed techniques for training machine-learning models to predict
qualities important to the usability of mutation testing. Using these predictions,
instead of exhaustively executing or randomly sampling from among all possible
mutants that could be created from a system under test, an engineer could instead
sample from a prioritized set of mutants. Testing this prioritized subsample of
all possible mutants would then allow the engineer to use mutation testing in a
reasonable amount of time.

The most basic prediction provided by this technique is the prediction of whether
the result of applying a particular mutation operator will successfully compile.
We use as an underlying mutation-testing system Brown et al.’s wild-caught mu-
tants(Brown et al., 2017), a toolchain that provides robust modeling of possible
changes to code, but at the cost of a lower compilation rate than other mutation-
testing systems. We wish to improve on this system by preemptively avoiding
mutants expected not to pass the compilation step in the process:

Research Question 5: Can a machine-learning model predict compilation of a
mutant?

Semantic equivalence of mutants is an open problem within the field of mutation
testing. While equivalence testing is undecidable, in general, approximations are
possible. Specifically, mutated code is semantically equivalent to the original code
if the compiled version is identical. We wish to use this approximation to reduce
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the number of potential non-productive mutants:

Research Question 6: Can a machine-learning model predict the binary in-
equivalence of the compiled version of a mutant and the compiled version of
the code from which the mutant was generated?

In addition to successful compilation and binary inequivalence, we aim to predict
a mutant’s interaction with its project’s test suite. While an equivalent mutant is
not interesting to the engineer, a mutant that causes the program’s main function
to immediately exit is similarly uninteresting. Ideally, we would like to generate
mutants that are both unlikely to be equivalent and unlikely to be “catastrophic”—in
the sense that they cause such large-scale failures that they are trivially detected by
any reasonable test suite. To quantify a mutant’s likelihood to be both inequivalent
and non-trivial to kill, we define the concept of discernment in section 4.2. We aim,
then, to identify mutants with greater discernment.

Research Question 7: Can a machine-learning model successfully predict the
discernment of a mutant?

Finally, because our technique uses machine learning to make these predictions,
we investigate different scenarios for using our techniques. Our techniques allow
the use of either “off-the-shelf” trained models or models trained directly from the
system under test. Thus:

Research Question 8: How effectively do our machine-learning models gener-
alize across projects, and what advantage is obtained by training the models
on the system under test?

The contributions of our work can be summarized as follows:
We describe a set of techniques for training machine-learning models to predict



59

qualities of mutants created for mutation testing. Through the use of models trained
with these techniques, an engineer carrying out mutation testing can generate
“interesting” mutants for testing a test suite.

We created a toolchain for prioritizing mutants. This toolchain allows the
user to use either “off-the-shelf” or custom-trained models to prioritize mutants
generated by a mutation-testing framework. We use Brown et al.’s wild-caught-
mutants system (Brown et al., 2017) as the underlying mutator. Other mutation-
testing frameworks can be adapted for use with the technique. Although most other
systems do not suffer from the low compilation rate of wild-caught mutants, the
prediction of binary inequivalence and discernment is more universally applicable.

We report on experiments in which we analyzed five Java-language projects
with voluminous test suites. Models were trained in three different modalities using
mutants derived from each project individually and as a group; these models were
used to determine both how well each individual model functions on its source
project, as well as how well it generalized to other projects. From these data we
establish both the cost and benefit of custom-training our models to individual
projects.

Organization. The remainder of this chapter is organized as follows: Section 4.2
describes the conceptual layout of both our tools and the predictions they make.
Section 4.3 presents the modalities used for training our machine-learning models.
Section 4.4 describes the operation of the underlying mutation-testing system, our
technique for acquiring training data, and the specifics of the machine-learning
model our technique uses. Section 5.6 describes our experimental setup. Section 5.7
presents our experimental results. Section 5.8 considers threats to the validity of
our technique. Section 5.9 discusses related work. Section 3.7 describes the artifact
we plan to submit.

4.2 Shepherds and Prediction Goals
Our ultimate goal is to improve mutation testing through prioritization. Muta-
tion testing itself is an extremely computationally intensive task, but the required
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Table 4.1: Projects Used

Project LOC Test
cases

Mutants

apache/commons-lang 80 001 5796 844 815

apache/commons-math 180 659 4864 2 738 898

google/closure-compiler 246 676 16 684 6 199 405

jfree/jfreechart 219 183 2176 3 381 303

charite/jannovar 50 966 256 1 425 961

Single-mutant means All mutants
Project Compilation Test-suite

execution
Generation Compilation

(estimated)
apache/commons-lang 26s 2m 16s 19s 293d
apache/commons-math 1m 58s 37s 1m 2s 10yr 100d
google/closure-compiler 2m 3s 2m 56s 1m 45s 23yr 216d
jfree/jfreechart 1m 22s 32s 6yr 171d
charite/jannovar 31s 1m 57s 27s 1yr 121d

All test suites
Project Execution

(estimated)
apache/commons-lang 3yr 225d
apache/commons-math 3yr 78d
google/closure-compiler 35yr 142d
jfree/jfreechart 2yr 131d
charite/jannovar 5yr 155d



61

processing time is concentrated in compilation and test-suite execution. Table 4.1
shows the typical compilation and test-suite execution times required for a single
mutant from each of the projects used in our experiments, as well as the time
taken to identify all mutants that the toolchain is capable of generating—over one
million mutants for most of the projects. It is notable that for all projects used in
our experiments, identifying all possible mutants took less time than compiling a
single mutant.

For all of our projects, identifying all possible mutants takes less than one-
millionth the time that it would take to compile and execute their test suites. Because
we have the ability to generate mutants much more rapidly than we can test them,
prioritizing mutants for testing allows an engineer to spend computational resources
more effectively, by concentrating on mutants predicted to be useful. We call the
process of prioritizing mutants based on predicted qualities guided mutation testing,
and a program that performs the task a shepherd. Thus, our work can be summarized
as building a shepherd and evaluating its effectiveness at guiding the process of
mutant generation.

The remainder of this section describes the qualities of generated mutants
predicted by our shepherds.

Compilation

The most basic feature predicted by our shepherds is compilation. That is, for a
specific mutant generated, will it be successfully compiled by its project’s build
system? While prediction of compilation is not universally useful due to high
compilation rates (or, in cases like AST-based mutation, 100% compilation rates by
construction), it benefits the wild-caught-mutants framework that we used in our
experiments.

Brown et al. (2017) reported a compilation rate of roughly 14% with the C-
language Space program. Our results with Java-language projects were considerably
higher, averaging 49%, but that higher rate still allows for a two-fold reduction in
compilation time due to avoiding non-compiling mutants.
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We believe that Brown et al.’s approach has advantages over other mutation-
testing suites—chief among them being language-independence—and our tech-
nique allows the wild-caught-mutants suite to function with an effective compilation
rate closer to other suites by avoiding mutants predicted to fail compilation.

Binary Inequivalence

Detection of semantically equivalent mutants continues to be an open problem in
mutation testing. While the most-strict version of the problem is undecidable, it
is possible to detect some subset of semantically equivalent mutants. We identify
one particular subset—those mutants that, when compiled, produce the same
bytecode as their original version. We call this subset of semantic equivalence
binary equivalence, and investigate the ability of our toolchain to detect it.

Because we are devising shepherds for which a positive prediction about a mutant
indicates that a mutation-testing tool should continue to work with the mutant,
henceforth we will refer to such a shepherd as predicting binary inequivalence.

To compare generated bytecode, we extract Java class files from Java jar files
generated through the build process. While jar files contain timestamps and other
metadata not directly derived from the underlying Java source code, the class files
extracted from the jar files contain no “noise”—every byte in the file is either a
strictly defined file header or bytecode directly compiled from source code.

Discernment

All generated mutants—even those compilable and identified as binary-inequivalent
to their parents—are not equally useful. Petrovic et al. (2018) discuss industrial use
of mutation testing in detail and define the concept of a productive mutant. They
define a killable—that is, inequivalent—mutant to be productive if it allows the
creation of an effective test case.1 We expand upon the idea of classifying generated
mutants by their fundamental usefulness with the concept of discernment.

1They also consider some equivalent mutants to be productive, but a discussion of that subset
of mutants is outside the scope of this chapter.
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We use discernment to quantify how “targeted” a mutation is. That is, a more-
discerning mutant triggers fewer test cases than a less-discerning mutant. Consider
the case of what we call a “thorough” test suite—one large enough for which a
typical live mutant is actually equivalent to the program from which the mutant was
generated. We assume that our shepherds are trained on projects with thorough
test suites, and that it is reasonable to treat live mutants as semantically equivalent.
We then focus on mutants that are harder to kill as opposed to those that are live by
the test suite.

By predicting discernment, we can spend valuable processing time on mutants
we expect to be more difficult to kill. As a concrete example, early on in the experi-
mental process we identified mutants that disabled core output routines, and as
such caused all test cases to fail. While these mutants consumed the same amount
of processing time for compilation and test-suite execution as any others, they
are unproductive in the sense of Petrovic et al.’s work—they neither demonstrate
any particularly useful characteristic of the project’s test suite nor allow for the
construction of new and useful test cases.

For some test suite T containing |T | test cases, we define discernment for a mutant
that causes failures in x test cases as follows:

disc|T |(x) =

0 x = 0
1 − log

|T | x x > 0
In effect, a mutant that triggers exactly one test case has a discernment of 1, and

the value drops off logarithmically to 0 if the mutant triggers all test cases. Figure 4.1
plots discernment curves for |T | = 100, 1000, and 5000. Note that by the definition
of our discernment function, all of these functions exist at (0, 0).

Ultimately the choice of the value at x = 0 is arbitrary. Our choice of disc|T |(0) =
0 is primarily influenced by what we anticipate to be our most common use case.
We expect that the typical use case of our techniques will be to use shepherds
trained on projects with voluminous test suites, but executed as an “off-the-shelf”
solution applied to projects with less-robust test suites. Due to the robustness of
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Figure 4.1: Discernment

the test suites used in our experimental corpus, even with the ability to predict
binary inequivalence with reasonable accuracy, we expect that a substantial portion
of mutants that do not cause test-case failures are semantically equivalent to their
parent. As such, we choose to discourage selection of mutants triggering zero test
cases. However, we do not expect this use case to be universal. Because the tools
may be used on target projects with similar (or even greater) test-suite robustness
than the training corpus, we leave the ability to change the value of disc|T |(0) as an
option in our training-set-generation tools.

Our tools generate models that can predict the discernment of a mutant and filter
mutants based on any chosen discernment threshold. Because we train shepherds
to identify mutants above certain discernment thresholds, any discontinuities in
the discernment function do not impede training.

Generalization and Customization

The sheer computational cost of mutation testing continues to be an obstacle to
its wider use. Our work ultimately aims to improve the use of the technique
by improving its efficiency, allowing an engineer to accomplish more with fewer
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resources expended. By its very design, however, the use of our technique may seem
to contradict these goals. We use millions of hours of computing time to train the
machine-learning models on which our shepherds are built—resources unavailable
to the typical software engineer. Because of this limitation, we investigate our
technique’s generalization and customization.

Beyond our toolchain itself, the primary artifact of our research is a shepherd
trained from our experimental corpus. We analyze the capabilities of this shepherd
in detail in section 5.7. Notably, we evaluate this shepherd’s ability to successfully
predict features of projects external to its training—in effect, treating it as an “off-the-
shelf” solution to improve mutation testing without adding additional computation
time to the project. An engineer can take this shepherd and apply it directly to
other projects, as long as they use the same programming language.

However this “off-the-shelf” tool is just a starting point. Our toolchain allows
for a user to train a new model from their own project, or to enhance the training
set for an existing shepherd with data from their project. We investigate the costs
and benefits of this customization in section 5.7.

4.3 Training Modalities
We used the wild-caught-mutants mutation-testing framework both to mutate the
projects we analyzed as well as generate training-set data with which to train our
shepherds. We generated multiple sets of training data at two different levels of ab-
straction during the experiment: mutant/concrete and mutant/abstract, described
below.

Figure 4.2 shows example training data harvested during our experiment.

Mutant/Concrete

Our initial implementation of training-set generation aims to produce shepherds
highly customized to the project being analyzed. We call this first training modality
mutant/concrete. To generate these training vectors, we tokenized the Java-language
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(b) Mutant/abstract training vector (subset)

Figure 4.2: Training modalities.

files mutated by the wild-caught-mutants framework, modifying the toolchain
to produce a vector of tokens as they are processed, but before abstraction. An
example of a training instance from the mutant/concrete modality is shown in
Fig. 4.2(a).

Because this modality of training-set generation performs no abstraction of
identifiers used in the source code, we expect shepherds trained through this
method to be more accurate but less generalizable to other projects.

Mutant/Abstract

Requiring time-intensive per-project training sessions for all users of our technique
would counter the goal of reducing the computational costs of mutation testing. To
create shepherds that can more easily generalize across projects, we implemented
a training modality that abstracts out identifiers and literals from the modified
source code, our mutant/abstract training modality.

To implement this training modality, we used the built-in abstraction system
in the wild-caught-mutants toolchain. The mutation operators harvested by the
wild-caught-mutants toolchain are stored as a series of terms showing operators,
keywords, and wildcard-style terms for iterators and literals. We utilized the
abstracted tokens generated by this system to build training vectors. Fig. 4.2(b)
shows an example mutant/abstract training vector; in particular, the vector shown
is the abstracted version of the vector shown in Fig. 4.2(a).
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4.4 Implementation

Mutation Testing

We also use the wild-caught-mutants framework as our underlying mutation-testing
system. This framework “harvests” new mutation operators by mining source-code-
control repository histories, focusing on commits with small changes, and generat-
ing generalized patches that represent the identified changes. These generalized
patches are then used to construct new mutation operators. Each mutation operator
is implemented as a “before” and “after” pattern: the insertion tool matches the
“before” pattern to existing code, and then modifies the matched code to match the
“after” pattern, re-using matched tokens as needed. Figure 4.3 demonstrates this
process; Fig. 4.3(a) shows a small revision in a patch from a hypothetical source-
control revision history, Fig. 4.3(b) shows the generalized patch abstracted from
the revision, and Fig. 4.3(c) shows an example of code identified and mutated by
the operator.

We chose this mutation-testing framework for three reasons. First, the frame-
work is language-agnostic. The original instantiation of the framework for the
experiments conducted by Brown et al. mutated C-language code, but we were
able to adapt the toolchain to work on the Java language easily. Second, the most
obvious weakness of the wild-caught-mutants technique is its low compilation rate.
This limitation is largely a result of the system’s language-agnostic design. Our
work aims to directly improve the toolchain by offering prediction of compilation
success without executing the full compilation process—overcoming one of its
primary limitations. Finally, the abstracted patches allowed us to generate training
data for our machine-learning model.

Parallelized Training-Set Generation

The wild-caught-mutants mutation-testing framework found over fourteen million
mutants in the five projects we chose to analyze. (See table 4.1 for the numbers of
mutants created for each project.) An exhaustive analysis of these mutants is beyond



68

− i f (x && y)
+ i f (x)

(a) Source patch
− : i f . ( $1 .&& $_ . )
+ : i f . ( $1 . )
(b) Extracted mutation operator
− i f ( death && ta x e s )
+ i f ( death )
(c) Extracted mutation operator

Figure 4.3: Wild-caught mutants.

the ability of modern desktop hardware, and even stretched the limits of the cloud-
computing platform that we used in our experiments. As a result, we analyzed
a subset of the entire mutation space, sampled randomly. We generated 136,858
mutants from each of the five projects, for a total of 684,290 mutants, representing
about 4.7% of the mutants produced by the wild-caught-mutants framework.

Machine-Learning Model

We used long short-term memory (LSTM) models (Hochreiter and Schmidhuber,
1997) to drive our shepherds. These models were implemented with the Keras
machine-learning API (Chollet et al., 2015). Each trained shepherd predicts one
quality of mutants: compilation, binary inequivalence, or discernment, as described
in section 4.2. Each shepherd is trained with data generated by one of the training
modalities described in section 4.3. Because we train shepherds from training-set
data generated from different modalities and to predict different qualities, we can
train several different shepherds from a single source corpus. Section 5.7 presents
results on how the different shepherds perform.
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Training Vectors

To train our machine-learning models, we generated training vectors with the
aid of the wild-caught-mutants framework. For each iteration of our training-
set generation process, we randomly created a mutant from each of our chosen
projects (described in section 5.6). We then attempted to compile this mutant. If
it successfully compiled, we then tested it for binary inequivalence (as described
in section 4.2), executed the test suite, and recorded the pass/fail status of all test
cases. We then used a modified version of one of the wild-caught-mutants tools to
extract a stream of tokens representing the mutant. This process was executed in
parallel on a cloud-computing platform to allow us to generate sufficient data to
train our shepherds.

This process generated several training vectors:

• For each of the 684,290 mutants used for training, we generated a training
vector with the mutant’s compilation status as a label, and a representation of
the mutant for each of three training modalities as described in section 4.3.

• For every successfully compiled mutant, we generated:

– A training vector labeled with its binary inequivalence to its parent for
each of the three training modalities.

– A training vector labeled with its calculated discernment value (as de-
scribed in section 4.2) for each of the three training modalities.

Our shepherds were then trained from the training sets composed of these
training vectors.

4.5 Experimental Setup and Training

Criteria used to Select Projects for Study

Because one of our goals was to evaluate how well our technique generalizes
across projects, we needed to choose projects that were implemented in the same
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Table 4.2: Training Results

Correct Compilation Prediction (%)
mutant/abstract mutant/concrete

Project Split Ind. Exc. Held Out Ind. Exc. Held Out
apache/commons-lang 51 90 86 74 90 86 64
apache/commons-math 54 82 81 71 90 84 70
google/closure-compiler 68 85 83 72 80 82 70
jfree/jfreechart 56 64 85 79 91 80 79
Average 80 84 74 88 71 71

Correct Binary-Inequivalence Prediction (%)
mutant/abstract mutant/concrete

Project Split Ind. Exc. Held Out Ind. Exc. Held Out
apache/commons-lang 73 84 76 71 88 88 37
apache/commons-math 64 72 68 66 76 78 58
google/closure-compiler 53 65 84 65 71 79 39
jfree/jfreechart 69 89 83 69 87 79 36
Average 78 78 68 81 81 43

Correct High-Discernment Prediction (%)
mutant/abstract mutant/concrete

Project Split Ind. Exc. Held Out Ind. Exc. Held Out
apache/commons-lang 78 80 80 72 92 76 56
apache/commons-math 77 76 64 65 79 73 57
google/closure-compiler 72 78 78 84 87 76 48
jfree/jfreechart 74 74 77 58 86 78 66
Average 77 75 70 86 76 57
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language. We chose to concentrate on Java projects because of (i) the large number
of open-source Java projects available, (ii) the availability of existing mutation-
testing tooling for Java, and (iii) the prevalence of a common build system (Maven)
within the Java community.

We sought open-source projects that met the following criteria:

• Large-enough size. We wanted projects large enough to be representative mod-
els of a software-engineering effort large enough to warrant the application
of mutation testing. We used > 50, 000 lines of code as the threshold on size.

• Ease of integration. We wanted projects that could be built easily on the cloud-
computing system that we used for generating training data—without requir-
ing large amounts of per-project engineering work. Projects were also required
to have test suites that could be run entirely automatically.

• Robustness of test suite. We wanted projects that had substantial test suites, so
that we would be able to calculate our discernment metric more accurately.

We found that four of the six projects that are currently part of Defects4J Just et al.
(2014a) met our criteria. The first four columns of Table 4.1 provide information
about these projects: GitHub project name, lines of code (LOC), test cases, and the
number of mutants the wild-caught-mutants framework was able to generate from
the project’s source code.

Training Projects Used

We worked with four of the projects from Defects4J. Our experiments (and the
artifact that we plan to submit) use the current revision of each project as of July
14, 2019.

A brief description of each project follows.
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apache/commons-math

Described as a “library of lightweight, self-contained mathematics and statistics
components,” the Apache Commons Math library is an open-source Java-language
project hosted on GitHub and maintained by the Apache Software Foundation.

apache/commons-lang

Also maintained by the Apache Software Foundation, the Apache Commons Lang
library provides utility classes to supplement Java’s java.lang API.

google/closure-compiler

Closure is Google’s open-source Javascript optimizer. Hosted on GitHub, Clo-
sure is a tool that takes Javascript code as input and optimizes it for speed, while
minimizing the size of the resulting code to reduce the code’s download time.

jfree/jfreechart

JFreeChart is an open-source Java library for generating charts.

Unused Training Projects

Two of the Defects4J projects were rejected for use in our experimentation:

• Mockito. This project was rejected due to its use of the Gradle build system; all
of the selected projects utilize both the Maven build system and the Surefire
unit-test plugin. For simplicity, our experimental framework relies on both
Maven and Surefire.

• Joda-Time. Because this project is no longer under active development, its
dependencies were out of sync with the rest of the analyzed projects. We
rejected this project to expedite development of the tools for generating our
training-set data.
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Training Process

During the creation of our shepherds, we extracted training-set data from the four
projects selected from the Defects4J corpus (based on 136,858 mutants randomly
selected from each project). Using this training set, we trained a collection of LSTM
models. To increase the accuracy of our trained models, we tuned the settings of
both our infrastructure for generating training-set data and the hyperparameters of
our LSTM model.

Table 4.2 summarizes the results of the training process, showing the resulting
accuracy of the models trained. The columns in this table represent:

• Split—The fraction, as a percentage, of the data set represented by the most
common label (for compilation, predicting success/failure; for binary inequiv-
alence, equivalent/inequivalent; for discernment, high/low discernment).

• Individual—The accuracy of a model trained on only data from the particular
project, and evaluated on a test set sampled from the same project.

• Excluded—The accuracy of a model trained on all projects except the particular
project, and evaluated on a test set sampled from those projects.

• Held Out—The accuracy of a model trained from the data discussed in Ex-
cluded, above, but evaluated on the excluded project.

The “Individual” results of the table represent use of the technique in its most
customized state. That is, all machine-learning models underpinning the evaluated
shepherd were trained on—and trained only on—training-set data generated from
the project being evaluated.

The “Held Out” results are a proxy for real-world “off-the-shelf” use—that is,
they show the accuracy of the model when predicting qualities of mutants generated
from projects that the model was not trained on.

Once we were satisfied with the performance of the models we trained, we
combined them into a final shepherd and evaluated its ability to predict qualities of
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a newly selected project (see section 4.5). The results of this evaluation are detailed
in section 5.7.

Evaluation Project

Because during the training process we were still tuning our models—both in
terms of settings for generating training-set data and hyperparameters of the LSTM
model—we chose to evaluate the model on a fifth project that we did not use for
testing (or analyze in any form) until after we considered our technique and LSTM
hyperparameters to be in a “final” state.

To find a suitable evaluation project, we used the BugSwarm (Tomassi et al.,
2019) database, which is a second corpus of projects made available for software-
engineering research. From BugSwam, we chose Jannovar (Robinson et al., 2017),
an open-source Java library for annotating gene-sequencing data. While our training
projects were selected in large part due to their robust test suites and relatively large
size, Jannovar was selected as a more typical example of an open-source project
with a smaller test suite, while still using the same Maven and Surefire tools on
which our experimental framework was built.

When evaluating our technique on Jannovar, no tweaking of the system—neither
for training-set generation nor hyperparameters of the machine-learning models—
was performed. We chose to avoid any additional layers of tuning to better represent
the use of our tools as a pure “off-the-shelf” solution. This step was done to evaluate
more accurately the accuracy of our shepherds when used as a true “off-the-shelf”
solution.

4.6 Results
After training our shepherds to predict the qualities described in section 4.2, we
evaluated their performance for making predictions of the same qualities on the
Jannovar project (section 4.5). This experiment was performed in “Held Out” style—
i.e., the shepherds were trained on all four projects from Defects4J, then tested on
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Table 4.3: Experimental Results on Jannovar ("Held Out")

mutant/abstract (%)
Quality Split Accuracy TP TN FP FN
Compilation 65 76 62 14 20 4
Binary Inequivalence 51 75 45 30 19 6
Discernment 73 77 20 57 7 16

mutant/concrete (%)
Quality Split Accuracy TP TN FP FN
Compilation 65 67 38 29 6 27
Binary Inequivalence 51 62 39 23 25 12
Discernment 73 25 9 16 57 18

Jannovar. Table 4.3 shows the results of this experiment, showing for each quality
the ratio of positive and negative cases in the experimental set (Split), accuracy
of the model, true positive rate (TP), true negative rate (TN), false positive rate
(FP), ad false negative rate (FN). We find that accuracies achieved on Jannovar
are comparable to, and mostly slightly better than, the average accuracies for the
“Held Out” experiments reported in table 4.2, particularly for the mutant/abstract
modality.

One caveat about these results must be acknowledged: we neglected to control
for the size of the training-set data in this experiment. That is, the “Held Out”
experiments in Table 4.2 used shepherds trained on a total of 3× 136, 858 = 410, 574
mutants, whereas the Jannovar experiments used shepherds trained on a total of
4× 136, 858 = 684, 290 mutants.

Research Question 1: Can Mutant Compilation Be Predicted by a
Shepherd?

We achieved 76% accuracy using our shepherd to predict the successful compilation
of Jannovar mutants using the mutant/abstract training modality. The shepherd
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trained with the mutant/concrete training modality correctly predicted 67% of com-
pilation results. Note that this use of mutant/concrete was specifically not trained
on the Jannovar project; a decrease in effectiveness going from mutant/abstract to
mutant/concrete is expected.

Research Question 2: Can Binary Inequivalence Be Predicted by a
Shepherd?

For binary inequivalence, we observed similar results to compilation. Our mutan-
t/abstract shepherd achieved 75% accuracy and our mutant/concrete shepherd
achieved 62% accuracy.

Research Question 3: Can Mutant Discernment Be Predicted by a
Shepherd?

The discernment-prediction shepherd obtained similar results to the compilation
and binary-inequivalence shepherds when trained with the mutant/abstract modal-
ity, achieving 77% accuracy. However, the mutant/concrete version of this shepherd
achieved abysmal results, only successfully predicting 25% of evaluated mutants.

Research Question 4: How Effectively Do Our Shepherds
Generalize Across Projects?

Table 4.3 shows the ultimate result of our experiment, namely the results of pre-
dicting qualities of mutants generated from a project with a shepherd trained
independently from the analyzed project. This result shows that our shepherds are
able to generalize across projects. As expected, the more general mutant/abstract
training modality produced shepherds more capable of generalizing across projects
than the mutant/concrete modality. While all of our shepherds exhibited this gap
in performance when evaluated on projects other than those they were trained
on, the difference was most stark with the discernment shepherd. These results
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confirm that while mutant/concrete grants the strongest performance when trained
on the project being analyzed (see the “Individual” columns in table 4.2), any
“off-the-shelf” use of our shepherds should be exclusively with those trained with
the mutant/abstract modality.

Discussion

The broader implications of these results are that they offer a way to reduce the
resources needed for mutation testing. As shown in the “All mutants: Generation”
column of table 4.1, mutation operators can be applied quickly—so quickly that
the time for creating mutants can be ignored.2 Our shepherds can be used to cull
mutants when the respective shepherd predicts any of the following conditions:
(i) the mutant will not compile, (ii) after compilation the mutant will be binary
equivalent to the compiled code of the original program, or (iii) the mutant has
“low discernment,” which means that the mutant is predicted to be easy to kill.

For such culling, the most readily usable result of our work is a suite of “off-
the-shelf” shepherds that, while trained using hundreds of thousands of hours of
processor time, can be installed on a typical desktop setup and executed in real
time; no further training is required.

Our toolset also supports the use-case where the shepherd is custom-trained by
the user. The earlier subsections of Section 5.7 describe the differences in predictive
power that we found among shepherds trained with different modalities (mu-
tant/concrete and mutant/abstract). The general strength of the mutant/abstract
training modality does not, however, negate the usefulness of the mutant/concrete
modality. When training a shepherd on the project itself—the “Individual” column
in table 4.2—the mutant/concrete-trained shepherds outperform mutant/abstract-

2For AST-based mutation, one has to invoke the front-end of a compiler, so applying an AST-
based mutation operator takes some fraction of full compilation time. Our work uses the wild-
caught-mutants framework (Brown et al., 2017), for which the application of a mutation operator
involves only text-substitution operations. As seen from the “Single-mutant means: Compilation”
and “All mutants: Generation” columns of table 4.1, the time to create all mutants for each project
(i.e., between 844K and 6.3M mutants) is comparable to the average compilation time for one
mutant—and hence is an insignificant portion of the overall time used during mutation testing.
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trained shepherds. The substantial drop-off in performance between the “Indi-
vidual” and “Held Out” trials of the shepherds indicates, however, that the mu-
tant/concrete training modality is primarily useful for shepherds trained on the
projects on which they are intended to be used. Our toolset gives users the choice
whether to use “off-the-shelf” shepherds or train customized, higher-performing,
shepherds.

In general, a user will have to decide for themselves whether it is warranted to
expend the large amount of resources required to train a custom shepherd.

Of course, all three kinds of shepherds have false positives and false negatives
(see table 4.3), with the following consequences:

False positive by the compilation-prediction shepherd: some compilations of mu-
tants will be attempted that result in a compilation failure.

False negative by the compilation-prediction shepherd: for some mutants that
actually do compile, compilation will not be attempted.

False positive by the binary-inequivalence shepherd: some compilations of mu-
tants will be attempted that produce code that is binary equivalent to the
compiled code of the original program.

False negative by the binary-inequivalence shepherd: for some mutants that would
result in code not binary equivalent to the compiled code of the original pro-
gram, compilation will not be attempted.

False positive by the discernment shepherd: some compilations of mutants will
be attempted for mutants that are easy to kill.

False negative by the discernment shepherd: for some mutants that are actually
hard to kill, compilation will not be attempted.

Figure 4.4 shows an example use of our shepherds to filter the mutants generated
by the wild-caught-mutants framework on the Jannovar project. In simple terms,
filtered mutants mostly represent potential wasted effort (true negatives) that our
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Mutants: 1 425 961

Filtered by compilation-prediction shepherd: 1 169 288 (82%)

Filtered by binary-inequivalence shepherd: 92 402 (36%)
Filtered by discernment shepherd: 119 917 (73%)

Compilation failure: 7540 (17%)
Binary equivalent: 13 253 (36%)

High-quality mutants: 23 561

Figure 4.4: Estimated Jannovar mutants filtered by shepherds, discarded by
compilation, and retained at each filtering stage

shepherds let us avoid, albeit while also discarding some number of false nega-
tives. Discarded mutants are actual wasted effort (false positives), while retained
mutants are true positives: the desired, high-quality result. Overall, our trio of
shepherds filter out 96.9% of mutants as likely wasted effort. Actual wasted effort
accounts for just 1.4% of the initial mutant pool, with the remaining 1.7% con-
stituting the sought-after high-discernment mutants that compile to inequivalent
binaries.

As shown in table 4.1, the wild-caught-mutants framework can generate over 1.4
million mutants for Jannovar. Compiling and testing each of these mutants would
take over six years on current desktop hardware, placing exhaustive mutation
testing beyond the reach of virtually all developers. However, our technique allows
the user to filter this million-plus set of mutants down to thousands—a set that could
be processed in roughly a month on a modern desktop computer, or much faster
parallelized across a computational cloud. These “high-quality” mutants—those
expected to compile, exhibit binary inequivalence, and have high discernment—can
then be further reduced by random sampling to produce a set of mutants of a size
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reasonable to, and chosen by, the end user.
While we do observe both false positives and false negatives in the predictions of

our shepherds, we believe that both of these problems are manageable. Ultimately,
the set of mutants surviving the filtering process will typically still be large enough
that random sampling will be used to generate a manageable set of mutants to
test. Because we still have a large number of mutants after filtering, the impact
of false negatives—that is, mutants excluded by the shepherds that would have
been productive—is reduced. We do see false positives from the predictions of our
shepherds, but save much more computational time from the true positives than
is wasted through compilation and testing of mutants resulting from these false
positives.

4.7 Threats to Validity
Mutation testing is tremendously expensive in terms of computational costs. Our ap-
proach, rather than being particularly lightweight, is so computationally expensive
that we were unable to execute our experiment without the use of cloud-computing
resources. At first glance, this result may seem to contradict our aims. However, our
goal has been to support multiple use-cases, through both off-the-shelf shepherds
and custom-trained shepherds. In particular, the “off-the-shelf, mutant/abstract”
shepherds are an economical way to take advantage of our work: they were trained
using hundreds of thousands of hours of processor time, but execute in real time
on typical desktop hardware, and, as discussed in section 4.6, achieve 76%, 75%,
and 77% accuracy for compilation prediction, binary-inequivalence prediction, and
discernment prediction, respectively (Table 4.3).

Construct Validity A consistent danger in the evaluation of machine-learning
results is that high accuracy is not necessarily indicative of a good model, especially
if the testing sets used are unbalanced. Highly unbalanced training sets can lead
to models exhibiting high accuracy, e.g., by always reporting the most-common
classification. While we were fortunate enough to have training sets relatively
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equally balanced, we were cognizant of this potential pitfall. Table 4.3 details our
results at a higher granularity than just accuracy itself, showing that our models in
all cases are capable of identifying both true positives and true negatives.

Internal and External Validity It is difficult to describe a “typical” software-
engineering project, and thus the threat is that our results may not apply to an
actual “typical” project.

Section 4.5 described the criteria that we used to choose our training corpus.
These criteria led us to projects with especially robust test suites, which may be
atypical for software in the wild (i.e., this selection bias is an internal-validity
threat).

To mitigate this concern, we chose our evaluation project, Jannovar, using looser
criteria; in particular, we chose Jannovar primarily because it shared the same
build system and testing plugin as the projects in our training corpus. Jannovar
is somewhat smaller size, and has a test suite that is about an order of magnitude
smaller than the others. It is intended to be more representative of a “typical”
project, and hence represents a step to control for both the internal-validity threat
mentioned above, as well as the external-validity threat of whether our results
hold on projects outside the training corpus. Our results show that most of our
shepherds have good “Held-Out” performance on our training corpus (the four
projects from Defects4J). Moreover, our off-the-shelf shepherds, trained on the
four projects from Defects4J exhibit good performance on Jannovar: the accuracies
achieved on Jannovar are slightly better than the average accuracies for the “Held
Out” experiments reported in Table 4.2.

Detection of equivalent mutants continues to be an open question in mutation
testing, and we provide no silver-bullet solution to this problem. To aid the end
user, we do provide the ability to filter out a subset of equivalent mutants through
our shepherds’ ability to predict binary inequivalence. Our discernment concept
also touches on this problem, in that a user can specify during the training process
whether to consider a mutant failing no test cases to be desirable or undesirable.
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4.8 Related Work

Mutation Testing

Mutation testing is an active field of research, and our concern about its compu-
tational cost is not unique (Petrovic et al., 2018). Gopinath et al. (2016) discuss
increases in efficiency—and theoretical limits on the maximum increases in that
efficiency—from selective mutation testing, but focus their analysis on mutation-
operator selection, while we focus on the mutation itself. Kurtz et al. (2016) describe
a process for reducing the generation of undesirable mutants, but like Gopinath
et al. focus their analysis on mutation operators.

Saleh and Nagi (2015) approach the problem of computational costs in a dif-
ferent manner entirely—by developing a mutation-testing framework built on a
cloud-computing platform. While our work does make use of cloud-computing
resources in the training phase, our primary goal is to reduce the computational cost
of effective mutation testing as opposed to streamlining its use in a cloud-computing
environment.

Analysis of Code With Machine Learning

Our approach centers around leveraging established machine-learning techniques
to deepen understanding of code. This concept is not alien to the wider programming-
languages community. Hellendoorn et al. (2019) apply a recurrent neural network
(RNN)—our model, an LSTM, is a form a RNN—to propose invariants to be used in
the analysis of programs. Hellendoorn and Devanbu (2017) train machine-learning
models (including LSTMs) with tokenized source code in much the same way
as our shepherds are trained, however their goal is the prediction of subsequent
tokens; we, instead, train our models to predict global attributes of the analyzed
mutant.
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4.9 Conclusion
Exhaustive approaches to mutation testing continue to be too computationally
intensive to see wide adoption (Petrovic et al., 2018), with random sampling of
mutants being one of the most effective methods used to reduce this computational
cost (Gopinath et al., 2016). If mutation testing is to be adopted by the industry at
large, it will need to conform to reasonable limits on its computational cost. That
said, as the needs—and resources—of software engineers across the industry vary
wildly, so does the definition of reasonable.

In this chapter we describe a technique for improving the utility of mutation
testing through the prioritization of mutants. Because the generation of mutants
requires vastly fewer resources than their evaluation, we provide a set of tools—
shepherds, as we call them—for rapid analysis of these generated mutants to filter
down the massive set of potential mutants to a much smaller set of “high-quality”
mutants. Depending on the resources available to the engineer using our technique,
these filtered mutants can then be further reduced by random sampling. We provide
both an “off-the-shelf” version of our shepherds, as well as the tools to custom-train
shepherds for specific projects. Custom-trained shepherds are likely to provide
greater prediction accuracy at the cost of more resources spent in training. By
providing both pre-trained shepherds as well as tools for custom-training shepherds,
we address the problem of mutation testing’s high computational cost by providing
the engineer with a series of options that can be tailored to their available resources.
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5 test-case generation

5.1 Introduction
Our aim is to provide a tool-chain for test-case generation that generates not only
new but effective test cases. We propose a technique that employs mutation testing to
identify weaknesses in existing test suites, and then applies target-oriented fuzzing
to generate test cases that plug these holes, resulting in a more robust test suite—
that is, one that is (typically) larger and more effective at detecting faults. Our
tool-chain combines these techniques to provide an engineer not only with new
test cases but also with evidence for their utility—specifically, for each generated
test case, a live mutant (with relation to the existing program and existing test
suite) and a new input to the program that kills the mutant. (Mutants identified
as having different behavior from the original program are said to be killed, while
those undetected by the test suite are live.) Our overall hypothesis is as follows:

The combination of mutation and target-oriented fuzzing can be used to not
only generate test cases, but generate effective test cases.

We assume that a program P accepts, as its input, some data Cin and, upon
execution, returns some output Cout. Assuming this input is a series of bytes, there
is an obvious and trivial algorithm for generating new test cases: randomly select a
sequence of bytes Crandom, record the program’s output: Cout_random = P[Crandom]; and
call the tuple 〈Crandom,Cout_random〉 thus created a test case.

Unfortunately, unless one is only interested in testing the input validation of P,
this test case is unlikely to be useful. Additionally, as software-engineering projects
mature and their test suites grow in size, the resources consumed by their execution
increasingly becomes a liability. This limitation—the raw amount of processing
power and/or time required for the execution of test suites—further restricts the
real-world value of a test case generated primarily through random means.
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With only finite resources available for test-suite execution, it is desirable to have
test cases that are useful to the project. Our work focuses on not only the generation of
useful test cases, but the ability of our tool-chain to present an engineer maintaining
a project an argument justifying the usefulness of the generated test cases. Our tool-
chain uses mutation-testing to identify holes in existing test suites, and attempts to
plug them with inputs generated through target-oriented fuzzing.

In pursuit of this goal (and to evaluate the tool-chain we have developed), we
address the following research questions:

First, to generate test cases (and the arguments to the engineer supervising
their potential admission into a test suite), we must be able to mutate the program
successfully, identify live mutants, and then kill them through target-oriented
fuzzing. Once mutants are created, we evaluate the ability of our tool-chain to
generate effective test cases based on these mutants.

Research Question 9: Can target-oriented fuzzing be used to create test cases
to kill live mutants?

Next, we evaluate the ability of our tool-chain to generate not only individual
test cases but entire test suites.

Research Question 10: Can target-oriented fuzzing combined with mutation
analysis be used to generate robust test suites?

Finally, we use our tools to automatically generate test cases in bulk, and compare
the resulting test suite with human-authored test suites.

Research Question 11: How do these generated test suites compare to
manually-authored test suites in size, code coverage, and the ability to kill
mutants?

The contributions of our work can be summarized as follows:
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We describe a technique for creating new and useful test cases for a program.
We identify potential new test cases via mutation-testing of the program, using
target-oriented fuzzing to create a new test case for each live mutant.

We created a tool-chain for generating these test cases. Our tool-chain allows
an engineer to “plug-in” a mutation-testing system to create live mutants, and then
generate new test cases by killing these mutants.

We report on experiments in which we generated new test cases for the Space
program, and constructed several test suites for it. We used this process to determine
how well our technique can both generate an individual test case (given a live
mutant) and build an entire test suite from a minimal starting point.

Our tool-chain is able to construct both individual test cases, as well as entire
test suites. Moreover, it can construct a test suite that has similar performance
characteristics to a hand-constructed test suite—as measured by size, code coverage,
and the ability to kill mutants—but at a fraction of the cost in time and dollars.

Organization. The remainder of the chapter is organized as follows: Section 5.2
motivates the research. Section 5.3 states the problem that we address. Section 5.4
describes our algorithms. Section 5.5 provides an overview of target-oriented
fuzzing. Section 5.6 describes our experimental setup. Section 5.7 presents experi-
mental results. Section 5.8 considers threats to validity. Section 5.9 discusses related
work. Section 3.7 describes the artifact we plan to submit.

5.2 Motivation
Test-suite development often focuses on code coverage, but this strategy has lim-
its (Inozemtseva and Holmes, 2014). Instead, we attempt to construct stronger test
suites through the combination of mutation testing and target-oriented fuzzing.

Mutation testing is a well-known technique used to evaluate the quality of a
test suite (Jia and Harman, 2010). For a given program and its associated test suite,
mutation testing determines the mutation-adequacy score of a test suite by creating a
set of mutants (variants of the program under test, constructed by making small
changes to the original program) and determining which of these mutants the test
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suite can correctly identify as having behavior different from the original program.
The higher the mutation-adequacy score, the greater the ability of the test suite to
kill mutants.

Our goal is to construct both individual test cases, as well as entire test suites.
We accomplish these goals by finding live mutants, and then killing them through
the application of target-oriented fuzzing. When our technique is applied to an
individual mutant, it is capable of generating a new input to serve as a new test
case. When applied to a corpus of mutants, our technique builds an entire test
suite. In section 5.7, we present evidence that our technique creates an effective test
suite, as measured by its mutation-adequacy score and its code-coverage score. Because
prior research has shown that the mutation-adequacy score provides a reasonable
approximation of the ability of a test suite to detect real defects (Andrews et al.,
2005b), we believe our technique can be a powerful tool for an engineer seeking to
build a stronger test suite for their project, either by adding individual test cases or
generating an entire test suite.

Ultimately, our goal is to enable the development of a system for improving
test suites quickly and with relatively low cost. Figure 5.1 shows an example of a
web-based UI expressing our vision for this primary use of our technique, and the
core outputs of the process:

• A live mutant.

• An input killing the mutant.

• The differing outputs between the mutant and its parent program. With
the mutant, input, and difference in outputs, an engineer using the system
can determine the value of the test case created by our technique.

We do not present our work as a panacea for test-suite development. Our
technique supports the automatic generation of software-testing artifacts—both
individual test cases and test cases aggregated as test suites—along with evidence
for the value of those artifacts. We do, however, require existing (presumably)
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Figure 5.1: Conceptual Web-Based Interface



89

human-authored test cases to start from, and expect some level of human super-
vision of the produced test cases, with the level of human involvement varying
depending on the configuration of the tool-chain. Where we expect to benefit the
greater software-engineering community is in the rapid expansion of test suites
from a small, manually authored base to a larger, more robust test suite, while
minimizing the human effort required to do so.

5.3 Definitions and Problem Statement
A test suite S for some program P is a set of test cases {C0,C1, ...,Cn}; each test case
Ci consists of an input and output of the program: Ci = 〈Cin

i ,Cout
i 〉, where Cin

i is an
input of P, and Cout

i is an output of P. A program P passes test case Ci if and only if
P[Cin

i ] = C
out
i . A program passes test suite S if and only if:

∀Ci ∈ S : P[Cin
i ] = C

out
i (5.1)

We denote a program P passing a test suite S by P |= S. We assume that our
technique is executed on a program in a state that passes all test cases; that is, for
any program P and test suite S that we initially consider, we assume P |= S.

Assume that P is mutated in some way to generate a program P ′ that is not
semantically identical to P. We can then execute the test suite to determine whether
P ′ |= S holds. Ideally, for an arbitrary mutation of the original program, the test suite
should detect a difference in behavior. If this difference in behavior is detected—i.e.,
P ′ 6|= S—we say that mutant P ′ is killed. If the change to behavior is undetected—i.e.,
P ′ |= S—we say that P ′ is live.

Mutation testing (the technique used to generate P ′ above) is ordinarily used
to evaluate the quality of a test suite. However, mutation testing also offers the
opportunity to improve a test suite by uncovering live mutants that can be used to
extend the program’s test suite. To take advantage of this opportunity, we must kill
the mutant.

Suppose that P ′ is a mutant that is live by S (P ′ |= S). Killing P ′ requires the
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identification of a new “killing” test caseCkill so that P |= {Ckill}∪S and P ′ 6|= {Ckill}∪S.
Consequently, for Ckill to usefully kill P ′,

P[Cin
kill] = C

out
kill ∧ P

′[Cin
kill] 6= Cout

kill , (5.2)

or, more simply,
P[Cin

kill] 6= P ′[Cin
kill]. (5.3)

Thus, the problem that we address can be stated as follows: for a given program
P and test suite S such that P |= S, identify an argument A = 〈P ′,Cin

kill〉, where P ′ is a
mutant of P such that

P ′ |= S∧ P[Cin
kill] 6= P ′[Cin

kill]. (5.4)

From A we can generate a new test case Ckill = 〈Cin
kill,P[Cin

kill]〉. If Ckill is accepted
(that is, if the engineer using our tools accepts our argument), S is extended to
S ′ = {Ckill} ∪ S, and thus P |= S ′ and P ′ 6|= S ′.

Once A is determined, we present to the engineer both a live mutant and a
test case that kills the mutant. We present this argument to the engineer as the
following data:

• The mutation applied to generate P ′, that is, the alteration to the code that
creates a difference in behavior that is not identified by the existing test suite
S.

• The input Cin
kill itself.

• The outputs of both the original and mutated programs, that is, P[Cin
kill] and

P ′[Cin
kill].

In short, we give to the engineer a plausible change to the code that cannot be
distinguished by the current test suite, and an addition to the test suite that can
distinguish the change. The core concept of our work is that not only can we
generate new test cases, but we can also generate reasonable arguments for adding
these newly generated test cases to an existing test suite.
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5.4 Technique Overview

Critical Points

Our technique depends on the computation of critical points. We define the critical
points of two programs A and B as the set of nodes in the control-flow graph of
the first program where its behavior diverges from the second program. That is,
critical_points(A,B) is a set of nodes in the control-flow graph of A. Our input-
generation tool works by steering program execution to reach the nodes in this set.
This process is a key element of the technique, because for an input to differentiate
the behavior of two programs (assuming that both programs are deterministic),
the trace of the program executed on the input has to pass through at least one
divergent basic block.

Our algorithm for determining critical points is focused on the analysis of similar
programs—that is, programs with control-flow graphs expected to differ by only a
small number of basic blocks. This assumption is reasonable because our target
programs for the computation of critical points will always be a a program and its
mutant, so the two programs analyzed will typically differ in two or fewer lines of
source code.

For two similar programs A and B, we compute critical_points(A,B) in the fol-
lowing way:

We first apply a textual diff on the source code of A and B. The GNU diff
program efficiently identifies where the two programs differ. The mutation system
we use is configured to generate small changes (limited to 14 or fewer tokens, which
results in the vast majority of mutations used causing changes in two lines of code
or fewer). We can then map these lines in the source code of program A to the
corresponding basic blocks in the program’s control-flow graph. These nodes in
the control-flow graph for program A are chosen as critical_points(A,B).
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Input Generation

Once the critical points are computed, we use TOFU (which stands for Target-
Oriented FUzzer) (Wang et al., 2020) to generate inputs that cause them to be
executed. TOFU then fuzzes inputs, attempting to reach each basic block identified
by critical_points(A,B)until it finds an input that causes programsA andB to behave
differently. Note that TOFU’s search is more than just to cause critical_points(A,B)
to be executed: in addition, the difference in behavior must be detectable via a
comparison of the programs’ outputs.

With programP and mutantP ′, once we have an inputCin that causes a particular
node in critical_points(P,P ′) to be executed, we test that input for its potential as a test
case—that is, whether it causes a difference in observable behavior: P[Cin] 6= P ′[Cin].
If this input causes an observable difference in behavior in the programs, we use it as
the basis for a new test case, and present it to the user as the argumentA = 〈P ′,Cin

kill〉.
If TOFU is unable to find an input that causes an observable difference in behavior,
we continue to the next node in critical_points(P,P ′), stopping execution once we
have found a diverging input or reached a pre-determined timeout. The timeout,
for our experiments, is implemented as a limit on the total number of iterations
performed by TOFU as described in section 5.7.

5.5 Target-Oriented Fuzzing

Fuzzing

Fuzzing has been widely used in software testing. It is a technique for automated
testing in which inputs are generated (often with some degree of randomness), and
the program is executed on those inputs in the hope that some of the executions
will trigger buggy behaviors of the subject program. One advantage of fuzzing
is that when a bug is identified, an input that triggers it is also provided; the bug
can be reproduced by rerunning the program using the input, and debugging
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can start from a specific concrete execution.1 Despite its seemingly too-simple
methodology of running a program using randomized inputs, fuzzing is quite
effective in identifying security vulnerabilities, and has become a standard technique
for testing software (Godefroid, 2020).

In general, fuzzers can be categorized as belonging to one of three types: black-
box, whitebox, and greybox. Blackbox fuzzing assumes no knowledge of the source
code, and tests the program with totally random inputs. In contrast, whitebox
fuzzing assumes access to the source code, and uses heavyweight program-analysis
techniques. The fuzzer symbolically executes the program, and collects constraints
from the sequence of branch directions taken during the execution. To drive ex-
ecution down a new path, the fuzzer obtains a path constraint π by (roughly)
conjoining all of the branch-constraints for (some prefix of) the path, negating
the final constraint, and then passes π to a constraint solver. If π is satisfiable, any
satisfying assignment obtained from the constraint solver represents an input that
drives execution down the prefix, and then off of the original path. Greybox fuzzing
leverages some knowledge about the program; typically, lightweight program in-
strumentation is used to observe the state of an execution, and the information so
obtained is used to guide input generation. The state-of-the-art fuzzer, American
Fuzzy Lop (AFL), is a greybox fuzzer (Zalewski, 2020).

There are also different techniques that can be used for input generation. In
designing a fuzzer, one consideration is whether a grammar will be used: a fuzzer
can be either grammar-aware or grammar-blind. The grammar-aware approach gener-
ates the input with respect to a pre-specified grammar that captures the program’s
input language (or possibly some approximation to the input language). Because
those inputs are either guaranteed to be valid, or are typically valid, an execution
starting from such an input can dive deep into the subject program. However, the
grammar-aware approach may requires manual effort to specify the grammar, and

1Reproducibility may be lost in the presence of nondeterminism—e.g., time-related behavior, or
nondeterminism due to concurrency. In such situations, fuzzing can still be useful if programs are
instrumented to provide data about the execution path followed, which can provide clues about
bugs encountered during that (non-reproducible) run.
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it is subject-specific.2 A grammar-blind approach generates the input randomly
without knowledge of the input format. However, most programs take inputs with
certain format constraints. Most grammar-blind generated inputs are invalid, and
cannot pass the input-validation stage of the subject program.

Another consideration is whether an input is generated from scratch or from an
existing input: the input-generation approach can be either modification-based or
from-scratch.3 A modification-based approach generates an input from an existing
input by changing the input a little—for example, by adding, deleting, or changing
a few bits or bytes of an existing input. On the other hand, a from-scratch approach
does not start from an existing input. In general, grammar-aware approaches
have been from-scratch, while grammar-blind approaches have been modification-
based (Godefroid, 2020).

Target-Oriented Fuzzing

While standard fuzzing aims to increase test coverage, it offers little control over
which parts of the program are explored. However, in some cases, certain parts
of the program are more interesting than others. In the mutant-killing scenario,
when a certain part of a program is mutated, one is interested in generating an
input that triggers a behavior different from the original program’s behavior. Thus,
a necessary condition is to generate an input that reaches the mutated part of the
program. Consequently, one is interested in a target-oriented fuzzer, rather than a
fuzzer that supports the standard fuzzing goal of increasing code coverage.

While synthesizing an input to reach some specific points in the program can
be addressed using symbolic execution and a constraint solver, AFLGo has shown

2There has been some work on automatically generating a grammar for the language of a
program’s inputs (Hoschele and Zeller, 2017; Bastani et al., 2017; Wu et al., 2019).

3In work on fuzzing, the operation of modifying the input is often called “mutating the input.”
However, because in this chapter we have already used “mutating” to mean the process of introduc-
ing changes in the program (in the sense of mutation testing), we will use “mutating” when referring
to changes introduced in a program, and “modifying” when referring to changes in an input. (The
one exception to this terminology convention comes when discussing TOFU’s modification-based
input-generation component, which is based on libprotobuf-mutator (Google, 2020a).)
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that, in practice, fuzzing—together with certain program-analysis techniques—is
often an empirically better approach (Böhme et al., 2017). Given the target lines
in the source code, the fuzzer needs to measure the “quality” of each input. If
one input has an execution trace that gets closer to the target than another, then
the first input should be considered better: mutating that input is more likely to
produce inputs that get even closer, and eventually—after enough modifications
to the inputs—reach the target. Consequently, the program analysis used in such
a tool needs to provide a measure to decide the quality of each input. In essence,
AFLGo is the combination of AFL and such an analysis, which computes a score
for each basic block in the program to measure the distance from each basic block
to the target.

AFLGo has some drawbacks as a target-oriented fuzzer because it inherits many
features from AFL, which aims to increase coverage rather than reach a specific
target. For example, AFL uses grammar-blind modification to generate inputs,
many of which are invalid and rejected by the subject program. While unexpected
invalid inputs can be useful for identifying security vulnerabilities and increasing
coverage, they are less useful when the goal is to reach a specific target in the
program—especially if the target is deep in the program, rather than in the input-
parsing stage. For example, if we have an input whose execution trace is close
to the target, structurally blind modification of some bits or bytes of the input is
likely to make the input invalid and rejected by the program immediately. If one
considers the topology induced by the grammar-blind modification operators, the
neighboring inputs of the desired inputs are mostly invalid, and their executions are
distant from the target. Consequently, structure-blind modification is less suitable
for target-oriented fuzzing.

TOFU

In our tool-chain, to attempt to create test cases that kill mutants, we use TOFU.
TOFU is a greybox, grammar-aware, modification-based fuzzer. Unlike tradi-
tional grammar-aware fuzzers, which generate inputs according to a grammar
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from scratch, TOFU generates grammar-valid inputs by modifying existing inputs.
Therefore, by examining existing inputs’ execution traces, TOFU can choose the
best input—ones whose execution traces are close to the target, and modify them
according to the grammar, hoping that the new inputs have execution traces that
get closer to the target, and eventually—with a sufficient number of modifications
to the inputs—allow the target to be reached.

TOFU’s modification-based input-generation component relies on Google’s
libprotobuf-mutator (Google, 2020a). Protocol-buffers (“protobufs”) are a “language-
neutral, platform-neutral extensible mechanism for serializing structured data” (Google,
2020b). Libprotobuf-mutator is used to randomly modify protobufs. When a user
describes a grammar using the protobuf-specification language, the specification is
compiled into a C++ class, and an input corresponds to an object in the class. The
mutator can modify the object, by modifying sub-components to create a modified
object according to the specification. The modified object corresponds to a modified
input.

For each target line, TOFU first identifies the corresponding basic blocks in the
control-flow graph, and then computes the distance from each basic block to each
target basic block. TOFU uses a priority queue to store candidate inputs, and the
priority is calculated from both the distances and the covered basic blocks induced
by the input. Fuzzing is a repeated loop of modification (delegated to libprotobuf-
mutator) and execution. During each iteration, TOFU selects a seed input, generates
multiple new modified inputs, and then executes the program using the new inputs.
The new inputs are then added to the priority queue according to their execution-
distance-based priority. More details about TOFU can be found in (Wang et al.,
2020).
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5.6 Experimental Setup

Target Program

We used the Space program, part of the SIR repository (Do et al., 2005). This
program was selected for multiple reasons. Space has a long history as a “model
organism” in software-engineering research, appearing frequently in the literature
for mutation testing (Just et al., 2014c; Andrews et al., 2005b).

In addition to being very well-known within the community, Space has a feature
vital for our experiments—its 13 496-case test suite is massive. This feature is
especially important for the validity of our experiments, because the detection of
equivalent mutants is an open question that is beyond the scope of this chapter
(an “equivalent mutant” is a mutant that is semantically equivalent to its parent
program). Following the convention adopted by other researchers (Andrews et al.,
2005b; Brown et al., 2017), we use this extensive test suite as a proxy for equivalence
detection. That is, when computing mutation adequacy relative to Space’s test suite,
we assume that any mutant not killed by the test suite is an equivalent mutant.
By removing such apparently equivalent mutants from consideration, we ensure
that our tool-chain only tries to find differentiating inputs for mutants known to be
non-equivalent.

Finally, Space is a relatively small program at 8718 lines of code. This feature
makes it reasonable for our experiments to cover all possible mutants generated by
the mutation-testing frameworks we used.

Mutant Generation

We used two different mutation-testing frameworks to generate mutants for our
experiments. We used these frameworks both to maximize the total number of
mutants available for experimentation, as well as to avoid potential biases in our
results due to reliance on a single system or algorithm for mutating source code.

One of the core concepts of our technique is that we are able to furnish argu-
ments that the test cases we generate are useful. To make these arguments more
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comprehensible to a human engineer overseeing the process, we require that the
mutations used generate readable differences in the source code of the program
under test. Because of this requirement, we were unable to use frameworks that
focus on the mutation of compiled artifacts, as opposed to source code.

In addition to requiring source-code-level mutation, we also preferred mutation-
testing frameworks under recent development. Using these criteria, we chose to
use the following mutation-testing frameworks:

• SRCIROR (Hariri and Shi, 2018)

• Wild-caught mutants (Brown et al., 2017).

For each mutation-testing framework used, we generated all possible compilable
mutants of Space. In section 5.7, we describe how we used our tool-chain to create
a new test-suite for Space, starting from just four randomly selected tests from the
original Space test suite. In section 5.7, we describe how we used AFL (Zalewski,
2020) to generate a third test suite for Space. We evaluated each of the mutants for
equivalence, using each test suite as a proxy for equivalence detection. Table 5.1
lists the results from mutant generation.

During the course of our experiments, we identified a set of mutants that ex-
hibited non-deterministic behavior. Manual inspection of the entire set of mutants
was not feasible, but inspection of a small subsample showed that some of these
mutants could exhibit undefined behavior. We removed these mutants from our
experimental corpus.

The result of this process left us with three corpora of mutants. In each, all
mutants that exhibited non-deterministic behavior were removed. In addition, all
mutants were removed that were considered to be equivalent by a given proxy for
equivalence detection (Space, “Ours”, and “AFL-generated”). We used the three
corpora to carry out measurements of the effectiveness of the test suites relative to
using Space, Ours, and AFL-generated as the proxy for equivalence (see section 5.7).
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Table 5.1: Mutation-testing frameworks

Mutants
Relative to Spacea

Mutation-testing
framework Generated Non-deterministic Considered

equivalent
Experimental

corpus
SRCIROR 11 374 928 3459 6987

Wild-caught mutants 27 641 1381 9522 16 738

Total 39 015 2309 12 981 23 725

Mutants
Relative to Oursb Relative to AFLc

Mutation-testing
framework

Considered
equivalent

Experimental
corpus

Considered
equivalent

Experimental
corpus

SRCIROR 3961 6485 6609 3837

Wild-caught mutants 9946 16 314 17 133 9127

Total 13 907 22 799 23 742 12 964

TOFU

As described in section 5.5, TOFU implements target-oriented fuzzing through
a repeated loop that involves (i) input generation by modifying the input that is
currently estimated to be of “highest quality,” (ii) execution of an instrumented
version of the program on the modified inputs, and (iii) classification of the quality
of the results (based on the shortest distance reached during execution to one of the
target blocks). In our experiments, TOFU generates 80 new inputs on each iteration
(i.e., each time step (i) is performed). In the different experiments described in
section 5.7, we vary both the iteration limit and the number of seed inputs.

TOFU is used to generate inputs that reach specific target basic blocks in the
subject program (so-called “critical points”). However, reaching a target basic
block is necessary but not sufficient to kill a mutant; for the mutant to be killed,
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there must be a difference in observable behavior between the original program
and the mutant. Because our interest is in generating test cases, a difference must
show up in the outputs of the original program and the mutant. Depending on
the nature of the mutation, the program that contains the critical points could be
either the original program or the mutant; call that program P. TOFU is used to
fuzz P until it generates an input that reaches a target basic block. At that point,
both programs are run, and their respective outputs in both stdout and stderr are
compared. If there are any differences, then TOFU has generated an input that
leads to a behavioral difference in the original program and the mutant.

5.7 Experiments and Results

Research Question 1

Research Question 1: Can target-oriented fuzzing be used to create test cases
to kill live mutants?

To answer this research question, we used TOFU to generate inputs. As de-
scribed in section 5.3, each of these inputs, when combined with output recorded
from the program under test, represents a new test case. For each mutant we gen-
erated, we used our technique to attempt to construct a new test case to kill it. To
evaluate the utility of our technique across a range of levels of resource availability
to an engineer using the system, we evaluated our technique’s ability to construct
new test cases along two dimensions:

Iterations. For each experimental run of TOFU, we configured it to stop execution
after a fixed number of iterations. Because the high-throughput computing platform
we used for our experiments lacks reliable “wall-clock” timing, we used iterations
of TOFU’s target-oriented-fuzzing algorithm as a proxy for processor-time used.
To be able to report on the ability of our technique to generate test cases across a
wide range of available computing resources, we ran TOFU with limits of 200, 500,
and 5000 iterations.
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Table 5.2: Test-case generation and TOFU execution times

Success Rate
Seed Test Cases

Iterations 5 20 100
200 83% 83% 85%
500 84% 87% 87%
5000 85% 87% 91%

(a) Test-case generation results. Each entry is the percentage of mutants in the corpus for which
TOFU was able to create a test case that killed the mutant, as a function of the number of seed test
cases and number of iterations performed by TOFU. (A higher percentage indicates a greater ability
to create test cases.)

Median Execution Time Maximum Execution Time
Seed Test Cases Seed Test Cases

Iterations 5 20 100 Iterations 5 20 100
200 2s 5s 5s 200 1m 2s 1m 4s 57s
500 2s 5s 5s 500 2m 18s 2m 19s 2m 45s
5000 2s 5s 5s 5000 20m 48s 22m 56s 22m 38s

(b) Single-mutant TOFU execution times. Each entry shows the median and maximum time observed
running TOFU on a set of mutants sampled from the experimental set. Maximum here represents
TOFU “timing out” due to it hitting the specified iteration limit. These executions were performed
on a desktop computer with an Intel® Core™ i7-9700k CPU and 32 GB of memory.
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Seed test cases. While TOFU can create inputs from thin air, the target-oriented-
fuzzing process is more effective when seed inputs are provided. Our goal is for this
technique to be usable in projects with both large and small test suites—both to build
up a test suite rapidly from a small basis, and to plug holes in an already-robust
test suite. To evaluate our technique’s performance under these conditions, we
attempted to generate test cases using 5, 20, and 100 randomly selected pre-existing
test cases as a starting basis. Then, for each mutant in our set of non-equivalent
mutants, we ran TOFU on the original program and the mutant (in hopes of finding
an input differentiating the two programs) with the set of seed test cases.

In all executions of TOFU to generate new test cases, we used seed test cases
that were randomly sampled from Space’s test suite. Because we used Space’s test
suite as a proxy for equivalence detection, for all of these mutants at least one test
case already existed that killed the mutant; the test cases used for input here were
sampled exclusively from test cases that did not kill the mutant being analyzed.
The seed test cases used for each run of TOFU were sampled independently.

Our results are summarized in table 5.2(A). Each entry is the percentage of
mutants in the corpus for which TOFU was able to create a test case that killed the
mutant, as a function of the number of seed test cases and number of iterations
performed by TOFU. (A higher percentage indicates a greater ability to create test
cases.) With success rates of test-case generation ranging from 83% to 91%, we
answer this research question in the affirmative. The identification of critical points,
followed by target-oriented fuzzing can be used to kill live mutants.

Table 5.2(B) describes the execution time of TOFU taken from a sample of the
entire mutation set. Most of TOFU’s executions completed quickly—providing
the user with an input differentiating the mutant from its parent program—but
many “timed out” by hitting the provided iteration limit. We found that only the
number of test cases provided as seed input to the program had any impact on
the TOFU’s median execution time. Seed-input count had little impact on TOFU’s
maximum-execution time, but changing the iteration limit produced a nearly linear
increase in maximum execution time. Both of these observations are in line with
our test-case-generation results. Even with a limit of 200 iterations, TOFU is capable
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of finding differentiating inputs for most mutants, because of this the iteration limit
will not affect running time for the median mutant. In the worst case, the execution
of TOFU times out, and the time taken to do so is roughly linear with respect to the
iteration limit.

Research Question 2

Research Question 2: Can target-oriented fuzzing combined with mutation
analysis be used to generate robust test suites?

To answer this research question, we extended our test-case-generation process
to construct an entire test suite, as opposed to sampling the technique’s ability to
kill mutants in isolation. This extension of the technique allows us to evaluate our
ability to generate entire test suites from minimal starting inputs. We performed
this experiment for each of the three different iteration-limit configurations used
for the test-case-generation experiment, and report the results of these trials.

We selected four test cases randomly from Space’s 13 496-case test suite to use
as an initial test suite. We used these four test cases as a set of seed inputs to
attempt to generate a mutant-killing input for each mutant not already killed by
the seed inputs. Those generated inputs that killed mutants were added to the set
of seed inputs (as well as the test suite under construction), and killed mutants
were marked as such. Once these inputs were collected, we returned to the mutants
not killed by the previous iteration. We then attempted to kill the previously live
mutants with the now-larger set of seed inputs produced by adding the newly-
generated inputs from the previous iteration to the test suite for the current iteration.
This process—attempting to kill live mutants in batches, adding to the seed-input
set each iteration, in order to maximize parallelization—was repeated until a full
iteration was performed on the set of live mutants without killing any additional
mutants. Because we increase the size of the test suite (and hence the seed-input
set) whenever we are able to construct a new test case, the more mutants we kill,
the more likely the test suite being constructed is to kill future mutants.
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After processing each mutant this way, we restart the process on the set of (still)
live mutants, attempting to find inputs for each of them using the growing test suite
as a basis for target-oriented fuzzing. This process continues until we either kill all
mutants or make a full pass through the live-mutants set without constructing any
new test cases. The resulting test suite after this step is our “comprehensive” test
suite.

During the evaluation of our test suites, we observed that our synthetic test
suites required substantially more execution time than Space’s human-authored
suite. Space itself allows test cases to produce arbitrarily large outputs because
its inputs are, effectively, programs with the functionality to iterate over ranges
specified in the inputs. The human-authored test cases tend to avoid abusing this
functionality: the largest output from the original test suite was roughly 250 kB.
TOFU, however, generated some inputs whose outputs were greater than 600MB.
Because we would expect the typical engineer using our technique to find test cases
with such massive outputs to be unusably large, we created “filtered” versions of
our test suites by removing the roughly 7% of test cases for which the output size
was over 1MB—i.e., those test cases whose output size was greater than four times
the size of the largest output from Space’s own test suite. After these test cases
were removed, our synthetic test suites had comparable metrics for both median
test-case output size and total execution time.

Because our experimental protocol uses Space’s test suite as a proxy for the
detection of equivalent mutants, any mutation-adequacy score we report for our
test suite(s) will be relative to the mutation-adequacy score of the Space test suite
itself. In addition to this mutation-adequacy score, we also computed the mutation-
adequacy score of Space’s test suite in relation to our test suites—that is, we treated
our test suite as the proxy for equivalence detection, and calculated the mutation-
adequacy score of Space’s test suite against the set of mutants our test suite was
able to kill. Figure 5.2 provides a conceptual view of this relationship; for any set
of mutants, some will be “inequivalent” relative to Space’s test suite, and some
inequivalent relative to our test suite. The intersection of the two regions represents
those mutants inequivalent—that is, detected by—both test suites.
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Table 5.3: Test-suite Metrics

Relative Mutation Adequacy

Test Suite Size Time to
Generate

Basic-
Block

Coverage

Relative
to

Spacea

Relative
to

Oursb

Relative
to

AFLc

“Controls”
Space’s 13 496 N/A 89% 100% 96% >99%
AFL-generated 35 296 9200 hoursd 66% 54% 56% 100%

Ours (200-iters.)
Comprehensive 20 545 400 hourse 85% 87% 93% >99%
Filtered 19 429 N/Af 85% 83% 89% 97%

Ours (500-iters.)
Comprehensive 20 664 800 hourse 85% 88% 93% >99%
Filtered 19 485 N/Af 85% 84% 90% 97%

Ours (5000-iters.)
Comprehensive 21 969 6000 hourse 86% 93% 100% >99%
Filtered 20 233 N/Af 85% 87% 94% 98%

a Mutation-adequacy scores relative to Space’s test suite. Failure of Space’s test
suite to kill a mutant is used as a proxy for mutant-equivalence. By definition, the
relative mutation-adequacy score for Space’s test suite is 100%.
b Mutation-adequacy scores relative to our best constructed test suite, specifically,
the one generated with TOFU’s timeout set to 5000 iterations. For this column,
failure of our test suite to kill a mutant is used as a proxy for mutant-equivalence.
By definition, the relative mutation-adequacy score for the “Comprehensive” test
suite of the 5000-iteration version is 100%.
c Mutation-adequacy scores relative to the test suite generated by AFL. For this
column, failure of this test suite to kill a mutant is used as a proxy for mutant-
equivalence. By definition, the relative mutation-adequacy score for AFL’s test suite
is 100%.
d Starting with four inputs on server-grade hardware, see section 5.7. Normalized
to single-core hours.
e Starting with four inputs on a high-throughput computing platform. Due to
unreliable measurement of “wall-clock” time, these values are approximate.
f Generation of the “Filtered” test suite has no effective cost beyond the generation of
the “Comprehensive” test suite, because it is constructed from meta-data collected
during the process.
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Figure 5.2: Relative Non-equivalence

Mutants

“Inequivalent”
relative to
Space’s test suite

“Inequivalent”
relative to our
test suite

Table 5.4 summarizes our results from this test-suite-generation process, com-
paring our test suites to both Space’s test suite and an AFL-generated test suite as a
second “control”.

Because equivalence detection is undecidable, any proxy used to approximate it
will be imperfect. We compare the quality of the proxies used in our experiments—
Space’s test suite, our best test suite, and the AFL-generated test suite—in table 5.5.
Notably, we were able to kill 804mutants live by even Space’s test suite.

Because we were able to generate test suites with high mutation adequacy (and
even kill some mutants that managed to escape Space’s expansive test suite), we
answer this research question in the affirmative.

Research Question 3

ResearchQuestion 3: How do these generated test suites compare to manually-
authored test suites in size, code coverage, and the ability to kill mutants?

To more effectively evaluate the quality of our test suites, in addition to mutation-
adequacy score, we also computed the code coverage of the test suites generated
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Table 5.4: Test-suite Metrics

Relative Mutation Adequacy

Test Suite Size Time to
Generate

Basic-
Block

Coverage

Relative
to

Space

Relative
to

Ours

Relative
to

AFL
“Controls”
Space’s 13 496 N/A 89% 100% 96% >99%
AFL-generated 35 296 9200 hours 66% 54% 56% 100%

Ours (200-iters.)
Comprehensive 20 545 400 hours 85% 87% 93% >99%

Ours (500-iters.)
Comprehensive 20 664 800 hours 85% 88% 93% >99%

Ours (5000-iters.)
Comprehensive 21 969 6000 hours 86% 93% 100% >99%

a Mutation-adequacy scores relative to Space’s test suite. Failure of Space’s test
suite to kill a mutant is used as a proxy for mutant-equivalence. By definition, the
relative mutation-adequacy score for Space’s test suite is 100%.
b Mutation-adequacy scores relative to our best constructed test suite, specifically,
the one generated with TOFU’s timeout set to 5000 iterations. For this column,
failure of our test suite to kill a mutant is used as a proxy for mutant-equivalence.
By definition, the relative mutation-adequacy score for the “Comprehensive” test
suite of the 5000-iteration version is 100%.
c Mutation-adequacy scores relative to the test suite generated by AFL. For this
column, failure of this test suite to kill a mutant is used as a proxy for mutant-
equivalence. By definition, the relative mutation-adequacy score for AFL’s test suite
is 100%.
d Starting with four inputs on server-grade hardware, see section 5.7. Normalized
to single-core hours.
e Starting with four inputs on a high-throughput computing platform. Due to
unreliable measurement of “wall-clock” time, these values are approximate.
f Generation of the “Filtered” test suite has no effective cost beyond the generation of
the “Comprehensive” test suite, because it is constructed from meta-data collected
during the process.
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Table 5.5: Quality of various proxies for mutant equivalence

# of “Equivalent” Mutants Killed by

Test suite used
as equivalence

proxy

# Mutants
considered
equivalent

(i.e., not killed
by proxy)

Space’s Ours
(5000-iter.)

AFL-
generated

Space’s 12 981 0 804 81

Ours (5000-iter.) 13 907 1730 0 118

AFL-generated 23 742 10 842 9953 0

by our technique. To determine code coverage, we used TOFU’s instrumentation
system to trace basic-block execution, and evaluated our results based on the
percentage of the whole program’s basic blocks that were executed by the test suites
being examined.

To provide a point of reference for the code coverage achieved by our synthesized
test suite, we compared our results to Space’s expansive human-authored test suite.
Space’s test suite is well-known for its expansiveness, containing more test cases
than the program itself has lines of code.

As an additional “control” for our experiments, we also created a test suite
automatically using AFL. AFL is a state-of-the-art fuzzing tool that tries to identify
the buggy behavior of programs by increasing code coverage (Zalewski, 2020). We
ran AFL in parallel mode on a workstation with twenty-four Intel® Xeon® X5675
CPUs running at 3.07GHz and 189GB of memory for 16 days starting with the
same four seed test cases used during our test-suite-generation experiment. After
allowing AFL to run for 16 days, we collected the 35 296 inputs it generated as a
test suite.

The size, code coverage, and mutation-adequacy scores of all of the analyzed
test suites—Space’s human-authored test suite, our generated test suites, and AFL’s
synthesized test suite—are summarized in table 5.4.

Our technique was able to generate effective test suites achieving a mutation-
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adequacy score of 87% (relative to Space’s test suite) and 85% basic-block coverage
(this coverage amounts to 96% of the basic-block coverage of Space’s test suite) in
our test suite generated with a computational limit of 200 iterations of TOFU. The
technique was able to achieve a mutation-adequacy score of 93%, killing roughly
half of the remaining mutants, with the 5000-iteration-limit version of the test
suite. The computational efficiency of the technique drops off sharply from the
200-iteration suite to the 5000-iteration suite, the 5000-iteration version requiring
approximately ten times the computational power to kill 5% more mutants than
the 200-iteration version. However, our tool-chain is designed to give an engineer
using the system the ability to choose how much computational power to devote to
the process.

While the test suites generated automatically via our tool-chain do not out-
perform Space’s test suite in mutation-adequacy score or code coverage, they ap-
proach it in both metrics, while requiring minimal engineering time dedicated
to test-suite creation. The test suites generated automatically via our tool-chain
surpassed the one created using AFL in both mutation-adequacy score and code
coverage, while using broadly similar amounts of computing power.

Discussion

We were able to generate effective test suites, albeit at the cost of thousands of
hours of processor time. This cost is not unique to our technique; mutation testing
as a technique in software engineering has suffered from slow uptake within the
industry due to this computational cost. Mitigating this cost through the use of
cloud-based systems is not a new concept (Saleh and Nagi, 2015), and along similar
lines we expect that the primary use case of our technique will involve cloud
computing. We acknowledge that our technique is computationally expensive, but
we believe it offers a compelling alternative to less-automated methods of test-suite
construction.

Even though our technique incurs a high cost in computational power, the actual
cost is small compared to the alternative. The median salary of a software developer
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in the United States translates, roughly, to a wage of $50 USD per hour (Bureau of
Labor Statistics, 2020) and is trending upwards. Non-time-critical computing with
capacity most-similar to our experimental hardware4 is available from Amazon
at less than $0.04 USD per hour (Amazon, 2020), with the overall cost trending
downward. While expensive in terms of raw computing resources, our technique
allows the creation of robust test suites—containing many thousands of test cases—
for prices commensurate with a day of a software engineer’s work. Because the
output of our tool-chain is comparable to the work of engineers, we believe that
this comparison is a reasonable one to make.

Moreover, we believe that the results of our technique provide a compelling
argument for its value. In contrast to typical mutation-testing systems, the technique
provides immediately usable software-engineering artifacts in the form of test cases,
as opposed to just an evaluation of the quality of a test suite, which is the normal
output of mutation testing.

It is difficult to quantify the cost of test-case development by humans, especially
because for a project like Space the test suite was developed over a considerable
period of time, and has contributions from many developers. To get an estimate for
the engineering resources required to recreate Space’s test suite (or a test suite of
similar size and content), we polled five software engineers, all with between ten
and twenty-five years of professional experience. We described the Space program,
the kind of test cases, and the size of the test suite, and asked for rough estimates of
the engineering resources, in terms of man-hours spent by engineers, required to
generate a test suite of comparable size. The responses from this question ranged
from two to eighteen man-months to reproduce the test suite, with a median of six
man-months.

Assuming that the median value of six man-months is a reasonable estimate,
the salary alone for a developer to construct the test suite costs $50 000 USD. With
current cloud-computing costs and the processing time used during the creation
of our test suite, we were able to generate a test suite with 87% of the mutation-

4Based on requested memory size, the nodes we requested from our high-throughput computing
platform are most similar to Amazon’s “a1.2xlarge” level of service.
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adequacy score, 96% of the code coverage, for less than 1% of the dollar cost.

5.8 Threats to Validity

Internal

A prominent threat to the validity of our experiments is our handling of equivalent
mutants. The detection of equivalent mutants, that is, those mutants that are
semantically identical to their parent program, is a long-standing problem in the
field of mutation testing (Offutt and Lee, 1991; Grün et al., 2009). Active research
continues into the problem (Ayad et al., 2019), and a solution to the problem (at least,
in its more general form) is outside of the scope of this work; we avoid the problem of
equivalent mutants creating false negatives in our experiments (that is, our system
being unable to generate a test case distinguishing a mutant from its parent because
the mutant is semantically identical to its parent) by explicitly computing our
mutation-adequacy scores relative to proxies for equivalence detection. Although
imperfect, this technique allows us to limit our experimental corpora to sets of
mutants known not to be equivalent mutants. Prior work on mutation testing has
used Space’s test suite as a proxy for equivalence detection (Andrews et al., 2005b);
we go beyond that work by using three different test suites—Space’s, our best
one, and one created using AFL—as such proxies. In particular, table 5.4 reports
mutation-adequacy scores computed relative to each of the test suites.

Moreover, the results given in table 5.5 provide an “internal sanity check” of
the hypothesis that a large test suite provides a reasonable approximation of an
equivalence test. Our best test suite was able to kill relatively few mutants that
were live by Space’s test suite, and Space’s test suite was able to kill relatively few
mutants that were live by our best test suite.

Mutation adequacy has been shown to be a reasonable approximation of test-
suite quality (Andrews et al., 2005b).

Finally, the comparison between our test suites and the test suite created using
AFL supports the claim that our technique is able to create robust test suites—i.e.,
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the test suites created via our technique have characteristics more similar to Space’s
test suite than the test suite created using AFL.

External

The most obvious external threat to validity of our work is the sheer computational
cost of the technique, which we discuss in detail in section 5.7.

5.9 Related Work

Test-Case Generation

Test-case generation is an active field of research, with a wide variety of techniques
under continuous development. While considerable research in the field is focused
on the construction of test cases from models or requirements (Li et al., 2017), or
specifically targeting code-coverage metrics (Yang et al., 2009), here we review
related work instead on test-case-generation research that focuses on particular
qualities of the test cases generated. (We consider the most-interesting element
of our work to be that our generated test cases have an important feature—they
distinguish behavior between the program under test and a plausible modification
to it.)

Panichella et al. (2017) discuss an algorithm for improving the quality of
test-case generation, using multiple metrics, including mutation-adequacy score
(“strong mutation coverage” in their terminology). They use a genetic algorithm, as
opposed to our target-oriented-fuzzing technique, as well as considerably smaller
mutant sets for analysis.

Palomba et al. (2016) discuss test-code quality, arguing for the importance of the
consideration of maintenance and execution costs of test suites, and mitigating these
costs by preferring to use higher-quality test cases. Our work has a similar focus—
the generation of test cases along with arguments for their relevance—but instead
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of focusing on measurement of code quality, our work is focused on generation of
the test cases themselves.

Xin and Reiss (2017) demonstrate a technique for detecting patches that are
overfitted relative to a program’s test suite—that is, a patch that “passes the test
suite but does not actually repair the bug”—and generating test cases that make
similar overfitting easier to detect in the future. Their work has a focus similar
to ours, using these patches in place of the mutants that we use, but lacks the
target-oriented-fuzzing element and the focus on large-scale test-case-generation.

Target-Oriented Fuzzing

Target-oriented fuzzing was first introduced by AFLGo (Böhme et al., 2017) under
the name “directed fuzzing.” Unlike standard fuzzing, which has the goal of
maximizing the coverage of a test suite, the goal of target-oriented fuzzing is to
generate inputs that cause the execution of specific locations in the source program’s
control-flow graph. Existing applications of target-oriented fuzzing include patch
testing and crash reproduction, where the interesting parts in the program are
newly-patched code or sections of the code that are known to cause a crash. In the
mutant-killing setting, the interesting parts of the program are the mutated code.
TOFU refines AFLGo by introducing distance-based metrics and a grammar-aware
mutator, enabling TOFU to generate inputs faster.

Other than fuzzing, symbolic execution is also commonly used for program
testing. Similar to standard fuzzing, the goal of symbolic execution is to maxi-
mize test-suite coverage. Guided symbolic execution was also proposed to gener-
ate inputs to reach specific locations during program execution (Marinescu and
Cadar, 2013; Ma et al., 2011). However, Böhme et al. (2017) found that, in practice,
the guided-symbolic-execution approach is not as efficient as the target-oriented-
fuzzing approach.



114

5.10 Conclusion
In this chapter, we present a tool-chain that allows a software engineer either to
improve the quality of an existing test suite by generating new test cases (along with
evidence of each test case’s utility), or to create an entire test suite, starting from
only a handful of manually-created test cases. Our experiments provide evidence
that a test suite so constructed has similar performance characteristics to a hand-
constructed test suite (measured by mutation-adequacy scores and code-coverage
scores). Moreover, our tool-chain can create such a test suite for a fraction of the
cost (in time and dollars).
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6 conclusion

This chapter summarizes my doctoral research and presents a brief discussion of
future research directions.
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6.1 Mutation Testing
Ultimately, software testing is the most-effective bulwark against software failure
currently known. My work has been primarily focused on improving techniques in
mutation testing with the goal of improving testing itself.

For mutation testing to provide a useful measure of the adequacy of a test suite,
it must produce not only faults within the system under test, but faults that mimic
those caused by the actual developers working on a project. Just et al. demonstrated
that faults introduced through mutation testing can serve as proxies for real faults
introduced by developers and be effectively used to evaluate the sensitivity of a
testing suite, although they also described limitations of existing sets of mutation
operators.

My work has expanded upon the existing state of the art by the introduction
of a technique—“wild-caught mutants”—allowing the automatic harvesting of new
mutation operators. As opposed to existing “synthetic” mutation-testing tech-
niques, every mutation created by this technique is based on a change that some
real programmer made to some real piece of code.

Mutation testing, while yielding obvious benefits, has not yet found widespread
use within the software-engineering community. Exhaustive approaches to muta-
tion testing continue to be too computationally intensive to see wide adoption (Petro-
vic et al., 2018), with random sampling of mutants being one of the most effective
methods used to reduce this computational cost (Gopinath et al., 2016). If mutation
testing is to be adopted by the industry at large, it will need to conform to reasonable
limits on its computational cost.

My work in guided mutation testing presents a technique to alleviate this funda-
mental problem. I describe a technique for improving the efficiency of mutation
testing through the prioritization of mutants. Because the generation of mutants
requires vastly fewer resources than their evaluation, my work on the prediction of
various qualities of mutants has the potential to reduce the total computational cost
associated with mutation testing while prioritizing more “interesting” mutants.

Finally, my work with test-case generation through target-oriented fuzzing offers a
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new technique to synthesize test cases rapidly through an extension of mutation-
testing techniques. I present a tool-chain that allows a software engineer either to
improve the quality of an existing test suite by generating new test cases (along with
evidence of each test case’s utility), or to create an entire test suite, starting from
only a handful of manually-created test cases. My experiments provide evidence
that a test suite so constructed has similar performance characteristics to a manually-
constructed test suite (measured by mutation-adequacy scores and code-coverage
scores). Moreover, this new tool-chain can create such a test suite for a fraction of
the cost (in time and dollars) of the manually-constructed one.
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6.2 Future Work
While my work has been successful in introducing new techniques in mutation
testing, time is, of course, a finite resource. Many opportunities to expand on my
current work exist.

Mutation operators

My “wild-caught mutants” work provides techniques to generate new mutation
operators, but my experiments have exposed areas for improvement.

Primarily among these areas is the cost of compilation; the wild-caught-mutants
technique suffers from a low compilation rate compared to other mutation-testing
techniques. The technique could be improved through tighter integration with
the compilation process—to weed out uncompilable mutants earlier in the process.
While a primary goal of the original tool-chain was to generate tooling as close to
language-agnostic as possible (that is, to develop a tool-chain that could work with
any nearly any programming language), stronger integration with build tools of
individual languages would improve the utility of the technique.

Test-case analysis

While I think the results from my test-case generation work were particularly
exciting, there is ample room to extend the technique.

Conceptually, a test suite provides a “sketch” of program behavior, and not all
test cases contained within a test suite are of equal value to this representation of
behavior. My technique was built around the concept of providing an argument to
the engineer using it—that is, being able to provide not only an input and output
defining the test case itself, but additionally a plausible modification to the program
creating a need for the test case. This argument, however, does not guarantee the
usefulness of a generated test case, nor the acceptance of the test case by an engineer
overseeing the process.
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My conception of the next step of this process is the analysis of what and why test
cases are acceptable to a human engineer. I believe that machine-learning techniques
could be used to compare test cases accepted or rejected by human engineers, and
from this analysis produce models prioritizing automatically-constructed test cases,
thus improving the quality of cases generated and presented for review by the
engineers using the system.
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