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abstract

Debugging is a difficult, error-prone, and tedious task. Debugging, testing, and verification can
account for 50–75% of a software project’s cost [68]; these costs can grow even higher in some
cases [64, 165]. Nevertheless, or perhaps partly because of this, complex production software
inevitably contains bugs, and post-deployment failures are common. These production failures
increase the cost of bug repair substantially, as they are difficult to reproduce and are initially
observed by non-experts. Detailed postmortem crash reports can theoretically alleviate this
problem. In particular, a developer would greatly benefit from a concrete, reproducible, full
execution trace. Sadly, full execution tracing is usually impractical for complex programs.
Even for simple code, the overhead of full tracing may only be acceptable during in-house
testing.

The first part of this dissertation describes new techniques and tools for lightweight
instrumentation of deployed applications. We describe techniques that trace program paths
and that gather program coverage data at various granularities. We also present new algorithms
for optimizing program coverage instrumentation based on customized requirements. Across
all of these approaches, our techniques focus on extremely low-overhead control-flow tracing,
and take advantage of readily-available information from failure reports (e.g., stack traces)
to avoid redundant tracing and prioritize information to maintain when trace data must be
limited due to tight overhead requirements.

The second part of this dissertation defines analysis techniques that operate on post-
deployment failure reports. These reports may contain a variety of elements, but usually will
not contain a full trace of run-time information from the failing execution. Thus, our analysis
techniques are specifically designed to grapple with the imperfect information contained in
production-run failure reports (including, but not limited to, our own tracing techniques).
Our techniques aid developers in the difficult task of debugging post-deployment failures by
restricting the possible program code a developer needs to consider, and by answering user
control-flow questions about the failing execution.
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1 introduction

Modern software is often large and complex. Software testing, particularly for large systems, is
expensive and time-consuming to conduct thoroughly, and complete verification of a software
system is generally not possible. As a result, modern software is rarely or never bug-free when
released to end users. Failures of software that occur after initial release are post-deployment
failures.

When software fails (whether in the testing lab or post-deployment), a developer must
debug the application to understand, identify, and repair the fault. Debugging is a difficult,
error-prone, and tedious task, even for failures directly observed by a developer in the testing
lab. Debugging, testing, and verification can account for 50–75% of a software project’s
cost [68]; these costs can grow even higher in some cases [64, 165]. Nevertheless, or
perhaps partly because of this, complex production software inevitably contains bugs, and
post-deployment failures are common. These production failures increase the cost of bug
repair substantially, as they are difficult to reproduce and are initially observed by non-experts.

Detailed postmortem crash reports can theoretically alleviate this problem. In particular,
a developer would greatly benefit from a report with sufficient information to concretely and
completely reproduce the failing execution. Sadly, the most natural method of achieving
this goal—tracing all statements executed and external events that occur during the failing
execution—is usually impractical or impossible for complex programs deployed at user sites.
Many techniques can reduce the cost of execution tracing [21, 22, 25, 98, 182]. Nevertheless,
the overhead of these techniques (often many times the original execution time) remains a
substantial obstacle to their adoption in post-deployment monitoring scenarios. Even for
simple code, the overhead of full tracing may only be acceptable during in-house testing.

Thus, because deployed applications usually cannot gather full traces of run-time informa-
tion, theymust instead leave behind failure reports with varying detail. Crash-reporting systems
are becoming more and more commonplace in enterprise software systems [16, 65, 66, 128].
These systems usually report only very limited information from a crash (e.g., stack traces and
dumps of register values). While these systems are often very efficient, and have been used for
grouping related failure reports or matching reports to known bugs [19, 43], the information
they report often leaves significant ambiguity about the failing execution.

Debugging from incomplete failure reports is especially difficult. To counter these
challenges, postmortem analysis tools aid developers by disambiguating failing executions.
For example, some tools focus on replaying the failing execution [35, 36, 42, 78, 79, 153, 193],
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while others attempt to locate potentially-faulty program locations [2, 23, 79, 82, 102,
106, 150, 195], and still others attempt to locate code potentially relevant to the failure
condition [5, 6, 72, 83, 94, 180, 184]. However, most existing postmortem debugging tools
either expect very dense execution information from the failing run (e.g., a full, repeatable trace)
that is too expensive to collect from production runs, or utilize only very basic information (e.g.,
the failing stack trace). Sadly, stack traces alone leave significant ambiguity about a program’s
execution (as discussed further in Chapter 5). Developers must weigh run-time overhead
(including time, memory, and disk space) against the benefits of traced data for postmortem
failure analysis. Prior approaches to post-deployment monitoring [25, 44, 85, 139, 143, 170]
routinely give up perfect information, which necessarily results in an incomplete picture of any
failing execution. Postmortem analysis tools, then, should ideally be flexible to incorporate a
wide variety of inexpensive data that may be collected in a production failure report.

This dissertation supports debugging of post-deployment failures by advancing the state-of-
the-art in two primary areas: (1) lightweight monitoring of deployed applications, specifically
focusing on monitoring just the control flow of traced applications, and (2) postmortem
analysis based on failure reports of varying detail. One central principle of this work is that
these two areas of research are most effective when aware of the strengths and weaknesses of
one another. Specifically, tracing should be extremely lightweight while remaining focused
on data most useful to postmortem analysis, and should be complementary to other failure
report elements; analysis techniques should be targeted specifically to gracefully handle
inevitably-imperfect failure reports from post-deployment failures.

1.1 Targeting Deployed Applications

The most effective means of handling bugs in user-facing applications is to ensure that all bugs
are fixed prior to release. Many software development processes and pre-deployment tools
have been developed to help identify and fix bugs in the testing lab. Testing practices, such as
test-driven development [126, 181] and regression testing [138], take great strides in improving
software quality. Other tool-based solutions include static (e.g., formal verification [11, 56])
and dynamic (e.g., code coverage [186], profiling [21, 22], and record-and-replay [57, 161])
techniques.

Sadly, despite these efforts, deployed software inevitably contains bugs. In fact, even in
applications with thorough test suites and rigorous coding/build standards, bugs inevitably slip
through into deployment. We performed a survey of bug reports for gcc, the most common
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Table 1.1: Bug reports for supported gcc releases

Bug Report Counts

Month Supported
Stable Releases

Stable
Releases

Long-Term Support
Releases

Oct. 2016 5.4; 6.2 45 71
Nov. 2016 5.4; 6.2 47 72
Dec. 2016 5.4; 6.2 43 66
Jan. 2017 5.4; 6.3 38 62
Feb. 2017 5.4; 6.3 45 73
Mar. 2017 5.4; 6.3 37 64

C/C++ compiler in modern use. gcc was initially released in 1987, and has, on average,
3 releases of each supported version per year. Over this time, gcc has grown into a very
complex piece of open-source software, managed by a large team of developers who set
rigorous standards for testing and release guidelines.

Table 1.1 shows the results of our survey. We examined the public bug database for gcc
for the 6-month period between October 2016 and March 2017. At any time, gcc has two
current releases that are actively supported, and provides long-term support (major bug fixes)
for all gcc releases since 3.3.4 (released in May 2004). For each of the 6 months, we list the
current stable releases at that time, and a count of the number of true bug reports submitted
by users during that time window, broken into those that affect stable releases, and those that
affect any supported version. We define a true bug report as a report that has been confirmed
by developers, and is either unresolved or resolved as fixed. (This excludes reports marked as
enhancements, duplicates, or invalid.)

Overall, the results indicate that post-deployment failures are quite common, even for a
project as mature as gcc. Stable releases average 1.3 to 1.6 unique bug reports per day in the
months surveyed; including long-term support releases increases this average to between 2.0
and 2.6 reports. Through manual inspection, we found that the vast majority of these reports
indicate either crashes or failures producing bad output.

Other research supports our findings. A 2008 study by Jones [80] finds that each stage
of testing averages only 30%–35% removal efficiency, and that the average defect removal
efficiency is about 85% in the United States (i.e., 15% of bugs will make it through to
production). Within the companies surveyed, software averaged 5 defects per function point
(i.e., functional unit or requirement), and larger applications had significantly higher defect
density. Another study by Jones [81] in 2016 confirmed these earlier findings. Here, Jones
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found an average of 4.25 defects per function point, but applications of the largest size (>
10,000 function points) were far worse, at 8.25 defects per point on average.

Post-deployment failures would not be problematic if they were easy to debug and fix.
However, on the contrary, debugging failures from released software is notoriously difficult.
A recent study by Britton et al. [32] found that developers spend 50% of their time debugging,
and half of that time (25% overall) specifically on fixing bugs in existing code; this effort
amounts to $312 billion per year spent on debugging (including wages and administrative
overhead), with half of this debugging time allocated to fixing post-deployment bugs.

Sadly, most of the pre-deployment tools and techniques listed earlier in this section are
not applicable or acceptable for use in deployed applications (e.g., due to time or memory
overheads, or because failure reports contain insufficient data to run the tools). Recent research
has provided tools that are specifically targeted for tracing or analyzing failures from deployed
applications. (We discuss this related work in more detail in Section 1.3 and throughout the
following chapters.) However, industry adoption of more powerful debugging tools and tracing
systems for deployed applications has been very slow [145]. Most systems in use today gather
only stack traces, system configuration, or partial memory dumps [16, 43, 52, 65, 66, 122, 128],
and developers debug almost exclusively via the most basic, traditional debugger primitives
and manually-inserted logging statements [145].

1.2 Tracing and Analyzing Post-Deployment Failures

Recent research suggests that more detailed failure report information substantially increases
the effectiveness of debugging and postmortem analysis [42, 78]. In some cases, failure
reporting systems may include a more extensive “core dump” file containing a snapshot of
the failing program’s memory. Typically, a core dump includes the full program stack at
termination, and, configurably, some portion of the program’s stack or heap data. Nevertheless,
both our own analysis experiments (see Chapter 5, Section 5.3) and other postmortem analysis
research [153] indicate that core dumps alone leave significant ambiguity in the program’s
activity during the failing execution.

On the other extreme, one might consider tracing all operations and environment inter-
actions for the entire execution of a failing program. This situation is ideal in that it allows
complete reproduction of the failing execution; a recent survey of developers at major software
companies indicates that the ability to reproduce a failing execution (via a failing test case with
steps to reproduce the failure) is the most valuable possible outcome of a failure report [197].
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However, tracing a complete execution is infeasible for nearly all deployed software—and most
software in the testing lab as well—due to large execution-time overheads, excessive memory
and disk usage, and user privacy concerns. In general, users of deployed applications are likely
to expect negligible overheads such that the performance of their applications is unaffected by
any additional tracing. Naturally, these overhead thresholds will vary considerably by user and
application. While recent work by Cornejo et al. [41] suggests that users of highly-interactive
applications could tolerate overheads as high as 30%, many existing tools have even higher
overheads. Furthermore, variety in overhead requirements for deployed applications suggests
that monitoring tools should be customizable and able to adapt to user requirements.

To gather additional trace data from an application, one may instrument the program by
adding additional tracing code to the original program. Undoubtedly, one seeks a delicate
balance between the compile-time and run-time costs of instrumentation and the power of
analysis for deployed applications. The central thesis of this dissertation is that

Small amounts of carefully-chosen runtime data, coupled with postmortem
analysis techniques designed for imperfect failure reports, can yield substan-
tial reductions in execution ambiguity from deployed application failures.

Our defense of this thesis has two key parts: (1) techniques for extremely lightweight
instrumentation and tracing customization, and (2) novel postmortem analysis techniques that
scale gracefully from complete execution information to inevitably-incomplete failure reports
from crashes of deployed applications. We implement these goals in the CSI (Crash Scene
Investigation) toolkit for instrumentation and analysis of deployed C/C++ applications.

1.2.1 Instrumentation

To address the first part of the thesis, we develop and evaluate program instrumentation
techniques and methods of tracing customization. These techniques are realized in our C/C++
compiler, csi-cc. We adopt the key principles that instrumentation must:

1. be efficient in both time and space,

2. avoid all kernel interaction, including disk I/O or system calls,

3. be complementary to other failure data (e.g., scale with and hook into existing stack-trace
data), and

4. be customizable post-deployment.
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All of our tracing is focused on the control flow of the program; this focus keeps our
instrumentation efficient (as we never need to examine data values in our code), and partially
mitigates privacy concerns relating to accidental sensitive data collection by our techniques.

We develop two primary tracing mechanisms that follow these principles, both presented
in Chapter 2. The first is an adaptation of a well-studied path profiling approach by Ball and
Larus [22] to bounded path tracing. Here, we trade out the traditional array of path execution
counts (as used in profiling) for a fixed-size array of recent paths to maintain a suffix of
recent execution in each active stack frame. The second instrumentation strategy is a class of
in-memory program coverage mechanisms, gathered at various granularities. Specifically, we
examine coverage data at functions, call sites, and statements; we find that coverage at call
sites strikes a useful balance between the run-time cost of instrumentation versus the denser
information provided for our postmortem analyses.

We next address the final of our key principles above, and develop two strategies for
tracing customization (utilizing latent instrumentation code embedded in the executable);
this work is presented in Chapter 3. We find that a surprisingly straightforward “trampoline
function” approach is most efficient in this context, after also examining a more advanced
technique based on GNU indirect function call attributes [114].

Finally, in Chapter 4, we develop a new parameterized approach to optimizing pro-
gram coverage instrumentation that, beyond any existing techniques, is able to optimize
instrumentation in cases where coverage requirements and allowed instrumentation points
are limited. While prior research optimizes program coverage instrumentation in various
contexts [3, 4, 21, 88, 89, 105, 169], our technique is the first to allow customized requirements.
The input to our approach includes: (1) the subject program, (2) a set of program points for
which we must ensure accurate coverage data in any failure report, and (3) a set of allowed
instrumentation points (possibly not all program points). These optimizations apply to many
situations in deployed software, including gathering coverage data for code not covered by
one’s in-house test suite [143], and our new program coverage mechanisms described above.

1.2.2 Analysis

To address the second part of the thesis, we develop and evaluate novel postmortem analysis
techniques that operate on partial report data from failing executions, in various forms. As
previously stated, a complete replayable execution trace is very valuable here, and recent
research attempts to derive failing inputs and thread schedules from failure reports at various
levels of detail [35, 36, 42, 78, 79, 153, 193], specifically using symbolic execution. We
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discuss some of these techniques in more detail in Section 1.3. These approaches are
promising, but can be very expensive in both time and memory cost for analysis; in the general
case, replaying an execution via symbolic execution is undecidable. Our analyses instead take
a different approach. We specifically focus on providing information that is valid for any run
of the failing application that could produce the provided failure report data.

Our first analyses, realized in our tool csi-spotlight described in Chapter 5, make
specific use of our path trace and program coverage data from the previous section. The first
analysis technique restricts the set of possible statements and branches that may have been
executed during the failing run. We begin from a provided stack trace with optional partial
path trace data (per our instrumentation approaches), and use a stack-restricted backward
reachability analysis to eliminate code that could not possibly have been executed on the
failing run, based also on (optional) provided program coverage data. Our second analysis
technique is based on backward program slicing, which is used to compute the possible set of
statements that may have transitively affected a particular point of interest during execution
(in our case: the point of failure). This restricted set of possibly-relevant statements is called
a program slice. We constrain the program dependence graph [140], a traditional static
representation of a program’s possible flows of control and data. Our approach is again a
stack-restricted backward reachability analysis, but, in this case, we also eliminate inconsistent
data flows, based on the control flow information fed as input to our analysis. Our technique
builds upon work in dynamic program slicing [6], which computes a more accurate slice
based on a full trace of program events from a single execution. We instead facilitate hybrid
slicing: all returned statements may affect the failure point on some run consistent with the
failure report data.

Our second analysis technique, realized in our tool csi-grissom described in Chapter 6,
extends the first analysis of csi-spotlight by allowing users to pose a much richer class of
control-flow queries over the failing program’s execution. Obtaining answers to questions about
a failing execution is a crucial part of debugging, and csi-grissom extends csi-spotlight
in two important ways. First, we allow users to ask a wide variety of control-flow questions,
including, but not limited to, questions about statements that may or may not have executed on
the failing run. Second, we support a much larger class of failure report elements, encoded as
formal languages over the program’s control-flow graph. We also introduce and study a new
class of subregular languages, the unreliable trace languages (UTL). If all failure constraints
and the user’s query can be given as UTL, we present a new algorithm for precisely answering
user queries in polynomial time.
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Finally, in Chapter 7, we describe the design of a debugging tool, CSIclipse, that
facilitates exploration of tracing and analysis result data in an integrated development
environment. Usefulness for actual users debugging deployed applications is the ultimate test
of our analysis techniques. Accordingly, we also lay out a preliminary design for a human
subjects study to assess the utility of the CSIclipse tool.

1.2.3 The Big Picture

One of our key contentions is that the instrumentation and analysis components of tools
for failing deployed applications do best when working together. All of our techniques
are designed with this assertion in mind. Our instrumentation approaches are designed to
complement common existing failure report elements (e.g., stack traces), while our analysis
techniques are specifically designed to scale gracefully in the presence of imperfect failure
information from post-deployment failure reports. We assess the trade-offs in instrumentation
overheads and analysis precision, as well as the advantages of combining our lightweight
instrumentation and analysis approaches, as we conclude in Chapter 8.

1.3 Related Work

This section describes high-level related work that is related to the dissertation generally.
Individual chapters discuss prior work that is related to specific approaches, algorithms, and
tools.

As stated in the previous section, many prior approaches use symbolic execution to replay
executions from failure reports [35, 36, 42, 78, 79, 153, 193]. Rößler et al. [153] use symbolic
execution and genetic algorithms to synthesize a sequence of unit test cases that closely
match data from a core dump. Cao et al. [35] perform selective recording of return values
for functions which are most difficult for a symbolic execution engine to reason about. They
show that focusing on difficult functions can substantially reduce tracing overhead while
still tracing enough information to deterministically replay many failures. Jin and Orso [78]
use symbolic execution to synthesize an execution matching failure trace data at a variety
of granularities. Jin and Orso [79] then build on this previous work to generate multiple
similar success and failure runs to assist in fault localization. In both cases, the replayed
execution then matches whatever conditions are given: just a failure location will result in a
failure at the same point, while a full execution trace will result in an exact match. While
Jin and Orso reduce tracing overheads substantially relative to full tracing, they still measure
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runtime overheads near 50% for two subject programs. Complete replay is potentially very
useful for developers, but finding matching failure inputs is undecidable in the general case,
and often very computationally expensive, regardless of the density of trace data collected.
Such techniques also make difficult trade-offs: with very limited failure report data, the
replayed execution is unlikely to closely match the actual failing execution [78]. However,
with very dense data, the cost of both tracing and replay is higher. As stated previously,
we see replay techniques as complementary to our instrumentation and analysis techniques.
Our instrumentation data is less expensive to collect than most previous techniques, but is
systematically tied to existing data (e.g., stack traces and core dump data) in a manner that may
be useful for replay engines. Our analyses target a different problem in failure understanding,
reporting data that is valid for any run matching failure report data, helping developers to
generalize beyond one specific run.

As an alternative, some research sacrifices perfect replay for efficiency. Prior techniques
facilitate lightweight checkpoint-and-replay of production-run failures [109, 171], and partial
replay of long-running server applications [37]. Cheung et al. [37] log branches and array
accesses for symbolic replay, but drop trace data at pre-specified execution checkpoints to
reduce overheads and log size, allowing replay of a suffix of the failing execution. Liu
et al. [109] take advantage of the fact that memory corruption errors leave behind clear
evidence that they occurred, and present an extensible system to scan for various common
problems (heap overflows, uses after free, and memory leaks) at each execution region
separated by non-replayable system calls. Our approaches do not specifically target memory
errors, but we share the motivation for utilizing data that is already present in failing core
dumps. These techniques are more efficient than their full-replay counterparts, and share our
motivation for prioritizing dense trace information near the failure point. As with full replay,
we see this work as complementary to our own, providing partial replay of a single failure,
while our analyses generalize to aid developer understanding of the bug underlying the failure.
Our analyses could complement a bounded replayable trace with restricted views of global
execution information and general user control-flow queries about the failing execution.

Artzi et al. [17] reproduce failures by tracking arguments to methods in a shadow stack, and
take advantage of object-oriented properties by shadowing values at the object level. This work
is similar to ours in its exploitation of available runtime structure (in this case, object-oriented
features), but with a different goal: producing method unit test cases. Manevich et al. [112] use
backward data-flow analysis to reproduce failing executions based on only a failure location
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and typestate information regarding the failure. While efficient, this approach is limited to
solving specific typestate problems with simple types.

Yuan et al. [190] introduce the SherLog tool which performs postmortem analysis from
log files. SherLog infers paths that must, may, or cannot have executed between logging
points, and derives data-flow information for those paths. Yuan et al. [191, 192] also analyze
programs to enhance existing logging and capture additional state for SherLog’s analysis.
Our analyses do not use free-form log data, though we briefly discuss how log data might
be encoded for our csi-grissom analysis in Chapter 6. Data values from log messages
could complement our lightweight control-flow tracing mechanisms, particularly for use in
postmortem analysis techniques, including our own.

Prior research [18, 31, 110, 139] emphasizes adaptive post-deployment instrumentation
with data collection aggregated across large user communities. Such approaches are comple-
mentary to our own: we focus on gathering very valuable information at very low cost, while
these related efforts focus on how best to deploy information-gathering instances. This work
is most closely related to our tracing customization work described in Chapter 3; there, we
discuss this related work in more detail.

Some prior approaches rely on complete tracing of executions [90] or environment
interactions [39]. Intensive data collection of this sort allows for rich functionality, such
as deterministic replay [39] or detailed visualization of program paths and user queries in
an integrated development environment [90]. However, the resulting overheads may be
prohibitive for deployed software. Our techniques throughout this dissertation explicitly
trade off detail for efficiency, and demonstrate that much of value can be learned even from
impoverished but targeted failure report data.

1.4 Contributions

The primary contributions of this dissertation are frameworks and tools for supporting
the challenging and tedious task of debugging deployed applications. More specifically,
the techniques and tools described here enable more efficient instrumentation of deployed
applications, and more effective analyses of incomplete failure reports arising from failing
executions of these applications. The contributions are summarized as follows:

• We develop two complementary classes of program tracing mechanisms—path traces
and in-memory program coverage techniques—that augment core memory dumps
with lightweight, tunable tracing with performance suitable for deployed applications
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(Chapter 2). These mechanisms are realized in an instrumenting C/C++ compiler,
csi-cc.

• We design and evaluate means for efficient developer and end-user customization of
csi-cc tracing after deployment (Chapter 3).

• We introduce the problem of determining optimal program coverage instrumentation
based on user-specified requirements: desired coverage locations, as well as the
set of locations that are valid for instrumentation. We present three approaches to
optimization—one fully-optimal and two approximations—that substantially reduce
instrumentation required to trace coverage information (Chapter 4). Our approaches
specifically target those requirements that arise in tracing of deployed applications, and
are the first to optimize coverage instrumentation based on customized requirements.

• We develop two analysis techniques that specifically take advantage of our efficient
csi-cc tracing mechanisms (Chapter 5). Our first analysis limits the set of potentially-
executed statements and branches in a program; our second analysis is a novel technique
for static program dependence graph restriction based on partial dynamic trace data.
Our analyses, realized in the csi-spotlight engine, substantially reduce the relevant
code a developer would need to consider when debugging a post-deployment failure.

• We introduce two variants (with and without calling-context sensitivity) of a query
recovery problem for answering arbitrary user-specified control-flow queries given a
program and a failure report from a run of that program. We develop two analyses
based on formal automata encodings that can encode a wide class of failure constraints,
and can precisely answer user queries for real-time or batch analyses (Chapter 6). Our
analyses are realized in the csi-grissom engine.

• We develop and study a new class of subregular languages, the unreliable trace languages,
that are particularly suited to answering context-insensitive control-flow queries in
polynomial time (Chapter 6). Our csi-grissom system answers queries remarkably
efficiently when we encode failure constraints and user queries entirely as unreliable
trace languages.

• We present the design of a front-end tool, CSIclipse, which allows developers to
display and navigate the tracing and analysis data from our previous contributions
(Chapter 7). We also detail a preliminary design for human subjects evaluation of our
techniques.
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Figure 1.1: CSI system, annotated with contributions

All of these contributions are part of the CSI framework for instrumentation and analysis.
Figure 1.1 shows the overall CSI system architecture, and positions our contributions within
this framework. We discuss each contribution in further detail in the relevant section(s).

1.5 Dissertation Organization

The remainder of this dissertation is organized into two major parts. We describe techniques
for lightweight instrumentation of deployed applications in Part I; this part is broken into
three chapters. First, in Chapter 2, we describe four new low-cost tracing methods based on
program coverage and path tracing. Then, in Chapter 3, we describe approaches to dynamic
customization of program tracing, allowing end-users to change active tracing techniques
post-deployment to meet changing overhead or failure report data requirements. Finally, in
Chapter 4, we describe novel techniques for optimizing program coverage instrumentation
based on instrumentation requirements and limitations.

In Part II, we describe our analysis techniques specifically targeting failure reports from
deployed applications; this part is again broken into three chapters. In Chapter 5, we describe
analysis techniques that reduce the amount of code a developer would need to consider while
debugging, by computing a reduction on the possible control and data flows that may have
occurred during the failing run based on the provided failure report. Then, in Chapter 6,
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we describe a generalized system for answering user control-flow queries based on failure
report data that can take advantage of a much wider wide range of possible failure constraints.
Finally, in Chapter 7, we describe a front-end tool that can display CSI tracing and analysis
data within the Eclipse integrated development environment, and lay out a preliminary design
for a human subjects study to further assess the quality of our analysis data.

In Part III, we conclude with a summary of the contributions of this dissertation and the
important relation between instrumentation and analysis design for deployed applications,
lessons for future tool developers, and possible directions for continued research. Part IV
contains appendices, with proofs supporting the empirical evaluations in the dissertation,
and a full mathematical optimization model for the program coverage optimizations from
Chapter 4.
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Figure 1.2: Compilation process interposition for csi-cc. Sharp-cornered rectangles
represent inputs and outputs; rounded rectangles represent computations.

In this part, we describe new techniques for instrumentation and configurable tracing
of deployed software. These approaches are realized in the csi-cc instrumenting C/C++
compiler. All of the instrumentation techniques described in this part share some common
engineering and experimental design features that we describe here.

We use Clang/LLVM 3.5 [101] to compile and instrument programs. Instrumentation
operates directly on LLVM bitcode. Thus, we interpose on the normal compilation process
(which proceeds directly from source code to object file). Figure 1.2 shows our modifica-
tions. We insert an additional step to generate LLVM bitcode from a source file, run our
instrumentor and any command-line compile-time optimizations on the bitcode, and then
compile the resulting instrumented bitcode to an object file. Note that our instrumentation
generates metadata that is necessary for postmortem anlayses; we describe this data in the
relevant sections of the following chapters. In all following chapters, we abbreviate the process
shown in Fig. 1.2b, instead referring to the entire compilation process as instrumentor .

In all empirical evaluations, we measure overhead as the ratio of times for instrumented
and uninstrumented code, meaning that we will also capture any compile-time cost or impacts
on base compiler optimizations introduced by our intervention in the standard compilation
process. This emulates the true cost a developer would need to pay to use csi-cc as a drop-in
replacement for existing compilation infrastructure.

All experiments used a quad-core Intel Core i5-3450 CPU (3.10GHz) with 32GB of
RAM running Red Hat Enterprise Linux 6. Most applications in our evaluation are shared
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across the remaining chapters of the dissertation. Unless otherwise stated, we obtained all
subject applications from the Software-artifact Infrastructure Repository [55, 154]. All of
our applications contain known faults that can be enabled or disabled at compilation time,
allowing us to reuse the same subjects for our instrumentation and analysis experiments.
However, for instrumentation experiments, we always gathered our compilation and execution
times over the non-faulty build of each application. Since developers and users alike would
gladly pay extra overhead cost on failing runs (for the diagnostic value of traced data), our
process measures the relevant worst-case behavior: extra time and memory cost on non-failing
runs.

All of our instrumentation techniques maintain all state in process memory. Thus, we do
not report disk or log usage for any of our experiments.
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2 tracing and coverage

Substantial portions of this chapter are derived from a 2013 conference paper by
Ohmann and Liblit [135], and a 2016 journal paper by Ohmann and Liblit [137].

As previously stated, debugging is a difficult, time-consuming, and expensive part of
software development and maintenance. Full execution tracing is impractical for modern
complex software, but, nevertheless, developers would benefit greatly from seeing concrete
traces of events leading to failures, failure-focused views of the program or program state, or
suggestions of potentially-faulty statements.

One common and very useful artifact of a failed program execution is a core memory
dump. Coupled with a symbol table, a core dump reveals the program stack of each execution
thread at the moment of program termination, the location of the crash, the identities of all
in-progress functions and program locations from which they were called, the values of local
variables in these in-progress functions, and the values of global variables.

In this chapter, we present instrumentation techniques that augment core dumps with
lightweight, tunable tracing. We explore four such enhancements: (1) a variant of Ball–Larus
path profiling [22], (2) function coverage, (3) statement coverage, and (4) call-site coverage.
We also briefly highlight the difference between our instrumentation (which is static) and our
run-time tracing (which is customizable). We introduce the notion of a “scheme” to describe
a possible tracing configuration, which is a core concept for our customization approaches
described in Chapter 3.

Our techniques are realized in csi-cc, an instrumenting C/C++ compiler. We evaluate
the trade-offs among the above tracing methods, and conclude that pairing our path profiling
variant with call-site coverage yields a complementary, realistic, and valuable choice for
deployed applications. Our results for this pairing with a realistically-tuned tracing scheme
show low overheads (0%–3% execution time, 0%–4% memory) suitable for production use.
As we later discuss in Chapter 5, this pairing also results in a substantial reduction of failure
execution ambiguity for our analyses, even at this minuscule cost.

Figure 2.1 shows an overview of the csi-cc compilation process and associated artifacts.
Note that the instrumentor operations abbreviate the process from Fig. 1.2b. Each feature of
this diagram is described in the remainder of this chapter.

Figure 2.2 shows an example that we will refer to throughout this chapter. The source
code in Fig. 2.2a is taken from flex, one of the applications used in various evaluations
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Figure 2.1: Overview of csi-cc data collection. Sharp-cornered rectangles represent
inputs and outputs; rounded rectangles represent computations.

throughout this dissertation. For the examples in this chapter, we will most often make use of
the function’s intraprocedural control-flow graph (CFG) representation, shown in Fig. 2.2b.

2.1 Background

In this section, we provide necessary background information for the approaches described
in the remainder of this chapter. We begin by describing core dumps and their benefits for
postmortem debugging. We then review a well-studied path profiling approach by Ball and
Larus [22]; this chapter develops a variant of this approach.

2.1.1 Core Memory Dumps

All widely-used modern operating systems can produce a “core dump” file containing a
snapshot of a program’s memory. A dump may be saved after abnormal program termination
due to an illegal operation (such as using an invalid pointer) or on demand (such as by raising
a fatal signal or failing an assertion). This can be useful if the core dump is to be used for
postmortem analysis.

Typically, a core dump includes the full program stack at termination, including the final
values of all local variables and program registers, and some portion of the heap. For our
purposes, the key elements are the point of failure (the exact location of the program crash),
as well as the most-recent call location in each other still-active frame on the stack (i.e., each
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void add_action(char *new_text) {
int len = strlen(new_text);

while (len + index >= size - 10) {
int new_size = size * 2;
if (new_size <= 0)
size += size / 8;
else
size = new_size;
array = realloc_char_arr(array, size);
}

strcpy(&array[index], new_text);
index += len;
}

(a) Code example

A

B

C

D E

F

G

(b) Control-flow graph

Figure 2.2: Example code

stack frame’s return address). Conveniently, core dumps are only produced in the case of
program failure. Thus, collecting them imposes zero run-time overhead. Furthermore, any
trace data kept in-memory within the program stack will be automatically dumped if and only
if the program produces a core dump. These are two key advantages to our use of core dumps
for lightweight tracing and postmortem analysis.

2.1.2 Path Profiling

Path profiling is traditionally used to compute path coverage during program testing. The
approach we adopt from Ball and Larus [22] is designed to efficiently profile all acyclic,
intraprocedural paths. The algorithm first removes back edges to transform the control-flow
graph (CFG) of a procedure into a directed acyclic graph (DAG). We represent the transformed
CFG as a single-entry, single-exit DAG G = (V, E, s, x) where V is the set of nodes in the
graph and E ⊆ V ×V is the set of edges with no directed cycles. Every node in V is reachable
by crossing zero or more edges starting at the unique entry node s ∈ V . Conversely, the
unique exit node x ∈ V is reachable by crossing zero or more edges starting from any node.
A path p through G is represented as an ordered sequence of nodes 〈p1, . . . , p|p|〉 such that
(pi, pi+1) ∈ E for all 1 ≤ i < |p|. We define a complete path as a path whose initial and final
nodes are s and x, respectively. Let C represent the set of all complete paths; note that this
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set is finite since G is a DAG. Loops are handled specially, and are discussed later in this
subsection.

The overall goal of the Ball–Larus algorithm is to assign a value Increment(e) to each
edge e ∈ E such that

1. each complete path in C has a unique path sum produced by summing the Increment
values for each edge in the path;

2. the assignment is minimal, meaning that all path sums lie within the right-open interval
[0, |C |); and

3. the assignment is optimal, meaning that each path requires the minimal number of
non-zero additions.

The first step assigns a value to each edge such that all complete path sums are unique and
the assignment is minimal. To do so, the algorithm traverses the graph in reverse-topological
order. For each n ∈ V we compute NumPaths[n], the number of paths from n to x. If we
number the outgoing edges of n as e1, . . . , ek with respective successor nodes v1, . . . , vk , then
the weight Weight(ek) assigned to each outgoing edge of n is

∑k−1
j=1 NumPaths[v j]. After this

step, complete path sums using Weight values are unique, and the assignment is minimal.
The next step optimizes the value assignment. This step uses a maximum-cost spanning

tree (MCST) of G. A MCST is an undirected graph with the same nodes as G, but with an
undirected subset of G’s edges that form a tree, and for which the total edge weighting is
maximized. Algorithms to computemaximum-cost spanning trees are well-known. Remaining
non-tree edges are chord edges, and all edge weights must be “pushed” to these edges (i.e.,
propagated forward or backward through G until only chord edges have non-zero weights).
The unique cycle of spanning-tree edges containing a chord edge determines its Increment.

Instrumentation is then straightforward. We track the path sum in a register or local
variable, pathSum, initialized to 0 at s. Along each chord edge, e, we update the path
sum: pathSum += Increment(e). When execution reaches x, we increment a global counter
corresponding to the path just traversed: pathCount[pathSum]++.

Cycles in the original CFG create an unbounded number of paths. Control flow across
back edges requires creating extra paths from s to x by adding “dummy” edges from s to
the back edge target (corresponding to initialization of the path sum when following the
back edge) and from the back edge source to x (corresponding to a counter increment when
following the back edge). The algorithm then proceeds as before. Because of the dummy
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Figure 2.3: Path profiling example

edges to x and from s, counter increments and reinitialization of the path sum occur on back
edges. We expand our definition of a complete path to include paths that begin at back edge
targets or that end at back edge sources.

Figure 2.3 shows possible instrumentation to profile paths in the example function from
Fig. 2.2. Figure 2.3a shows the function’s CFG annotated with pathSum and pathCount
increments. Each acyclic path completes at either function exit or the loop back edge, and the
counter for the path’s value is incremented at that point. As shown in Fig. 2.3b, each acyclic
path is uniquely numbered. Note that the assignment is clearly minimal, as each acyclic path
contains at most one pathSum initialization, and one pathSum increment.

The preceding overview of path profiling focuses on details relevant to our path tracing
variant, described in the following section; see Ball and Larus [22] for the complete,
authoritative treatment. There has been a great deal of follow-on work since the original
paper [13, 51, 115, 162, 173], and we comment on some of these more recent developments
when discussing related work in Section 2.5.

2.2 Instrumentation Approaches

When considering which data to collect and how, several desirable properties guide our
choices. Instrumentation must be efficient in time and space, and therefore suitable for
production use. Data must be held in memory until failure, adding no I/O or other system
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calls during normal execution. Data size must scale with aspects of execution state, such as
stack depth or number of program locations. Lastly, results must bemappable back to source
code, and contain as little ambiguity as possible.

Any core dump already records the return address of each active function at the time of
failure. While this has all the above qualities, it may be insufficient on its own. Therefore, we
augment core dumps with two novel techniques: path tracing and various forms of program
coverage.

Specifically, in this chapter, we consider four tracing mechanisms (path tracing, statement
coverage, call-site coverage, and function coverage), which we group into two different
high-level methods of tracing. Our path tracing mechanism is an extension of path profiling
from Ball and Larus [22]. Coverage mechanisms are all traced similarly, while only the traced
program points differ. For each instrumented function, we produce a metadata file used to
interpret traced data for reconstruction and postmortem analysis; we describe this metadata
individually for each tracing mechanism.

2.2.1 Ball–Larus Inspired Path Tracing

Path tracing records the last N acyclic paths taken through each function on the stack at the time
of failure. Like any stack-bound data, path traces are discarded whenever a function returns.
We achieve this tracing using a variant of Ball–Larus path profiling. Rather than counting
acyclic path executions, we instead record each completed acyclic path in a stack-allocated
circular buffer.

However, completed paths alone do not yield an execution suffix. We also need the final
“incomplete” path leading up to the failure. Fortunately, given a CFG G, failing node v, and a
partial path sum w, we can recover the unique acyclic path that accumulates the value w and
ends at v. This property is a natural consequence of the Ball–Larus approach: v and w are
the only state maintained while determining acyclic paths, and therefore must constitute the
system’s entire “memory” of the partial path covered so far.

Theorem 2.1. For any node v ∈ V , every (pathSum, v) pair either encodes a unique subpath
in G or is infeasible.

Proof. The proof is straightforward by contradiction. Suppose that two distinct subpaths, p

and q, both begin at s, end at v, and share the same value of pathSum. G has a unique exit
node, x, that is reachable from v via some sequence of edges ®E . This sequence of edges need
not be unique. Each of those edges has been assigned an increment, and, therefore, we can
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void add_action (char *new_text) {
volatile int pathSum = 0;
volatile int pathTrace[N];
volatile int pathIndex = 0;

int len = strlen(new_text);

while (len + index >= size - 10) {
int new_size = size * 2;
if (new_size <= 0) {
size += size / 8;
pathSum += 1;
} else
size = new_size;
array = realloc_char_arr(array, size);

pathTrace[pathIndex] = pathSum;
pathIndex = (pathIndex + 1) % N;
pathSum = 3;
}

pathSum += 2;
pathTrace[pathIndex] = pathSum;

strcpy(&array[index], new_text);
index += len;
}

Figure 2.4: Path tracing instrumentation example. Highlighted code implements
path tracing .

compute the sum of the “suffix” sequence of edges to be w =
∑

e∈ ®E Increment(e). We can
“complete the path” for both p and q by connecting each subpath to ®E and getting a total path
sum of wfinal = w + pathSum. However, we know that two acyclic paths do not share the
same path sum by the proof from Ball and Larus [22]. Therefore, any feasible (pathSum, v)
pair encodes exactly one subpath in G. �

Furthermore, no subpath can give rise to more than one possible (pathSum, v) pair, as
edge increments are fixed during instrumentation. Therefore, the converse of the above proof
is also true: every unique subpath in G is represented by a unique (pathSum, v) pair. We must
merely guarantee that an accurate partial path sum is available at every point during execution,
since our instrumentation pessimistically assumes that failure can occur at any time.



24

Figure 2.4 shows appropriate instrumentation for the example from Fig. 2.2. Note that the
pathSum increments and pathTrace stores correspond to the path profiling instrumentation
scheme shown in Fig. 2.3. Our implementation of path tracing includes a number of changes
relative to standard Ball–Larus path profiling. We move array allocation into the stack,
giving one trace (pathTrace ) per active call. The size of this array determines how many
acyclic paths are retained. This size is fixed at build time, defaulting to 10. (We performed
preliminary experiments on small applications, varying the buffer size over several orders of
magnitude up to 100,000. We find that overhead initially increases anywhere from 10%–40%
per order of magnitude. Overhead eventually stabilizes once the array is so large that most
of it is unused and therefore never mapped into memory.) Note that, because space for path
traces is stack-allocated, it naturally scales directly with the stack depth. Its allocation is also
“free” as no explicit allocation is required, and (depending on the choice of trace size) it has
minimal impact on the size of a stack frame.

The stack-allocated array serves as a circular buffer. A local variable (pathIndex )
tracks the current buffer position. At each back edge and function exit, we append the path
sum (pathSum ) for the just-completed path to this buffer. On back edges, the path sum is
reinitialized (pathSum = 3 ) to uniquely identify paths beginning at the loop head. Obviously,
we cannot instrument functions with more paths than can be counted in a machine integer.
This issue rarely affects 64-bit platforms, though Section 2.3.1 notes one exception seen in our
experimental evaluation. Instrumentation skips these functions, for which we simply collect
no trace data.

We must be able to access the current path sum at any point, not just at the very ends
of complete paths. For safety, we forbid the compiler from keeping this value in a register.
Rather, both the path sum and the trace array are declared volatile.

Instrumentation produces a metadata file necessary for future analyses. For each function,
we record (1) a full representation of the control-flow graph with edges labeled with path-sum
increments; and (2) a mapping from basic blocks to line numbers. The linker aggregates this
metadata into a single record for the entire executable: path info in Fig. 2.1.

2.2.2 Program Coverage

Path traces provide very detailed information close to the point of failure in each active stack
frame. However, path traces have two major blind spots: old paths that have already rotated
out of the circular trace buffer, and interprocedural paths through calls that have already
returned.
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Program coverage data can easily provide coarser-grained global information, allowing
tracing to scale gracefully as the debugging task departs from the active crash stack. Coverage
instrumentation uses one global array per instrumented function, and one local array (of the
same size) for each stack frame. For a function f , we select a set of statements, which we
call trace points. These trace points are numbered 0, 1, . . . , n − 1; these serve as indices into
f ’s local and global coverage arrays. Coverage that we gather is binarized, meaning that we
record whether each trace point was ever executed (1) locally, in each particular invocation of
f corresponding to a stack frame; and (2) globally, for any invocation of f across the entire
program’s execution. Thus, each trace point corresponds to one local coverage bit per active
f stack frame plus one global coverage bit. Taken together, the local and global coverage
bits have several desirable properties. The local bits offer up-to-date information for trace
points in each still-active function. Space for these bits is stack-allocated, so, like path traces,
it naturally scales with the stack depth. Conversely, the global coverage bits summarize data
from completed calls that have already left the stack.

Note that many possible sets of trace points exist for a given function. We consider three
alternatives in this work. First, one may elect to gather full statement coverage. Naïvely, one
trace point could be used for each statement in f . However, one trace point per basic block in
f is sufficient. Second, if one is interested in function coverage, one need only select one
trace point per function. Any statement guaranteed to execute on any execution of f will do;
we use function entry, as selecting function exit may require either multiple trace points or
adding a shared exit block. Note that function coverage is unique in that it has no stack-local
variant: all functions currently in the active stack are clearly executing.

Call-site coverage is the final coverage form we consider. Here, we have one trace point
for each call site in f . Our use of call sites as the program points for which to gather coverage
information is somewhat arbitrary. However, the choice is well-matched to its purpose. Call
sites mark departures from the visible call stack; these are places where stack-based tracing
(such as path tracing) cannot help us. Intuitively, coverage at call sites complements dense
stack-local mechanisms where that help is most likely to be useful. We find that call-site
coverage works extremely well in practice (see Part II of the dissertation, especially Chapter 5
where we consider analysis performance for each tracing mechanism individually).

Figure 2.5 shows appropriate instrumentation for the example function from Fig. 2.2.
The three variants correspond to our three sets of trace points. This example also shows
some of the subsumption relationships that hold among the three types of program coverage.
Call-site coverage is more precise than function coverage for this particular function: it is able
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volatile bool add_actionCov = false;

void add_action(char *new_text) {
add_actionCov = true;

int len = strlen(new_text);

while (len + index >= size - 10) {
int new_size = size * 2;
if (new_size <= 0)
size += size / 8;
else
size = new_size;
array = realloc_char_arr(array, size);
}

strcpy(&array[index], new_text);
index += len;
}

(a) Function coverage

volatile bool add_actionCov[3] = {false, false, false};

void add_action(char *new_text) {
volatile bool cov[3] = {false, false, false};

int len = strlen(new_text);
cov[0] = add_actionCov[0] = true;

while (len + index >= size - 10) {
int new_size = size * 2;
if (new_size <= 0)
size += size / 8;
else
size = new_size;
array = realloc_char_arr(array, size);
cov[1] = add_actionCov[1] = true;
}

strcpy(&array[index], new_text);
cov[2] = add_actionCov[2] = true;
index += len;
}

(b) Call-site coverage

Figure 2.5: Program coverage instrumentation example. Highlighted code implements
coverage .
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volatile bool add_actionCov[6] = {false, false, false, false, false, false};

void add_action(char *new_text) {
volatile bool cov[6] = {false, false, false, false, false, false};

int len = strlen(new_text);
cov[0] = add_actionCov[0] = true;

while (len + index >= size - 10) {
int new_size = size * 2;
cov[1] = add_actionCov[1] = true;
if (new_size <= 0) {
size += size / 8;
cov[2] = add_actionCov[2] = true;
} else {
size = new_size;
cov[3] = add_actionCov[3] = true;
}
array = realloc_char_arr(array, size);
cov[4] = add_actionCov[4] = true;
}

strcpy(&array[index], new_text);
index += len;
cov[5] = add_actionCov[5] = true;
}

(c) Statement coverage

Figure 2.5: Program coverage instrumentation example (cont.)

to determine whether the loop was ever taken via tracing the call to realloc_char_array.
The subsumption relationship, however, does not hold in general, as a function may be a leaf
function (i.e., contain no calls) or not be guaranteed to execute a call instruction on every
path through the function. However, statement coverage always subsumes both function and
call-site coverage. In the examples of Fig. 2.5, only statement coverage distinguishes the
direction of the if statement within the loop.

Local coverage data is stored in a stack-allocated n-element array (cov ), zero-initialized
at function entry. A per-function global n-element array (add_actionCov ), initialized at
program start, holds global coverage information. Immediately following each trace point, i,
we store true into slot i of both the local and global coverage arrays. To preserve ordering,
the arrays are declared volatile.
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Note that the instrumentation in Fig. 2.5 shows some clear redundancy. This redundancy
is especially prevalent in our statement coverage example; for example, the execution of the
trace point cov[4] implies the execution of the trace point cov[2]. Prior work optimizes the
placement of binarized coverage probes [3, 4, 105, 169, 185]. However, none of this prior
work directly applies to our instrumentation, where we must (1) ensure correct coverage data
in the presence of failing executions, and (2) constrain our optimization techniques based on
where we desire coverage data in contrast to where we want to allow instrumentation. We
develop a class of novel optimization approaches to address these shortcomings in Chapter 4.

For each trace point, we record a small amount of static metadata used to identify the trace
point during analysis. In practice, our instrumentor records slightly different data depending
on the type of trace point used (based on the requirements of our downstream analyses; see
Chapter 5). Function coverage need only record the name (or mangled name) of the function.
Call-site coverage records: (1) the name of the called function, if known; and (2) the line
number of the call site. Statement coverage records the sequence of line numbers occurring in
the basic block, and, for reasons discussed further in Chapter 5, Section 5.3.1.2, any calls that
occur within the basic block. The linker aggregates this metadata into a single record for the
entire executable: coverage info in Fig. 2.1.

2.2.3 Tracing Customization

Note that some of the above techniques can be combined (i.e., we can perform multiple types
of tracing within a single function). Furthermore, recall that one of our primary goals was
that our instrumentation should be configurable (for overhead or to change focus) without
re-compilation or re-deployment. To this end, we distinguish between:

• program instrumentation: the static modification of a program’s code at compilation
time, and

• program tracing: the dynamic tracing code that is actually executable during a particular
run of the program.

Throughout the remainder of the dissertation, we will refer to a (possibly empty or singleton)
set of tracing mechanisms as a tracing scheme. For example, the following are all tracing
schemes: (1) path tracing alone; (2) path tracing paired with statement coverage; and (3) the
combination of path tracing, call-site coverage, and function coverage. Note that program
instrumentation determines the set of available tracing schemes that could possibly be available



29

Table 2.1: Evaluated applications, ordered by size.

Application Description Versions Mean LOC

tcas Siemens 1 173
schedule2 Siemens 1 373
schedule Siemens 1 413
replace Siemens 1 563
tot_info Siemens 1 564
print_tokens2 Siemens 1 568
print_tokens Siemens 1 727
ccrypt Linux utility 1 5,280
gzip Linux utility 5 8,114
space ADL interpreter 1 9,563
sed Linux utility 7 14,314
flex Linux utility 5 14,946
grep Linux utility 5 15,460
gcc C compiler 1 222,196

at run time, while only one tracing scheme will actually be active at any given time during a
program run. For the remainder of this chapter, we only consider instrumentation that allows
exactly one tracing scheme per function (i.e., tracing cannot be customized at run time). In
Chapter 3, we will lift this restriction, and discuss methods of handling tracing customization
in the presence of many possible tracing schemes.

2.2.4 Additional Consideration: Thread Safety

Our experimental evaluation in Section 2.3 uses only single-threaded applications, but
our instrumentation remains valid with threads. Path tracing only accesses stack-allocated
variables, and each thread independently maintains its own path traces. Program coverage
writes to globals, but never reads from globals. (We store each coverage bit as a full byte for
atomicity.) Thus, even updates to the global coverage arrays have no malign race conditions.

2.3 Experimental Evaluation

To assess the efficiency of our data-collection strategies, we selected a range of subject
applications varying in functionality and size. All applications are written in C. Table 2.1
gives additional details about our test subjects. The Siemens applications, flex, grep, gzip,
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sed, and space were obtained from the Software-artifact Infrastructure Repository [55, 154].
ccrypt and gcc are real, released applications. These applications correspond with those
used in later analysis evaluation (see Chapters 5 and 6), and are selected because they have
seeded or real faults that can be enabled or disabled to create failure reports for evaluation.
As stated before the start of this chapter, we ran experiments over the non-faulty builds of
most applications; gcc used a build with a known fault.

Some of the applications had multiple versions as indicated by the “Versions” column of
Table 2.1. Results presented in this section are aggregates across all versions and test suites
of each application. In general, results vary little among builds of a given application; we
explicitly note any exceptions. We also aggregate results for all applications from the Siemens
test suite to simplify presentation. These are very small, simple applications, and results
indicate that they have similar results for overheads with all forms of tracing. Again, we note
exceptions in the following sections.

2.3.1 Run-Time Overhead

Overhead is the ratio of execution times for instrumented and uninstrumented code. For each
version of each application, we ran the test suite over the non-faulty build at least three times
and took the geometric mean of the overheads for each test case, and then took the geometric
mean over all versions; thus, we avoid over-representing specific versions or long-running
test cases. Results appear in Fig. 2.6. Smaller values are better, with 1.0 conveying no
instrumentation overhead. We built each application version using our instrumentor, with all
non-library functions instrumented with various instrumentation configurations.

We first evaluated each tracing mechanism individually. The first four bars (Function
Coverage, Call-Site Coverage, Statement Coverage, and Path Tracing) show these results.
Function coverage causes no measurable overhead for our test subjects. Call-site coverage
is far cheaper than statement coverage (gathered as basic block coverage). The maximum
overhead for call-site coverage among our test subjects was 2.0% (for gcc), while statement
coverage has overheads as high as 25.8% (for sed). gcc has thirteen functions with more than
263 acyclic paths; these cannot be instrumented for path tracing. Even so, the cost of full
path tracing is surprisingly low, varying across applications from negligible to 10.4% (for
gzip). This low cost suggests that our adaptation of the classic path profiling approach is very
efficient, substantially reducing our overhead over full path profiling (which, according to
initial results by Ball and Larus [22], has approximately 30% average run-time overhead due
to large storage requirements and the use of hashing).
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Figure 2.6: Run-time overhead

Taking into account measured overheads and expected orthogonality of benefits, we
then considered instrumentation based on a realistic tracing scheme. At a high level, the
goal is to combine call-site coverage with selective use of path tracing (where its higher
cost but more dense information is likely to be most useful). Specifically, our goal was to
simulate a developer activating latent path tracing instrumentation in response to observed
post-deployment failures. We enabled all faults for each application, and observed each failing
run from each application’s test suite. We then instrumented each application with:

• call-site coverage tracing for all non-library functions, and

• path tracing for any function appearing in the crash stack of any failing test case for
each application version.

With this configuration, each function is still only instrumented with one tracing scheme:
either only call-site coverage, or call-site coverage plus path tracing. Again, this is a realistic
configuration if latent instrumentation can be enabled post-deployment in response to observed
failures. In this chapter, we assume that this customization is done via re-compilation. In
Chapter 3, we will discuss approaches to post-deployment tracing customization.
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Results for this customized scheme are shown as “Realistic (fixed)” in Fig. 2.6. The use
of the “(fixed)” qualifier is to highlight that this choice of tracing is fixed at compile time,
rather than being truly customizable post-deployment (again, we will rectify this problem in
Chapter 3). These results indicate that limiting path tracing to functions involved in failures
can significantly reduce overhead (especially for gzip and sed). The overhead of a particular
application appears to depend on non-trivial factors. For example, larger applications do
not necessarily have more overhead. Most applications have comparable overheads for all
versions with realistic instrumentation. Both gzip and flex have one version with significantly
higher overhead (about 1.5% on average in both cases), while the other versions are negligible.
Overheads between sed versions also vary somewhat, ranging from negligible to 2.0%.
Averaged across all larger (non-Siemens) applications, the realistic configuration shows a
mere 0.5% overhead.

All of the preceding results used non-optimized builds, as this is most conducive to
debugging. We also gathered results (not shown in Fig. 2.6) using each of our previous
instrumentation schemes but with Clang “-O3” optimization enabled. Our analyses (from
Part II of this dissertation) still work correctly on optimized code, due in part to our use of
volatile declarations as discussed in Section 2.2. Results for optimized code are similar to
unoptimized results, and suggest that our instrumentation does not seriously hinder program
optimization. For the “Realistic (fixed)” configuration with optimization, average overhead
increases to just 1.1% across all larger applications, with a maximum overhead of 3.0%
(for gzip). However, debugging optimized code is always tricky. For example, statement
reordering can make the execution paths we recover difficult to understand. Prior work on
debugging optimized code [75, 168] is directly applicable here.

2.3.2 Memory Overhead

We next measured the ratio of the maximum resident memory size of the running program for
instrumented and uninstrumented code. Again, for each version of each application, we ran
the test suite over the non-faulty build at least three times and took the geometric mean of the
overheads for each test case. Results appear in Fig. 2.7. Smaller values are better, with 1.0
conveying no instrumentation overhead.

Again, the first four bars indicatememory overhead for each tracingmechanism individually.
Our results indicate that function coverage and call-site coverage have very small memory
footprints. For statement coverage and path tracing, however, extra memory usage is somewhat
larger; for sed, overheads reach 8.4% for path tracing and 6.7% for statement coverage.
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Figure 2.7: Memory overhead

The final bar (“Realistic (fixed)”) again corresponds to the scheme proposed in Section 2.3.1:
tracing of call-site coverage and/or path tracing, with coverage enabled everywhere and path
tracing enabled in functions appearing in failing stack traces. Again, we see that specializing
tracing to observed failures can significantly reduce overhead. In the most extreme case (sed),
the memory overheads for call-site coverage and path tracing are 1.4% and 8.4% respectively
(totaling 9.8%), but the realistic configuration causes only 3.0% overhead. In fact, the realistic
configuration shows just 1.8% memory overhead averaged across all larger (non-Siemens)
applications.

As with time overhead, we also gathered memory overhead numbers for our tracing
configurations with standard “-O3” compiler optimizations enabled. For the most part, the
results are again similar to their unoptimized counterparts. Overhead numbers are slightly
higher in optimized code. The differences are most pronounced for coverage mechanisms;
statement coverage sees its maximum overhead value (for flex) increase from 5.9% to 12.4%.
The realistic scheme similarly sees its maximum overhead (again, for flex) increase from
4.5% to 7.6%. Nevertheless, the average overhead for this realistic scheme with compiler
optimizations (for the larger applications) is only 2.5%. Thus, our tracing has a very small
memory footprint, even for optimized builds.
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2.3.3 Discussion

Our results indicate that our path tracing and program coverage approaches have generally
small impacts on both the time and memory usage of our test subject applications. Our
program coverage results suggest that there may be substantial trade-offs regarding coverage
density in our domain. While function coverage has unmeasurably small overhead, it also
provides significantly less detail about the program’s execution. On the other hand, full
statement coverage comes at a high overhead cost, but provides precise detail where its cost
can be tolerated. Call-site coverage provides an interesting compromise: its cost is often
similar to that of function coverage, but it provides complementary data to dense stack-local
path traces. In Part II of this dissertation—particularly in Chapter 5—we will further assess
these trade-offs regarding trace data utility for postmortem analysis based on core dumps.

We also examined a particularly interesting combination of path tracing and call-site
coverage tracing in the “Realistic (fixed)” tracing scheme. However, note that, while this
scheme suggests great benefits from customizing tracing to previously-observed failures,
we have thus far required program re-compilation to achieve these benefits. We will revisit
this realistic scheme in Chapter 3, where we present new methods that allow developers or
end-users to customize tracing schemes post-deployment, without re-compilation.

Overall, our goal was to introduce customizable tracing mechanisms with very little
run-time cost that are nevertheless very useful for postmortem analysis. We have succeeded,
thus far, in the first part of our goal via targeted core dump enhancement. Our realistic
tracing scheme introduces very low overheads (0.5% time and 1.8% memory across the larger
benchmarks) suitable for deployed applications. The remaining chapters in this dissertation
introduce customizable tracing approaches, improve upon our tracing techniques, and present
postmortem analyses that take advantage of our tracing mechanisms and other partial execution
information available from post-deployment failure reports.

2.4 Threats to Validity

We attempted to gather fair and generalizable results, but have not formally proven the
correctness of our approaches or implementation. Here we discuss threats to the validity of
our results, and measures taken to mitigate these risks.
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2.4.1 Threats to Internal Validity

One of the central claims of this dissertation is that nearly all deployed software will have bugs
throughout its lifetime. Our software is no exception. Bugs in our instrumentation design or
implementation could impact the accuracy of overhead results.

We made significant attempts to control other factors (outside of our tracing mechanisms)
that could have impacted overhead results. We used a single machine and ran our tests under
minimal load. Nevertheless, our instrumentation does impact code size, stack frame size, and
(in rare cases where we need to place instrumentation along edges) the control-flow graph of
the programs. Thus, it is possible that other factors not directly related to instrumentation
may impact our results.

2.4.2 Threats to External Validity

While we attempted to select applications with a wide variety of size and functionality, it is
obviously impossible for us to test our approach on all possible programs. Thus, our results
may not generalize to all deployed software. In particular, we evaluate only applications
written in the C programming language in this work, so the applicability of our approaches to
modern object-oriented languages cannot be guaranteed.

Our “Realistic (fixed)” scheme assumes that developers are able to make changes to
program instrumentation based on observing previous failures. Where such failure reports
are obfuscated or difficult to obtain, developers may struggle to select appropriate functions
for instrumentation/tracing. This realistic scheme also assumes that developers are able to
readily re-deploy software after compiling with new tracing schemes; we consider this lack of
customizability a significant concern in many real-world scenarios, and seek to improve on
this limitation in Chapter 3.

2.5 Related Work

Recent work extends the original efficient path profiling work by Ball and Larus [22].
Apiwattanapong and Harrold [15] and Vaswani et al. [173] reduce the overhead of path
profiling by specializing profiles to a user-specified subset of each function’s paths. While
we share the desire to reduce the cost of profiling, applying these techniques to path tracing
would result in failure reports containing traces with “holes” for untraced paths. Other
work extends profiled paths by adding calling-context sensitivity [13] or by connecting paths
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interprocedurally [115, 164] and across loop back edges [51, 104, 156, 164]. These techniques
increase the cost of profiling to gather more detailed profile data. Because we use fixed-length
path buffers in this work, and maintain our data within the active program stack, extending
paths across back edges would allow us to trace longer paths, while gathering interprocedural
paths may allow us to maintain some partial paths from returned stack frames.

Our program coverage instrumentation techniques from Section 2.2.2 are quite basic
in that they gather redundant information. Much prior work optimizes the placement of
binarized coverage probes [3, 4, 105, 169, 185] or lowers the cost of gathering coverage by
dynamic insertion and deletion of probes [38, 85, 117, 118, 141, 169]. Because (1) we are
working with applications that are assumed to fail and (2) we specialize the program points
for which we require accurate coverage data and/or those that we are allowed to instrument,
no existing techniques will apply directly to our mechanisms. In Chapter 4, we discuss new
optimization strategies that generalize many of these prior techniques. Many other prior
approaches complement our coverage mechanisms; we describe these relationships in detail
in Chapter 4.
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3 efficient run-time customization

Substantial portions of this chapter are derived from a 2016 journal paper by
Ohmann and Liblit [137].

Any tracing performed for deployed applications must be efficient in both time and memory
usage. The data gathered from this tracing should be targeted and a valuable addition to any
generated failure reports. However, the precise amount of overhead that is acceptable for a
particular application will vary considerably. For example, while Cornejo et al. [41] find that
users of interactive applications can tolerate running-time overheads as high as 30%, this cost is
far too high for time-sensitive computation [61, 141]. Especially in production code, it can be
difficult to specify instrumentation overhead requirements beforehand, as these requirements
may change over time, or vary for each program instance. Furthermore, while focusing
on failure-related code could substantially reduce tracing cost, it is impossible to predict
where or when post-deployment failures will occur before release. This variety in overhead
requirements for different deployed applications, coupled with the corresponding variety in
desired failure report detail, necessitates customizable run-time tracing after deployment.

Recall from Chapter 2 that we distinguish between static instrumentation and dynamic
run-time tracing (which is, ideally, customizable). There, we introduced the notion of a
“scheme” which indicates a possible tracing configuration, based on the statically-available
options from instrumentation.

In this chapter, we build upon this idea and evaluate effective means of customizing
our tracing mechanisms (from Chapter 2) post-deployment, without re-compilation or re-
deployment of the application. We begin by providing a more thorough characterization
of tracing schemes. Then, we propose two methods of instrumentation that facilitate
customization of tracing schemes via unintrusive binary modification. In both cases, for N

possible tracing schemes, we begin by creating N replicas of each instrumented function.
Then, the first customization method we consider uses a straightforward switch-based
“springboard” function to dynamically select which replica to call at each instantiation. The
second method uses the recently-introduced GNU indirect function attribute to resolve replica
selection for each function at program load time.

Through our evaluation of these two customization approaches, we find that even the basic
switch-based style has only a small impact on running time and dynamic memory usage.
In particular, a customizable version of our “Realistic” scheme from Chapter 2 still displays
just 0%–5% execution time overhead (plus a modest increase in static memory usage) with
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customization enabled; this overhead is low enough for most production use. Surprisingly,
our more advanced customization method based on load-time indirect function calls has very
similar performance to the basic method, suggesting that either would be an efficient choice
for post-deployment tracing customization.

3.1 Tracing Schemes

As originally introduced in Section 2.2.3, a set of tracing mechanisms is a tracing scheme,
formally defined as follows.

Definition 3.1. For a set of tracing mechanisms, T , any s ⊆ T is a tracing scheme over T .

The number of possible tracing schemes grows exponentially with the number of possible
tracing mechanisms. Specifically, there are 2|T | possible tracing schemes for any set of tracing
mechanisms (precisely the power set of T , P(T)). For tracing customization, we are interested
in a set of tracing schemes that are available based on instrumentation we perform with
csi-cc. Such a set of tracing schemes could be any subset of P(T), or, put another way,
could be any element of P(P(T)). However, we can customize even further. For a given
program, P, one need not be constrained to the same set of tracing schemes for each function.

Definition 3.2. Given:

• T , a set of tracing mechanisms, and

• F, the set of procedures contained in program P;

any function S : F → P(P(T)) is a tracing configuration over T and P.

Put simply, a tracing configuration is a mapping from each procedure (or function) in
a program to the set of tracing schemes that are possible to select for run-time tracing (via
post-deployment configuration).

We defined four tracing mechanisms in Section 2.2.3: path tracing (PT), function coverage
(FC), statement coverage (SC), and call-site coverage (CC). That is, T = {PT,FC, SC,CC}.
Thus, there are a total of sixteen possible tracing schemes for these mechanisms. Note,
however, that some of these schemes will trace redundant information; for example, statement
coverage subsumes both call-site coverage and function coverage. Nevertheless, the number
of possible schemes can quickly become unwieldy: there are up to ten possibilities for our



39

mechanisms proposed in Chapter 2, depending on the function being instrumented. This “All
Options” tracing configuration is defined as follows. First, for a given function, f :

• hasCall f is true iff f contains at least one call statement,

• alwaysCalls f is true iff f contains at least one call statement that must execute on all
paths from f ’s entry to exit, and

• multiPath f is true iff f contains at least one branch.

Then, the “All Options” tracing configuration, S, is defined over each f ∈ F as:

pathOptions f = {{}, {PT}} if multiPath f , else {{}}
coverageOptions f = {{}, {FC}, {SC}} ∪

{{CC}} if hasCall f , else ∅ ∪
{{FC,CC}} if hasCall f and not alwaysCalls f , else ∅

S( f ) = pathOptions f × coverageOptions f

where the “×” operation performs the pair-wise union of schemes. In brief, the above states
that f ’s tracing options are each of the following, possibly paired with path tracing: no
coverage, function coverage, statement coverage, and (for some functions) call-site coverage
and function coverage + call-site coverage. The auxiliary variable pathOptions determines
whether path tracing should be used in any schemes: since path traces are stored within the
program stack (per Section 2.2), they provide no benefit for functions with only one acyclic
path. The auxiliary variable coverageOptions determines which coverage mechanisms should
be included in possible schemes. Function coverage and statement coverage are always tracing
options, while call-site coverage is only useful to include if f contains at least one call to be
instrumented. The pairing of function coverage and call-site coverage is useful if it is possible
to execute f without calling another function at some point during f ’s execution (in this case
only, call-site coverage does not subsume the information from function coverage).

In Chapter 2, we introduced the “Realistic (fixed)” tracing scheme, but lamented that we
needed to recompile to enable or disable path tracing and/or call-site coverage for instrumented
functions. The following is a customizable variant, “Realistic”:

{{}, {CC}, {CC,PT}}
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With this tracing configuration, we could trace nothing, call-site coverage, or call-site coverage
plus path tracing.

3.2 Tracing Customization

There are many ways to implement post-deployment customization based on tracing schemes
as defined in Section 3.1. Our approach uses further instrumentation of the program’s code.
We statically replicate each function, instrument each replica with one possible tracing scheme,
and dynamically decide which replica to execute. We consider two alternatives for dynamically
selecting replicas: a switch-based technique that selects the appropriate replica at each call,
and a technique that resolves replicas at program load time via indirect function link tables.
Figure 3.1 shows an example instrumented via these alternatives, which are discussed in detail
in the following sections. Note that our instrumentation is over LLVM bitcode, so Fig. 3.1
actually shows a source-level representation of our transformations. For this example, our
tracing configuration, S, is equal to the “Realistic” configuration from Section 3.1:

{{}, {CC}, {CC,PT}}

In both methods, for each function, a global variable, add_actionInst, determines
which function variant to use on that particular run. Here there are three possibilities: no
tracing, call-site coverage tracing, or call-site coverage plus path tracing. These variables
are stored in a special section of the data segment where they can easily be changed by
direct editing of the program binary. For example, applications can initially ship with all
instrumentation turned off. Over time, instrumentation can be activated for selected functions
based on previously-observed failures.

3.2.1 Springboard Function

For our first customization method, we first replicate each function, f , into multiple functions:
one for each scheme in S( f ) (i.e., one for each of f ’s possible tracing schemes). Each replica is
instrumented via the mechanisms from Chapter 2 per its corresponding scheme. The original
body of f is changed to a “springboard” that calls the correct variant. We rely on compiler
optimizations to make appropriate choices regarding inlining or conversion to jump tables.

Figure 3.1a shows an example for the function from the running example from Chapter 2,
Fig. 2.2. Note that this first approach introduces an extra indirection into each function
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enum {
INST_NONE,
INST_CC,
INST_CC_PT
} add_actionInst;

void add_action(char *new_text) {
switch (add_actionInst) {
default:
add_action_NONE(new_text);
return;
case INST_CC:
add_action_CC(new_text);
return;
case INST_CC_PT:
add_action_CC_PT(new_text);
return;

}
}

(a) Switch springboard

enum {
INST_NONE,
INST_CC,
INST_CC_PT
} add_actionInst;

void (*resolver_add_action ()) () {
switch (add_actionInst) {
default:
return add_action_NONE;
case INST_CC:
return add_action_CC;
case INST_CC_PT:
return add_action_CC_PT;

}
}

void add_action(char *new_text)
__attribute__
((ifunc ("resolver_add_action")));

(b) GNU indirect function calls

Figure 3.1: Tracing customization example

call. However, all calls that we introduce are tail calls, which should theoretically make
them excellent candidates for compiler optimizations (e.g., tail-call recursion optimizations,
inlining, or conversion to function-pointer jump tables). In our evaluation, we saw these
optimization behaviors frequently; Section 3.3 describes overall performance.

3.2.2 GNU Indirect Functions

Our second customization method uses the ifunc (indirect function) attribute, which is
supported by modern C/C++ compilers for ELF binaries. Like our first method, we first
replicate a function, f , and then appropriately instrument each replica. However, there we
changed the original f into a springboard function that examined a global variable at each
executed call to determine f ’s chosen tracing scheme. In our second customization method,
we instead introduce a new “resolver” function that reads f ’s global switcher variable just
once at program load time, and then stores a pointer to the appropriate variant in the program’s
Procedure Linkage Table (PLT). (The PLT is normally used to lazily bind functions from
dynamically-linked libraries to their absolute addresses after loading.) The original body of f
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is then completely removed, and calls to f are resolved through the PLT, as if f were loaded
from a dynamic library.

To obtain this functionality, we indicate our resolver to the compiler via the attribute
ifunc("resolver_foo"). This attribute, attached to functionfoo, says thatresolver_foo
is a function that returns a pointer to the appropriate variant of foo (resolved whenever foo
is first loaded into memory). Precisely as suggested, calls to foo then go through the PLT;
that is, foo is treated as external, as if it were loaded through a dynamically-linked library.
The indirect function attribute was originally designed for scenario-based optimization based
on the architecture on which an application is running [114]. For example, certain library
routines (e.g., memcpy) might use the resolver function to check for certain architectural
features, such as block or cache sizes, to select the most efficient implementation to run. In
our case, the resolver function is quite different: we examine a user-space global switcher
variable, rather than making system calls for architectural properties.

Figure 3.1b shows appropriate instrumentation for our running example. Note the structural
similarity to the springboard approach from Section 3.2.1. The primary advantage of this
approach, as noted in the above discussion, is that the resolver_add_action function is
called only once, whereas, optimizations aside, the switch from Fig. 3.1a is checked on every
call to add_action. However, there are possible disadvantages to this approach as well. First,
the basic springboard approach is designed to be optimization-friendly, transforming direct
function calls via basic indirection; in contrast, the ifunc approach ensures that direct calls
will always resolve as calls through function pointers. Second, the use of indirect function
resolution means that one cannot modify tracing scheme selection after the first call to a
function (i.e., dynamically change tracing during a program run); we do not make use of this
ability in our evaluation, but burst tracers [25, 70] would suffer from this limitation.

3.3 Experimental Evaluation

We conducted experiments to assess the effect of adding customization atop the tracing mech-
anisms from Chapter 2. We also investigated the relative strengths of the two customization
instrumentation strategies from Section 3.2. The bulk of our experiments essentially mirror
those from Chapter 2: we assess the time and memory overheads of our instrumentation,
use the same set of test subjects, run experiments over non-faulty builds of applications, and
aggregate results across all versions and test suites of each application.
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Table 3.1: Customization microbenchmark results. All times are in seconds.

Running Time

O0 O3

Call Style springboard ifunc springboard ifunc

direct 3.43 3.26 3.14 3.23
function pointer 3.46 3.30 3.14 3.24

3.3.1 Comparing Customization Mechanisms

We began by comparing the performance of our two customization options on a very small
microbenchmark program. The program simply accepts one integer as input from the
command line, and then calls the function:

int sum(int x, int y) {

return x + y;

}

in a loop based on the input integer. The goal of this benchmark was to spend as much time
as possible in dispatch of customized call sites. We compiled the microbenchmark with
csi-cc using a modified version of the “All Options” tracing configuration from Section 3.1
where we always create all 10 variants of each instrumented function (regardless of redundant
tracing). We gathered the running time for the springboard and indirect function approaches
over 100,000,000 loop iterations; results scaled linearly for different numbers of iterations, so
we report only times for this single iteration count.

Table 3.1 shows our results. We began with our program making a direct call to the sum
function (the “direct” row in Table 3.1). With no compiler optimization, the indirect function
approach is a modest 5% faster on our example. However, real deployed code generally
uses optimization, so we also measured running times with Clang’s optimization level “-O3.”
Here, we found that the basic springboard approach is actually more efficient than the indirect
function call approach. When we examined the compiled binary, we found that our predictions
from Section 3.2 were indeed correct: the springboard function is aggressively inlined, and
standard tail-call optimizations are performed where stack frame sizes allow. The indirect
function approach, in contrast, benefits very little from compiler optimization, and the small
time reduction in Table 3.1 appears to come primarily from optimization of the sum function.

Next, we wanted to see if results differed for calls that were already indirect prior to
our customization. The “function pointer” row in Table 3.1 shows results for runs where
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Figure 3.2: Run-time overhead

we changed the direct sum call into a call through a function pointer whose value was not
visible to the compiler for optimization (i.e., it actually compiles down to a call through a
function pointer). We hypothesized that this would give the indirect function call approach an
advantage, because completely inlining the called function was no longer possible. However,
we again found our results nearly unchanged (aside from a small increase in absolute running
times). The indirect function approach is again slightly more efficient without optimization,
but, overall, neither approach seems strongly preferred. Calls to replica functions for the
springboard approach are again largely inlined, leading to a large speedup when moving to
higher levels of compiler optimization.

3.3.2 Run-Time Overhead

We next measured the overhead of introducing customization into our already existing
mechanisms for deployed applications. Using the set of benchmark programs from Chapter 2,
we built each application with our instrumentor using the new “Realistic” tracing configuration,
as defined in Section 3.1. Recall that this configuration allows each function to select run-time
tracing from: no tracing, call-site coverage, and call-site coverage plus path tracing.
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As in the “Realistic (fixed)” instrumentation from our previous evaluation, we then
configured the generated binaries to activate call-site coverage tracing for all non-library
functions, as well as path tracing for any function appearing in the crash stack of any failing
test case for each application version. However, note that, in this case, we were able to
perform this customization without re-compilation of the applications. Hence, we more
accurately simulate true customization of tracing via latent instrumentation that is enabled
post-deployment in response to observed failures.

Figure 3.2 plots our run-time overhead results from Chapter 2 with an additional “Realistic”
bar for this new configuration. Plotted results use the springboard approach to customization,
but, as we discuss further in Section 3.3.4, we found no measurable difference in results using
the indirect function approach. As in previous experiments, results are largely consistent
across application versions. One version of gzip has significantly lower overhead (about 1%
on average), while the other versions are around 5%. Overheads between sed versions again
vary somewhat, ranging from negligible to 2.5%. Averaged across all larger (non-Siemens)
applications, the realistic configuration has only 2.0% overhead, with a maximum overhead of
4.6% for gcc.

Note the difference between the “Realistic” and “Realistic (fixed)” bars in Fig. 3.2. This
difference corresponds to the portion of overhead for the realistic configuration that was due
to tracing customization. Clearly, customization adds a substantial portion of the run-time
overhead for some applications (especially gzip). Overall, though, the “Realistic” configuration
has extremely low run-time overhead (< 5% in all cases), and would be suitable for deployed
applications.

As in our previous evaluation, plotted results used non-optimized builds. However, as
stated previously, real deployed applications are almost universally built with aggressive
compiler optimization. We also gathered results for our new “Realistic” configuration with
Clang’s “-O3” optimizations enabled. Again, results are very similar. In fact, overhead
decreases to an average of just 1.6% across all larger applications, with a maximum overhead
of 4.5% (for gzip). While debugging optimized code can be challenging, it appears that our
customization (in conjunction with our tracing options from Chapter 2) does not seriously
hinder unrelated compiler optimization.

3.3.3 Memory Overhead

We next measured the effect of our customization instrumentation on the maximum resident
memory size of our subject applications. As before, we aggregated ratios for instrumented
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Figure 3.3: Memory overhead

and uninstrumented code across application test suites and versions for the non-faulty build of
each application.

Figure 3.3 plots our results, again including a new bar for the “Realistic” configuration
with call-site coverage and path tracing enabled as for our run-time evaluation. Here, when
comparing with the “Realistic (fixed)” bar, we see that tracing customization appears to
take a large toll on static memory usage. Exploring this further, the final bar, “All Options,”
shows memory overhead for the pathological tracing configuration from Section 3.1 where we
instrument for up to 10 tracing possibilities for each function. In our experiment, we then
actually enabled no tracing at execution time (i.e., we select the “{}” scheme for all functions).
Perhaps as one might expect, the memory cost of customization is quite high. Because we
create a new copy of every instrumented version of each function, we can potentially cause
an exponential blow-up in code size. For the larger applications, the results of “All Options”
instrumentation indicate that this is a potential issue. This scheme does not enable any tracing
at run time, so the observed memory overheads are pure code bloat.

Nevertheless, it is important to keep these results in perspective. First, our instrumentation
makes rather naïve choices; in a real-world scenario, it may be possible to make more informed
decisions about which functions are likely to ever require customization or tracing in the
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future. Second, and most importantly, the increased memory usage for customization is a
one-time cost: it does not scale throughout program execution. Thus, the dynamic memory
cost of tracing is more closely related to the “Realistic (fixed)” scheme, which shows just
1.8% average memory overhead for the non-Siemens applications.

We also gathered results with the indirect function customization mechanism and with
“-O3” compiler optimization. For the indirect function version of customization, we again
are unable to measure any significant differences from the basic springboard approach. With
optimization, results are again quite similar to their unoptimized counterparts. The “Realistic”
configuration sees only very minimal differences, with a decrease in average static memory
overhead from 11.4% to 10.0% for the larger applications. The “All Options” configuration
sees a much larger reduction for the non-Siemens applications: average overhead decreases
from 22.9% to 16.5%, while maximum overhead (for sed) decreases from 43.9% to 32.5%.
Thus, we consider the memory footprint of our customization reasonable, especially with the
vast majority of its cost in static consumption.

3.3.4 Discussion

Our results indicate that we can perform post-deployment customization of csi-cc tracing
schemes efficiently. We further found that the customizable variant of our “Realistic”
tracing configuration yields an efficient pairing that provides complementary information for
postmortem program analysis (see Part II, in particular Chapter 5, for analysis evaluation).

Our indirect function variant of customization had very little impact on overall instrumen-
tation performance. Per our microbenchmark results in Section 3.3.1, many low-level details
regarding compiler optimizations have an impact in this domain. In practice, it seems that even
the small overheads from our tracing mechanisms dominate the difference in performance
between our two customization options. Overall, it appears that both of our approaches
provide efficient customization of our lightweight tracing mechanisms.

Recall that our overall goal was to develop customizable tracing with very little run-time
cost that nevertheless provides great benefit for postmortem analysis. In this chapter, we
significantly improved the customization aspect of the first part of this goal via two efficient
approaches to selecting tracing schemes post-deployment. Our customizable “Realistic”
tracing scheme proved remarkably efficient, with only 2.0% run-time and 1.8% dynamic
memory overhead across our larger benchmarks. Of course, where higher execution overheads
can be tolerated, other tracing mechanisms (e.g., statement coverage) can provide additional
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detail about failing executions. If execution constraints are tightened, simple function coverage
may be a better choice. To this end, our approach is highly customizable.

3.4 Threats to Validity

The threats to validity for our results are similar to those for our parallel evaluation from
Chapter 2, discussed in Section 2.4. The only major changes relate to threats to the internal
validity of our findings. As previously, our customization instrumentation code may contain
bugs; these could impact our overhead results. However, we again controlled for factors
other than our instrumentation that may have impacted overhead results; most notably, we ran
experiments on a single lightly-loaded machine. We also spot-checked that our customization
correctly selected function variants, and that we were able to recover traced data during
execution. We ran a small selection of our test cases under a debugger; all tests were successful.
Our customization strategies often have a much more significant impact on the memory
layout of a process: we examined and evaluated some of these effects in our microbenchmark
experiments, and verified that the output of all program runs for our complete experiments
matches that of the uninstrumented version.

3.5 Related Work

Prior work emphasizes adaptive post-deployment instrumentation with data collection from
prior runs. For example, Yu et al. [189] use dynamic feedback to reduce tracing in a race
detector, while Dwyer et al. [58] use adaptive tracing to reduce the cost of monitoring safety and
correctness properties. Arumuga Nainar and Liblit [18] dynamically adapt probe placement
for statistical fault localization after deployment, building on the observation that only a very
small portion of a program is actually relevant for helping a developer zero in on a bug. These
approaches share our motivation for customizing tracing to reduce post-deployment tracing
overhead. However, they all target specific problems in post-deployment optimization of
a specific tracing mechanism, whereas our customization focuses on low-cost selection of
different tracing schemes in production code.

The GAMMA project [31, 139] automates the distribution of data-collection tasks among
a user community, reducing the burden on each individual tracing instance. Our work
develops low-cost tracing mechanisms, and allows for efficient selection of these mechanisms
in individual instances post-deployment. Thus, the two approaches are likely complementary:
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we focus on gathering very valuable information at very low cost, while GAMMA focus on
how best to deploy information-gathering instances.

Jimborean et al. [77] develop the VMAD system, which allows dynamic toggling
of previously-inserted instrumentation code by running the user’s program in a virtual
environment. Our approach has different priorities. Our purely instrumentation-based
customization techniques sacrifice some on-the-fly configurability (e.g., switching between
tracing blocks within a single function). However, our techniques appear to be more efficient
(Jimborean et al. [77] measure run-time overheads as high as 183% and code-size increases
up to 268%), and are in many ways less invasive (we do not require loading a separate virtual
machine concurrently with instrumented applications).

The GNU indirect function facilities that we used for one of our customization strategies
derive from prior research on scenario-based function multi-versioning [114]. This technique
is a good fit for our requirements, as we too require multiple versions of instrumented functions,
though for a very different purpose: rather than optimizing for a specific architecture, our
function variants are instrumented with different tracing schemes.
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4 optimizing customized program coverage

Substantial portions of this chapter are derived from a 2016 conference paper by
Ohmann et al. [134].

In the preceding chapters, we introduced novel tracing mechanisms—path tracing and
various granularities of in-memory program coverage—and methods of post-deployment
tracing customization. In this chapter, we focus specifically on improving the efficiency of our
program coverage mechanisms, with an emphasis on call-site coverage. Our program coverage
mechanisms, and more specifically coverage at call sites, provide significant postmortem
analysis benefit despite modest tracing cost, as we will see beginning in Chapter 5. However,
despite extensive research on optimization of program coverage instrumentation [3, 4, 21, 88,
89, 105, 169], no prior techniques apply directly to our coverage tracing.

Recall that our program coverage data is binarized, meaning that coverage data marks each
program location as “covered” or “uncovered,” rather than counting the number of occurrences
of each point during an execution. Binarized program coverage is also used in other prior
program analysis research, including research in postmortem program analysis [129] and
fault localization [106, 157]. Other prior research gathers program coverage over a limited
set of program points post-deployment, either to divide the monitoring task across multiple
clients [139], or to only monitor newly-added code or code not covered during in-house
testing [143]. All of these cases have in common the fact that they only require accurate
coverage data for a limited subset of the statements and/or branches of a program. Furthermore,
as we saw in Chapter 2, gathering full statement coverage is often too expensive for post-
deployment monitoring. Sparse tracing also means sending less data back to developers in
failure reports; as we will see in Chapter 6, large amounts of data in failure reports can slow
down analysis time, and this slow-down is wasteful if traced data is redundant or unnecessary.
Orthogonal to performance, some code may be off-limits for monitoring; for example, one
might avoid placing instrumentation in security-sensitive code, tightly optimized code, or
code with strict real-time requirements.

In this chapter, we introduce the customized coverage probing problem, which is to select
a smaller set of coverage probes given instrumentation restrictions and a set of program points
of interest. We first prove that solving this problem to full optimality is NP-hard. Then, we
provide three approaches to the problem. Our first approach constructs a mixed-integer linear
program (MILP) whose solution identifies the optimal probe set; however, solving this MILP
to optimality requires prohibitive analysis time during instrumentation. We therefore offer
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two approximation approaches. The first approximation is very inexpensive to compute, but
provides no optimality guarantees; the second finds a locally optimal approximation.

While prior research optimizes instrumentation for program coverage, none applies directly
to our customized coverage scenario. Agrawal [4] and Tikir and Hollingsworth [169] optimize
probe placement for binarized statement coverage. Unfortunately, Agrawal’s approach is
not applicable for incomplete executions (such as those that terminate unexpectedly due to a
fatal signal), and this dissertation specifically targets failing deployed applications. Low-cost
coverage tracing is especially important in these deployed scenarios, as only small amounts of
run-time overhead are tolerable. Furthermore, neither Agrawal nor Tikir and Hollingsworth
optimize for constrained coverage requirements. Deployed software calls for customized
coverage information: coverage at a subset of program locations, such as those not exercised
by a test suite [143] or those containing features interesting for debugging (e.g., call sites as
per our instrumentation from Chapter 2 and other work by Nishimatsu et al. [129]).

Our approaches in this chapter are the first to optimize based on customized coverage
requirements. We find that even coarse approximations can statically eliminate much
instrumentation. When naïve instrumentation imposes large overhead, our optimizations
significantly reduce both compilation and run-time costs.

4.1 Customized Coverage

Our goal is to determine an optimal instrumentation plan to gather customized, binarized
program coverage information. More concretely, we are given a single procedure’s control-flow
graph (CFG), G; some subset of the vertices in G for which the developer desires information,
D; and another subset of the vertices in G defining legal observation points, I. The problem
is to determine the cheapest set of probes to insert into locations from I such that, for any
given path p through G, the set of probes encountered along p is sufficient to determine the
set of vertices from D that were traversed at least once along p.

4.1.1 Input

The input to the problem is as follows:

• G = (V, E), a directed graph with vertices V and edges E

• e ∈ V , a unique source (or entry) vertex with in-degree 0
• I ⊆ V , a subset of vertices that may be probed (instrumented)
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• ci, the cost of probing vertex i ∈ I, where ∀i ∈ I, ci > 0
• D ⊆ V , a set of “desired” vertices that must be “covered”
• X ⊆ V , a set of possible termination points

4.1.2 Problem Definition
Definition 4.1. For v1, v2 ∈ V , v1 → v2 denotes the set of all paths from v1 to v2 in G. If
v1 = v2, then the trivial path (crossing no edges) is included in this set.

Definition 4.2. V(p) denotes the set of all vertices encountered along path p, including the
start and end vertices of p. If p is the trivial path from vertex v (crossing no edges), then V(p)
is the singleton set {v}.

Definition 4.3. A set of vertices S ⊆ I is called a coverage set of D iff:

∀x ∈ X and ∀p1, p2 ∈ e→ x,

V(p1) ∩ S = V(p2) ∩ S =⇒ V(p1) ∩ D = V(p2) ∩ D

That is, two executions ending at the same termination point x ∈ X that encounter the same S

vertices must encounter the same D vertices as well. Contrapositively, paths that encounter
different D vertices must be distinguishable by encountering different S vertices as well.

Problem Statement:
The Customized Coverage Probing Problem is to find a coverage set S of D such that∑

s∈S cs is minimal.

4.1.3 Discussion

We desire the lowest-cost coverage set of D. Put another way, the goal is to find the cheapest
set of probe vertices (S ⊆ I) such that the resulting observations (V(p1) ∩ S and V(p2) ∩ S) are
sufficient to derive desired coverage information (V(p1) ∩D and V(p2) ∩D) for all executions,
whether terminating normally or abnormally (∀x ∈ X). If D ⊆ I, then a coverage set of D

exists, since we can set S = D. However, the existence of some S that satisfies Definition 4.3
does not imply that D ⊆ I. That is, we may be able to infer coverage information for d ∈ D

without probing d directly.
The cost of probing each vertex (ci) is input to the problem. To minimize the expected run-

time cost of instrumentation, these values should represent the expected execution frequency
of each i ∈ I, which could be derived from static heuristics [183] or profile data [21, 89].
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Figure 4.1: Example control-flow graph with transformation for multiple function
executions

However, other cost functions can minimize the static number of probes inserted, or prioritize
instrumentation locations based on real-time requirements or security concerns. In our
evaluation (see Section 4.3), we use LLVM’s built-in analyses for statically approximating the
execution frequency of each basic block.

4.1.4 Encoding Specific Problems

Figure 4.1a shows our running example control-flow graph (originally from Chapter 2, Fig. 2.2)
augmented with entry vertex e. Using this graph as G = (V, E), one can obtain optimized local
statement coverage instrumentation with I = D = V \ {e}. Assuming the program could crash
at any statement, we can also let X = V . This input corresponds to optimizing instrumentation
for the stack-allocated statement coverage array cov from Fig. 2.5. This option is also valid
for functions known to execute exactly once (e.g., the main function). To handle multiple
executions of an instrumented function, one performs a simple graph modification: add a new
vertex q representing any execution from the rest of the program, as shown in Fig. 4.1b. This
change to our intraprocedural CFG indicates that the function may be called zero, one, or
multiple times during the full program’s execution (where all other functions are collapsed
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into the summary node, q). For statement coverage, we then let I = D = V \ {e, q}. Usually,
we say that q ∈ X , indicating that execution may terminate outside the current function.
This input optimizes coverage instrumentation for global statement coverage; that is, for the
statement coverage array add_actionCov from Fig. 2.5. If we can statically determine
that the program cannot crash in the function (or, outside the context of crashing deployed
applications, we only need coverage data for complete executions), we can set X = {q}. For
edge coverage instead of vertex coverage, we split each edge in the CFG. Let V ′ be the set of
new vertices added on these split edges. Full edge coverage is then encoded by I = D = V ′.

In some contexts, one need only gather coverage information for a specific set of statements
or edges. For example, consider our call-site coverage mechanism from Chapter 2. In this case,
D is the set of basic blocks containing call statements. Other work gathers residual coverage
information for deployed applications based on statements or branches not covered during
in-house testing [139, 143]. Here, D is the set of non-covered blocks (or edges, using the
edge-splitting method described above). Beyond well-studied cases, many others are possible.
One might reduce run-time cost by removing some portion of the “hottest” blocks from I as
identified by standard profiling. Based on previous results from postmortem analyses (such as
those we describe in Part II of this dissertation), one might set D to program locations whose
execution status was unknown in the failing execution. After a product release, developers
could isolate new failures by setting D to recently changed code. Alternately, one might
exclude security-sensitive code or code with real-time requirements from I.

4.1.5 Proof of NP-Hardness

To show that the Customized Coverage Probing Problem is NP-hard, we show that a known
NP-complete problem reduces to our problem in polynomial time. Maheshwari [111] proves
that determining the optimal placement for traversal markers in acyclic CFGs is NP-complete.
Specifically, given an acyclic CFG, G = (V, E), one can enumerate the set of source–sink
paths through G, P(G); then, for all p ∈ P(G), define E(p) as the set of edges along p.
Maheshwari proves that determining the minimum-size set of edge traversal markers, M ⊆ E ,
such that each p ∈ P(G) traverses a unique set of traversal markers, is an NP-complete
problem. Formally, the problem is to find M ⊆ E such that:

• for all distinct p1, p2 ∈ P(G), M ∩ E(p1) , M ∩ E(p2); and

• for all M′ such that |M′| < |M |, there exist distinct p1, p2 ∈ P(G) such that M′∩E(p1) =
M′ ∩ E(p2).



55

Theorem 4.4. The Customized Coverage Probing Problem is NP-hard.

Proof. Note that traversal markers and coverage probes yield precisely the same information
for acyclic graphs: no edge may occur more than once in any path (because there are no
cycles), and the order of any pair of edges is fixed if both may occur along the same path
(because there would otherwise be a path containing a cycle). Thus, while Maheshwari’s
original intent was to prove that minimal probing to distinguish all paths in an acyclic CFG is
NP-complete, the same proof also shows that minimizing the number of edge probes to obtain
full edge coverage information is NP-complete.

Transforming a Traversal Marker Placement Problem into a Customized Coverage Probing
Problem is straightforward. Given a CFG G = (V, E), we split each edge to instrument for
edge coverage as in Section 4.1.4. Then, an optimal solution to the Customized Coverage
Probing Problem with input

I = D = V ′ \ V ci = 1 for all i ∈ I

is also an optimal traversal marker placement. The transformation is polynomial, as splitting
each edge is simply an O(E) operation. Therefore, the Customized Coverage Probing Problem
is at least as hard as optimal traversal marker placement; hence, the Customized Coverage
Probing Problem is NP-hard. �

4.2 Optimization Approaches

We consider three approaches to solving the Customized Coverage Probing Problem. After re-
characterizing our definition of a coverage set from Definition 4.3 into a checkable sufficiency
condition, we present a MILP that identifies the optimal coverage set. However, since our
evaluation indicates that obtaining a fully-optimal solution to our problem is intractable for real
use, we also offer two approximation approaches. The first of these is based on CFG dominance
relations and is remarkably efficient; however, this approximation provides no optimality
guarantees. We then build on this first approach to formulate a second approximation that
finds a locally minimal coverage set.

4.2.1 Checking Sufficiency of Coverage Sets

As a first step, we must devise a sufficiency check for a candidate coverage set S ⊆ I. That is,
we would like a simplified condition (relative to Definition 4.3) to check whether any given set
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Figure 4.2: Pictorial representation of an ambiguous triangle

S is a coverage set of D. Recall that D is the set of desired vertices, and that S is a coverage
set of D if and only if coverage information for S unambiguously allows one to determine
coverage information for D on any execution path. Definition 4.3 is given with respect to all
paths through G ending at some x ∈ X; for any graph with loops, there may be infinitely
many such paths. Intuitively, however, many of these paths are redundant with respect to S’s
coverage set status. We formalize this intuition by narrowing our search to finding “ambiguous
triangles” in which some d ∈ D may or may not occur between observation vertices α and
β. The condition is represented pictorially in Fig. 4.2. As input, we have all items from
Section 4.1.1 and some S ⊆ I, a candidate coverage set for D.

In Fig. 4.2, wavy lines represent paths crossing 0 or more edges. The core of this approach
lies in finding an ambiguous triangle composed of paths pαd , pαβ, and pdβ. Such a triangle
represents an ambiguous region of execution (between observation points) that demonstrates
that S alone is not sufficient to determine if d executed. Conversely, S is a coverage set of D if
S allows no ambiguous triangles in G. An ambiguous triangle is a triple (α, β, d) such that:

• α is either the entry vertex or an observation point from S,

• β is either from S or a possible termination location, and

• d ∈ D, and d may or may not occur on paths α → β that contain no other new
observations.

To define new observations above, we must define sets Y1, Y2, and Y . The set Y1 contains
all d-free paths from the entry vertex to α. The set Y2 contains all d-free paths from β to a
possible termination location. (If d ∈ X , then d is excluded as a possible final location, since
ending at d implies the observation, and hence execution, of d.) The set Y contains all vertices
along paths in Y1 ∪Y2. These vertices may occur before or after α→ β paths, and, hence, any
vertices in Y ∩ S provide no new information along α→ β paths. If Y1 = ∅, then d dominates
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α on all paths through G; hence, α will not be a part of any ambiguous triangles, as d occurs
on all paths through α. Conversely, if Y2 = ∅, then d post-dominates β with respect to all
termination points; hence, β will not be a part of any ambiguous triangles, as d will occur on
all paths through β.

To formalize the above, we require one new definition:

Definition 4.5. (Connected Excluding) For Ψ ⊆ V and v1, v2 ∈ V , let v1
<Ψ−−→ v2 denote the

set of paths from v1 to v2 that do not cross any edges with a source or target vertex ψ ∈ Ψ.
Formally,

v1
<Ψ−−→ v2 ≡ {p ∈ v1 → v2 such that V(p) ∩ Ψ = ∅ or |V(p)| = 1}

This definition includes trivial paths. That is, for v ∈ V , v <Ψ−−→ v is nonempty for any
Ψ ⊆ V , even if v ∈ Ψ. Then, for all (α, β, d) triples where

α ∈ S ∪ {e} β ∈ S ∪ X d ∈ D \ S

we define the following sets:

Y1 = e
<{d}
−−−→ α Pαd = α

<S\Y
−−−−→ d

Y2 =
⋃

x∈X\{d}
β
<{d}
−−−→ x Pαβ = α

<(S\Y )∪{d}
−−−−−−−−−→ β

Y =
⋃

π∈Y1∪Y2

V(π) Pdβ = d
<S\Y
−−−−→ β

Then, set S is a coverage set of D if and only if:

Y1 = ∅ ∨ Y2 = ∅ ∨ Pαd = ∅ ∨ Pαβ = ∅ ∨ Pdβ = ∅

for all (α, β, d) triples defined above. Note that these five disjuncts correspond precisely to
the five necessary parts of the ambiguous triangle pictured in Fig. 4.2.

If all five of these subpaths exist for any (α, β, d) triple, then we can form paths p1 and p2

from Definition 4.3. Specifically, by selecting appropriate

y1 ∈ Y1 y2 ∈ Y2 pαβ ∈ Pαβ pαd ∈ Pαd pdβ ∈ Pdβ
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we can form the appropriate paths as

p1 = y1 ◦ pαβ ◦ y2 p2 = y1 ◦ pαd ◦ pdβ ◦ y2

where ◦ indicates path concatenation. Thus, if all five of the above subpaths exist for any
(α, β, d) triple, then S is not a coverage set of D. The equivalence between this “ambiguous
triangle” formulation and our original Definition 4.3 is intuitive based on the pictorial
representation of triangles in Fig. 4.2; however, the proof is non-trivial, and we defer the full
argument to Appendix A.1.

As a brief example, consider the CFG in Fig. 4.1a, and the input configuration X = {6}
and D = {5}. Candidate coverage set S = {1, 2, 3, 4, 6, 7} is not sufficient to cover D, because
the paths π1 = 〈e, 1, 2, 3, 4, 6, 2, 3, 4, 6〉 and π2 = 〈e, 1, 2, 3, 4, 6, 2, 3, 5, 6〉 contain the same set
of S vertices ({1, 2, 3, 4, 6}) but π2 contains 5 ∈ D while π1 does not. Note the key difference
highlighted in bold: the instrumentation cannot distinguish a 〈3, 4, 6〉 loop iteration from a
〈3, 5, 6〉 iteration. In terms of an ambiguous triangle, we have

α = 3 Y = {1, 2, 3, 4, 6}
β = 6 〈3, 5〉 ∈ Pαd

Y1.vertices = {1, 2, 3, 4, 6} 〈3, 4, 6〉 ∈ Pαβ

Y2.vertices = {2, 3, 4, 6} 〈5, 6〉 ∈ Pdβ

Again, we see the exact same ambiguity. Because of observations on prior and/or future loop
iterations (Y1 and Y2), the execution of vertex 4 does not preclude the execution of vertex 5,
and we have an ambiguous triangle formed from subpaths 〈3, 4, 6〉 and 〈3, 5, 6〉.

Consider a few special cases. If S ⊇ D, then S is always a coverage set of D, as no possible
vertex for d exists (i.e., D \ S = ∅). This aligns with Section 4.1.3’s claim that if D ⊆ I (the
instrumentable set), then I itself is a coverage set of D. If S = ∅, then S is a coverage set of D

iff ∀d ∈ D, d occurs on either all or no paths from the entry to any termination point. In this
case, α = e, β ∈ X , and Y ∩ S = ∅. Thus, by the definition of pαd , pαβ, and pdβ, S is not a
coverage set of D if d may or may not occur on paths from e to β ∈ X .

All of our approaches assume that I is a coverage set of D. In practice, one might consider
cases where this is untrue (and ask for maximal coverage given a limited I set). Fortunately,
because each d ∈ D is independent, we can find the maximal D′ ⊆ D that I can possibly
cover by letting D′ = {d ∈ D such that I is a coverage set of {d}}.
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4.2.2 Optimal MILP Formulation

As we prove in Section 4.1.5, obtaining an optimal solution to the Customized Coverage
Probing Problem is NP-hard. Using the characterization in Section 4.2.1, we construct a
0–1 mixed-integer linear optimization problem (MILP) whose solution identifies the optimal
coverage set. However, due to the intractability of obtaining an optimal solution (see our
evaluation comments in Section 4.3), we give only a very brief overview of the formulation
here, and defer the complete MILP model description to Appendix B.

Note that, even before selecting an S ⊆ I, we can pre-compute all candidate ambiguous
triangles as the set of triples of vertices T = {(α, β, d) ∈ (I ∪ {e}) × (I ∪ X) × D}. Then,
because the Y set does not depend on our choice of S, for each (α, β, d) ∈ T we also
pre-compute the additional set of vertices

Yαβd =
⋃

x∈X,π∈(e
<{d}−−−→α)∪(β

<{d}−−−→x)

V(π).

For each (α, β, d) triple, the set Yαβd corresponds exactly to the Y set from Section 4.2.1. That
is, it contains all vertices along d-free paths from e to α (Y1) or β to a termination point (Y2).

The goal is to find S, a minimal-cost coverage set of D. We first introduce the binary
selection variables

zi = 1 iff i ∈ S

to represent the selected coverage set. Next, we use five sets of binary variables, one for each
path set in the characterization from Section 4.2.1, to force the associated set to be empty:

sαd = 1 implies that e
<{d}
−−−→ α = ∅

tβd = 1 implies that β
<{d}
−−−→ x = ∅ ∀x ∈ X \ {d}

uαβd = 1 implies that α
<S\Yαβd−−−−−−→ d = ∅

vαβd = 1 implies that α
<(S\Yαβd)∪{d}−−−−−−−−−−−→ β = ∅

wαβd = 1 implies that d
<S\Yαβd−−−−−−→ β = ∅

Themodel is constructed as a network flow problem, with constraints to force the non-existence
of each of the above paths. The total number of constraints is non-trivial, but polynomial in
the size of T , V , E , and X; again, see Appendix B for the complete formulation.
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Recall from Section 4.2.1 that S is a coverage set of D if and only if at least one of
these five sets of paths is empty for all (α, β, d) ∈ T . (This appears to be a slightly stronger
condition, as the set of (α, β, d) triples should also be constrained by the selection of S, per
Section 4.2.1. However, all additional triples in T are redundant because they indicate α or β
selections that are not observations, and therefore can have no meaningful impact on Y or
relevant triangle paths.) Now, the five sets of triangle paths are only relevant when zd = 0,
because instrumented vertices are always observed. The following constraint forces one of
the five paths to be empty, but only when zd = 0:

sαd + tβd + uαβd + vαβd + wαβd ≥ (1 − zd) ∀(α, β, d) ∈ T

In the end, our objective is to minimize cost∑
i∈V

cizi

subject to the above forcing constraint on program paths, and the relevant constraints for each
of the five classes of paths.

This approach is guaranteed to provide a provably optimal coverage set, but unfortunately
is too slow in practice. In fact, we were only able to evaluate the fully optimal approach on
our smallest test subjects (see Section 4.3). There are a number of reasons for this. The
formulation requires pre-computation of the sets Yαβd , which are of size quartic in the number
of vertices in G. Furthermore, even with powerful commercial software, solving a large-scale
MILP still relies on enumerating an often large branch-and-bound search tree. Fortunately,
safe and fast approximations of the optimal result are possible.

4.2.3 An Inexpensive Approximation

Several prior approaches optimize coverage probes by using the dominance relation among
basic blocks [4, 169]. A basic block v dominates a basic block w if and only if e

<{v}
−−−→ w = ∅.

Immediate dominance relations for any single-entry directed graph form a tree, and algorithms
for computing dominators are well-known [7, 103]. Figure 4.3 shows the dominator tree for
our running example from Fig. 4.1a.

In this section, we develop an inexpensive approximation algorithm based on dominator
information, rather than the sufficiency condition from Section 4.2.1. Our approach performs
a bottom-up traversal of the dominator tree, “covering” a block’s subtrees only as necessitated
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Figure 4.3: Dominator tree for Fig. 4.1a

by the desired set, D. This approach is inspired by the prior work of Agrawal [4] and Tikir
and Hollingsworth [169], but supports customized coverage. Most accurately, our approach
generalizes these prior approaches, which could be considered special cases of our algorithm
for only complete executions [4] and full coverage [4, 169].

A vertex, v, can be “covered” (i.e., guaranteed accurate coverage information for any
execution) in two possible ways. First, v itself may be instrumented, so that its coverage is
observed directly. Second, we might instrument an appropriate subset of v’s dominator-tree
descendants such that all executions through vmust execute at least one vertex in the descendant
set. Clearly, for this approximation, we must instrument all leaves of the tree. Internal block
v must be instrumented only if v’s dominator-tree children cannot cover v. In our case, v
is instrumented if a path exists in G from v to some x ∈ X that bypasses all of v’s covered
children in the dominator tree (and such that v does not dominate x). By the definition of
dominance, any time a descendant of v executes (including a crashing execution), it implies
the execution of v. Intuitively, if the program can halt after executing v without an observation
implying v’s execution, then v’s coverage data is unknown on some execution.

For example, consider vertex 3 in Fig. 4.3, and a crash x = 7 (i.e., the program halts in
block 7). Here, the subset of dominator children {4, 5} is sufficient to cover 3: in Fig. 4.1,
all paths from 3 to 7 must pass through some element of {4, 5}. Likewise, {6} would also
cover 3: any CFG path from 3 to 7 must pass through 6. Of course, both alternatives assume
that I includes the necessary instrumentation points. If I disallows both {4, 5} and {6} as
instrumentation plans, then 3 can only be covered by direct instrumentation of 3 itself.

Figure 4.4 details our algorithm. The global set willInst builds up the final result: the set
of basic blocks to be probed for coverage. The global set willCover tracks which blocks will
be guaranteed to have accurate coverage information available. Hence, as vertices are added
to willInst, willCover is updated to reflect the newly covered nodes. The overall goal is to
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global: willInst, the set of vertices that will be probed
global: willCover, the set of vertices for which coverage information will be available

input: G = (V, E), a single-function control-flow graph
input: e ∈ V , the entry vertex
input: I ⊆ V , vertices that may be probed
input: c : V 7→ R+, costs for vertices
input: D ⊆ V , vertices with desired coverage
input: X ⊆ V , possible ending vertices
output: willInst ⊆ I, a coverage set of D

T = dominator tree for G, with entry vertex e;
ord_T = any bottom-up ordering of T .vertices;

willInst = ∅;
willCover = ∅;
canCover = ∅;
needInst = ∅;
foreach v in ord_T do

coveredChildren = T .children_of(v) ∩ willCover;
if ¬exitWithout(v, coveredChildren, X) then

willCover ∪={v};
canCover ∪={v};

else
canCoverChildren = T .children_of(v) ∩ canCover;
vNeedInst = exitWithout(v, canCoverChildren, X);
if v ∈ I ∨ ¬vNeedInst then canCover ∪={v} ;
if vNeedInst then needInst ∪={v} ;
if v ∈ D then

if v < canCover then return FAIL ;
else cover(v, canCover, needInst, T, X, c) ;

return willInst;

Figure 4.4: Dominator-based approximation

make D ⊆ willCover, that is, to “cover” all vertices in D. First, we compute T , the dominator
tree of G, and any bottom-up (i.e., reverse-topological) ordering of T’s vertices, ord_T . Then,
we iterate over each vertex in ord_T , adding those vertices from I that require instrumentation
to the set willInst. During this iteration, we discover which vertices can only be covered via
direct instrumentation (stored in set needInst), and which could possibly be covered either via
direct instrumentation or via their dominator descendants (stored in set canCover).

In the loop, we first find v’s dominator children that are already covered based on updates
to willCover in previous loop iterations (coveredChildren). If these vertices are already
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Function exitWithout(v, children, X)
input: v, the vertex possibly covered
input: children, a subset of v’s immediate-dominator children that may provide coverage

information for v
input: X, possible ending vertices

return ∃ x such that x ∈ X and v does not dominate x and v <children−−−−−−→ x , ∅;
Figure 4.5: Test for an exit bypassing dominator children

sufficient to cover v (i.e., no path exists from v to an exit or crash that bypasses v’s covered
children, as defined in function exitWithout() from Fig. 4.5), then v is added to willCover and
canCover. Otherwise, we gather all of v’s dominator children that possibly could be covered
(canCoverChildren). Because we process T bottom-up, canCover already contains all of v’s
dominator children that could possibly be covered. If canCoverChildren is insufficient to
cover v, then v is added to needInst. If v can be covered by its dominator children or can be
directly instrumented, v is added to canCover. At this point, if v ∈ D, we want to find a cheap
coverage set for v. However, note that this approximation assumes that a vertex can only be
covered by its dominator descendants, which is not always true. If we desire coverage for v
but v < canCover, then the algorithm fails to find a coverage set for D. This situation is rare in
practice, and another approach (such as our locally optimal approximation, which we describe
in Section 4.2.4) could reduce the size of I in this case. If v ∈ canCover, we find a coverage
set for v via a call to cover().

Procedure cover() in Fig. 4.6 walks back down the dominator tree in order to cheaply
cover vertex v. First, if v cannot be covered by its dominator children (i.e., v ∈ needInst), then
we instrument v to obtain its coverage data. Otherwise, we iterate over all of v’s dominator
children that can be covered, sorted by cost to try to avoid instrumenting the costliest vertices.
(This is a heuristic, but it is effective in practice.) For each child, w, if w is already covered
(i.e., w ∈ willCover), we skip it. Otherwise, if w is necessary to cover v (as determined by
the call to exitWithout()), we must recursively cover w. After the completion of cover(), v is
covered either via direct instrumentation, or via calls to cover() on its descendants. Thus, we
pass each vertex as argument v to cover() at most once, since v is added to willCover at the
conclusion of cover(), and will be excluded from removableChildren in future calls.

Our approach is most similar to that of Tikir and Hollingsworth [169], who instrument a
basic block, v, whenever v is either a leaf vertex in the dominator tree, or has an outgoing
edge (in G) to a block that v does not dominate. This is equivalent to our approach in the
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Procedure cover(v, canCover, needInst, T, X, c)
input: v ∈ canCover, the vertex to cover
input: canCover, a pre-computed set of vertices that could be covered
input: needInst, a pre-computed set of vertices whose coverage information can only be

determined by direct probing
input: T , the dominator tree for the function containing v
input: X, possible ending vertices
input: c, costs for vertices

if v ∈ needInst then
willInst ∪={v};

else
canCoverChildren = T .children_of(v) ∩ canCover;
assert ¬exitWithout(v, canCoverChildren, X);

removableChildren = canCoverChildren \ willCover;
foreach w in removableChildren ordered by c do

if exitWithout(v, canCoverChildren \ {w}, X) then
cover(w, canCover, needInst, T, X, c);

else
canCoverChildren \={w};

willCover ∪={v};
Figure 4.6: Cover a dominator tree vertex

un-customized special case of I = D = X = V , since any such outgoing edge from v targets
a possible halting location. However, our approach handles the full range of input from
Section 4.1, allowing us to optimize coverage with far more degrees of flexibility. We look
for paths to any non-dominated termination point (Fig. 4.5), and only cover vertices where
necessitated by D (Fig. 4.6).

4.2.4 Locally Optimal Approximation

The approach in Section 4.2.3 is computationally inexpensive: it calls cover() on each block
at most once, and, therefore, traverses each dominator tree vertex at most twice. However, it
provides no guarantees on the optimality of the willInst set. In fact, as noted in Section 4.2.3,
it is possible that the dominator-based approximation will be unable to find any coverage set
S ⊆ I, even if at least one such set exists. This is the “return FAIL” case in Fig. 4.4.

We can compute a locally optimal coverage set in polynomial time by iteratively testing
smaller-and-smaller candidate coverage sets via the conditions in Section 4.2.1. By these
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input: I ⊆ V , vertices that may be probed
input: c : V 7→ R+, costs for vertices
input: D ⊆ V , vertices with desired coverage
output: S ⊆ I, a locally optimal coverage set of D

assert I is a coverage set of D;
S = copy(I);
tryRemove = sort I by c;
foreach i in tryRemove do

if S \ {i} is a coverage set of D then
S = S \ {i};

return S;

Figure 4.7: Locally optimal approximation

conditions, a candidate coverage set S can clearly be checked in polynomial time. For each
(α, β, d) triple arising from our current choice of S, we:

1. compute Y , which requires two depth-first or breadth-first search passes (one to gather
all possible vertices along Y1 paths e

<{d}
−−−→ α, and one to gather vertices along Y2 paths

β
<{d}
−−−→ x);

2. check for the existence of any path α
<S\Y
−−−−→ d;

3. check for the existence of any path α
<(S\Y )∪{d}
−−−−−−−−−→ β; and

4. check for the existence of any path d
<S\Y
−−−−→ β.

Each of the five connected-excluding tests again requires a single depth-first or breadth-first
search. If, for any (α, β, d) triple, the vertex sets for Y1 and Y2 from Item 1 are non-empty and
a path exists for all Items 2 to 4, then S is not a coverage set of D.

A coverage set S is locally minimal with respect to D when S is a coverage set of D, and
∀S′ ⊂ S, S′ is not a coverage set of D. Figure 4.7 gives the direct approach. We begin with
S = I (a coverage set of D by assumption), and iteratively attempt to remove each element
of S. Removing vertices from S can never cause S to cover more vertices. Thus, if S is a
coverage set of D, then ∀S↑ ⊃ S, S↑ is also a coverage set of D. Contrapositively, if S is not a
coverage set of D, then ∀S↓ ⊂ S, S↓ is not a coverage set of D either.

This approach has polynomial time complexity, but performs redundant computation, and
is too inefficient for practical use. We improve performance using a number of optimizations
and heuristics. We begin by reducing our initial I set by a call to our dominator-based
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approximation (Fig. 4.4). If this approximation returns FAIL, then I cannot be proven a
coverage set of D using only dominance relations, and we begin with the full user-specified
I set. As Fig. 4.7 shows, we heuristically attempt to first remove the costliest vertices from
S. We pre-compute V(Y1) for each (α, d) pair, and V(Y2) for each (β, d) pair, as these sets are
not dependent on the choice of S. We also perform substantial pruning of possible (α, β, d)
triples. For example, as Fig. 4.2 illustrates, all possible α vertices must precede d along some
path through G, and all β must follow both α and d along some path through G; this pruning
both reduces the number of α and β vertices to consider, and could pre-compute some paths
for Items 1 to 4 above. Finally, we find that, in practice, when ambiguous triangles exist, they
tend to exist in close proximity to the un-covered d ∈ D. In other words, the length of paths
in α

<S\Y
−−−−→ d, α

<(S\Y )∪{d}
−−−−−−−−−→ β, and d

<S\Y
−−−−→ β tends to be short. Thus, we prioritize testing α

and β vertices crossing the fewest edges from d.
Overall, though, our approach does not fundamentally differ from Fig. 4.7, and our

evaluation finds that our locally optimal approach takes substantial time to run, particularly
when having to prove (via the search for Items 1 to 4 above for all possible (α, β, d) triples) that
a candidate S set is in fact a coverage set of D. Recall that the approach is approximate; any
solution S contains no unnecessary blocks to cover D, but other less-costly instrumentation
plans may exist. Thus, as stated, in the context of our MILP from Section 4.2.2, this approach
results in a locally optimal solution.

4.3 Experimental Evaluation

We evaluated both the compile-time and run-time efficiency of our coverage optimization
approaches described in this chapter. We implemented the techniques described in Section 4.2
for C/C++ programs by extending the coverage mechanisms in csi-cc from Chapter 2. We
used LLVM’s built-in BlockFrequency analyses to determine costs (ci for each i ∈ I) as
input to our approach. This statically approximates the execution frequency of each block, but
is realistic since even a run-time profile approximates post-deployment behavior.

Since our optimizations in this chapter apply intraprocedurally, we ran experiments
optimizing our statement coverage (I = D = V) and call-site coverage (I = D = {basic blocks
containing at least one call site}) mechanisms. Call-site coverage is an example of customized
coverage that cannot be optimized by any prior approach. Note the slight difference from
call-site coverage as described earlier in this chapter (Section 4.1.4), where we proposed
allowing instrumentation anywhere (i.e., I = V). In practice, we have found that LLVM’s
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Table 4.1: Evaluated applications, ordered by size.

Application Description Versions Mean LOC

tcas Siemens 1 173
schedule2 Siemens 1 373
schedule Siemens 1 413
replace Siemens 1 563
tot_info Siemens 1 564
print_tokens2 Siemens 1 568
print_tokens Siemens 1 727
ccrypt Linux utility 1 5,280
gzip Linux utility 5 8,114
space ADL interpreter 1 9,563
exif Linux utility 1 10,611
bc Linux utility 1 14,292
sed Linux utility 7 14,314
flex Linux utility 5 14,946
grep Linux utility 5 15,460
bash Linux shell 6 80,443
gcc C compiler 1 222,196

static cost model is not always a good representation of run-time costs, which means that
our approaches may be driven to choose more expensive instrumentation plans. By setting
I = D, we ensure that our optimizations can only remove probes; they cannot, for example,
cover basic block b by inserting new probes into b’s dominator descendants (present in I but
absent from D) to assure coverage of b. Note that inaccurate cost data is a threat to run-time
efficiency, but never to correctness. That is, our approaches can never select a result S that is
not a coverage set of D, even if S results in suboptimal run-time performance. In all cases, we
optimize coverage assuming that programs may crash at any statement: X = V .

Table 4.1 lists our subject programs. Note that we include a larger set of applications than
in previous chapters; the additional applications (exif, bc, and bash) do not appear in our
analysis evaluations (see Part II, Chapters 5 and 6). However, our optimizations do not impact
results for a precise analysis, because we only optimize out coverage instrumentation that
can be inferred from remaining coverage probes. Of the new applications, bash comes from
the Software-artifact Infrastructure Repository [55, 154], while bc and exif are real-world
programs. We used non-faulty builds for most applications, though gcc and exif used builds
with a known fault.
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Table 4.2: Relative compilation times. “–” marks compilations that did not complete
within 3 hours.

Statement Coverage Call-Site Coverage

Application None Dominators Local None Dominators Local

tcas 1.3 1.3 1.3 1.3 1.3 1.3
schedule2 1.4 1.4 2.0 1.3 1.3 1.3
schedule 1.4 1.4 5.1 1.3 1.3 1.5
replace 1.4 1.4 43.2 1.3 1.3 1.3
tot_info 1.3 1.3 14.2 1.3 1.3 1.4
print_tokens2 1.3 1.3 5.4 1.3 1.3 1.3
print_tokens 1.4 1.4 360.6 1.3 1.3 1.7
ccrypt 1.5 1.5 5.1 1.4 1.4 1.6
gzip 1.7 1.6 3,157.8 1.4 1.4 64.7
space 1.6 1.6 24.8 1.5 1.5 1.6
exif 1.5 1.5 22.2 1.5 1.4 12.3
bc 1.6 1.6 365.5 1.5 1.5 18.7
sed 2.0 1.8 – 1.5 1.5 3,744.4
flex 2.1 1.8 – 1.6 1.6 –
grep 1.9 1.7 – 1.4 1.4 12.1
bash 1.5 1.5 – 1.5 1.5 –
gcc 1.8 1.7 – 1.5 1.5 –

We exclude fully optimal coverage results from all experiments. Our MILP optimizer
based on Section 4.2.2 and Appendix B either exceeds our compilation time limit (3 hours)
or runs out of memory for all but the 3 smallest Siemens benchmarks; even these incur over
1,000× slowdown in compilation time over our baseline.

4.3.1 Optimization and Compile Time

For each version of each application, we first measured the wall-clock time to perform each
of our optimization approaches and instrument the program. These results are shown in
Table 4.2, relative to a base build with “clang -O3”: a value of 1.0 indicates no compilation-
time overhead. We built each application version at least three times, and divided by
base compilation time. We then took the geometric mean to aggregate across all versions
(to avoid over-representing specific versions). The “None” columns indicate compilation
overhead for instrumenting all i ∈ I for the selected option, that is, compilation time with no
optimization, as in Chapter 2. The “Dominators” columns show overhead for the dominator-
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based approximation from Section 4.2.3. The “Local” columns show overhead to obtain a
locally minimal solution. In all cases, we instrumented functions to gather local coverage
data; again, this correspond to optimizing instrumentation for the stack-local coverage array
cov from Chapter 2, Fig. 2.5.

The results are grouped into statement coverage results (gathered as basic block coverage)
and call-site coverage results. Without optimization, there is a cost of 1.3×–2.1× to compile
benchmarks for statement coverage. However, the dominator-based optimization is extremely
inexpensive, often saving time over full instrumentation. We believe that the extra cost results
from generating and inserting the required probing code. The overhead of locally minimal
optimization varies greatly between benchmarks. We find that large, complex functions take a
disproportionately long time to optimize. For example, gzip’s base compile time averages
under 2 seconds, but computing a locally optimal solution requires over 1.5 hours, dominated
by 3 functions that consume over 90% of the total time. As we discuss in Section 4.2.4,
the locally optimal approach has polynomial time complexity; however, the description in
Section 4.2.1 indicates that, in the worst case, we must consider all possible (α, β, d) triples in
order to prove that a particular S ⊆ I is a coverage set of our desired set D.

Restricting the set of desired blocks, D, reduces the number of (α, β, d) triples considered
by our locally optimal approach, and should reduce optimization time. Our call-site coverage
compilation results confirm this; we find substantially smaller compile-time overheads when
compiling for coverage only at call sites. For example, while gzip’s compile time increases
from 1.5 seconds to just over 2 minutes, this is far below the 3,000× increase we see for
optimizing statement coverage. These improvements allow us to compute locally optimal
solutions for two additional benchmarks (grep and sed). However, 3 benchmarks still do
not complete compilation, and sed exhibits a 3,744× slowdown; thus, scalability remains a
concern for our locally optimal formulation.

4.3.2 Static Probe Counts

We also gathered the total number of probes inserted by each approach, to examine the static
reduction in probe insertions for our optimizations. We took the arithmetic mean of probe
counts for different versions of each application. As in previous chapters, we also aggregated
results for all Siemens applications; probe reductions are very similar across all Siemens
benchmarks of non-trivial size.

Figure 4.8 shows results for statement coverage and call-site coverage. All bars are
scaled to 100% for no optimization to show how much relative reduction the locally optimal
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Figure 4.8: Coverage probe counts, scaled to 100% for no optimization.
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and dominator-based approximations achieve. Stacked bars indicate the percentage of the
unoptimized probes still included after the specified optimization. Numbers within each bar
are mean counts without scaling.

Figure 4.8a shows results for statement coverage. As noted in Section 4.2.3, since
I = D = X = V for statement coverage, our dominator-based approximation is equivalent to
the optimizations of Tikir and Hollingsworth [169] in this specific scenario. Those applications
that cannot be compiled within our time limit (“–” in Table 4.2) exclude locally optimal
results in the figure. Overall, probe reductions are substantial. The Siemens benchmarks
average 190 probes with no optimization, but just 120 probes with the dominator-based
approximation: 70 probes have been optimized away, on average. In relative terms, these
Siemens benchmarks have just 63% as many probes with dominator-based optimization as they
do with no optimization. Our locally optimal approach further reduces this count to 88 probes
on average, a reduction of 54%. As another example, the dominator-based approximation
reduces bc’s probe count by approximately 40% relative to unoptimized instrumentation. The
locally optimal approach further reduces the probe count, cutting the remaining probes to just
below half of the original set. Our dominator-based approximation is inexpensive, but still
reduces probe counts by over 40% on average. The locally optimal approach is substantially
more expensive (as seen in Table 4.2), but further reduces necessary instrumentation to just
44% of unoptimized instrumentation for completed benchmarks, on average.

The main thrust of our approaches, however, comes in their ability to optimize instrumen-
tation based on customized coverage requirements. Figure 4.8b presents results for call-site
coverage. Note that prior work cannot optimize coverage probes in this scenario. Here, the
unoptimized instrumentation set is much more selective; that is, absolute probe counts for
no optimization are much smaller. Reductions are also smaller across all benchmarks, but,
for most applications, we still see substantially less instrumentation. The dominator-based
approximation reduces probe counts by up to 28% (space), and averages a 15% reduction
across all benchmarks. The benefits of the locally optimal approach are very pronounced. For
those applications that completed local optimization, we see an average further reduction of
30% from the dominator-based approximation, with total reductions as high as 57% (space,
relative to unoptimized).

4.3.3 Dynamic Probe Counts

Next, we assessed the dynamic impact of our optimizations on run-time performance. Because
our optimization approaches are general (and could be applied to other techniques beyond
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csi-cc instrumentation), we first gathered the total number of probe executions at run time.
The goal of this experiment is to abstract from the cost of executing each individual coverage
probe, and instead focus on the reduction in total number of probe executions. As in previous
chapters, we ran each application through its corresponding test suite. We gathered the count
for each trial, and computed the percentage reduction for each level of optimization. We took
the arithmetic mean to aggregate across each complete test suite, and aggregated the resulting
values across all versions of each application (to avoid over-representing specific versions or
long-running test cases). We again aggregated results for the Siemens applications, which
exhibit similar run-time performance.

Figure 4.9 shows our results. All bars are again scaled to 100% for no optimization to
show how much relative reduction the locally optimal and dominator-based approximations
achieve. Mean counts without scaling are omitted due to space limitations in plots.

Figure 4.9a shows dynamic probe execution reductions for statement coverage. We
excluded one test case for gzip that exceeds our 1-hour timeout for extracting probe counts.
We also omit bash results, as bash’s test suite is highly sensitive to our probe-counting
infrastructure with dense statement coverage. Again, I = D = X = V , and our dominator-
based approximation is equivalent to Tikir and Hollingsworth [169]. For all of the applications,
even this approximation results in a substantial drop in overheads; in fact, all applications
lose at least 60% of their probe executions, while simultaneously shrinking compile time per
Table 4.2. ccrypt sees the largest reduction, executing just 39% of the unoptimized probe
count. Although expensive to compute, overhead reductions from further reducing probes via
the locally optimal formulation are sometimes substantial. For example, after the dominator-
based approximation reduces gzip’s probe executions by 43%, our locally optimal approach
removes more probes, reducing probe executions to just 37% relative to uninstrumented
code. Averaging absolute counts for gzip, the dominator-based approximation reduces probe
executions from just over 1,000,000 to 540,000, and the locally optimal approximation further
reduces this count to around 300,000. ccrypt is reduced to just 24% of the unoptimized count
via locally optimal optimization; in absolute terms, probe executions are reduced from over
24,000 to 6,300 on average. Of course, as mentioned earlier, this run-time performance may
come at a cost: gzip’s compile time increases from seconds to hours when moving to a locally
optimal solution. Overall, the performance of the dominator-based approximation is quite
impressive. Our locally optimal approach presents a significant trade-off: it does often remove
significantly more probes (see Fig. 4.8a), but at a very high compilation cost (see Table 4.2).
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Figure 4.9: Dynamic probe executions, scaled to 100% for no optimization.
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Figure 4.10: Run-time overhead with statement coverage

Figure 4.9b presents call-site coverage results. We exclude 10 (out of 1061) bash test cases
due to time-out. Here, unoptimized probe executions are much smaller, and reductions from
the dominator-based approximation are less pronounced. Nevertheless, some applications see
significant benefit. For example, exif and space both execute just 70% of the unoptimized probe
counts. For exif, optimization reduces absolute counts from over 27,000 to approximately
18,000. Our locally optimal approach, however, is very impressive. While some applications
see less benefit (e.g., gzip), many applications see enormous reductions. For example, bc and
ccrypt both reduce probe executions by 40% beyond the reductions of the dominator-based
approximation. In absolute terms, the locally optimal approach reduces dynamic probe
executions in bc from over 11,000,000 (no optimization) to approximately 6,000,000.

4.3.4 Running Time

The results from Figure 4.9 do not depend on probe costs, but real impacts on running time
depend on the cost to execute each probe. Recall from Chapter 2 that our in-memory coverage
instrumentation was already quite efficient, though our denser coverage mechanisms (statement
coverage in particular) had overheads that were too high for many deployed scenarios.
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We, therefore, measured execution times of each program’s test suite, computing overheads
relative to “clang -O3” as a baseline. Figure 4.10 shows results for statement coverage
optimization. Note that these results differ from those plotted for statement coverage in
Chapter 2, Fig. 2.6, as we use compiler optimization level “O3” here, while previous plots
showed results without compiler optimizations. For the larger benchmarks, we observe
significant reductions. Mean overhead for the non-trivial benchmarks shrinks from 7.2% to
3.6% using the dominator-based approximation. Although expensive to compute, the locally
optimal approach can provide substantial additional benefit. For example, the dominator-based
approximation reduces gzip’s overhead from 11.6% to 5.7%; our locally optimal formulation
reduces this further to just 3.4% relative to uninstrumented code.

For call-site coverage, we were unable to measure a significant difference in running
time due to our optimizations. This is surprising, given the reductions shown in Fig. 4.9b.
However, csi-cc in-memory binary probes are already quite fast, and the majority of our test
cases do not run long enough to exhibit large overheads. If we optimized instrumentation
for another tool where probes were more costly, we would expect much more pronounced
results. Furthermore, the larger numbers of probes used for statement coverage show a
correspondingly larger optimization benefit. Finally, as noted previously, there are other
advantages to reducing coverage instrumentation aside from run-time overheads. Notably, as
we find in Chapter 6, the density of failure report elements can have a significant impact on
the efficiency of postmortem analysis; thus, reducing redundant tracing has other downstream
benefits.

4.3.5 Discussion

For all results discussed in this chapter, we also assessed the statistical significance of our
findings. We conducted a Wilcoxon signed-rank test between test cases with each level of
optimization. For all results that show non-trivial differences in overhead, we find sufficient
evidence (p < 0.01) to reject the null hypothesis that our optimizations have no effect on the
metrics we gather for our programs. More specifically, we find that our results are statistically
significant (p < 0.01) for all static probe count and dynamic probe execution reductions,
as well as for each non-zero reduction in run-time overhead for statement coverage from
Fig. 4.10.

Overall, our results show that our optimization approaches can significantly reduce the
static and dynamic cost of customized coverage instrumentation. In light of its advantages
found in previous chapters, we specifically optimized csi-cc’s call-site coverage; this is an
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instance where prior techniques are unable to reduce necessary instrumentation, and where
(prior to optimization) the number of required coverage probes is already substantially reduced
from full statement coverage. Even so, our techniques reduce static probe counts by as much
as 57% (space in Fig. 4.8b), and dynamic probe executions by up to 55% (ccrypt in Fig. 4.9b).
Even when the absolute numbers are not large, these reductions should not be discounted:
these may be very important in deployed systems with real-time requirements, or to reduce
the size of failure reports for downstream postmortem analyses.

4.4 Threats to Validity

The threats to validity for our results are again similar to those in previous chapters. To
mitigate threats to external validity, we expanded our selection of benchmarks from previous
evaluations. However, all applications were still written in C (though our implementation in
csi-cc applies to C and C++ programs), so we cannot guarantee that our approaches will
produce similar results on more modern object-oriented languages. To apply our optimizations,
a client must provide a number of inputs, including: a set of desired basic blocks, a set of
instrumentable basic blocks, and a cost map for the program’s control-flow graph. This
last item, in particular, may be challenging to obtain in some contexts (and can never be
fully accurate with respect to all possible executions of a program); however, as we note in
Section 4.3, an inaccurate cost map can only limit gains in efficiency, and is never a threat to
correctness (i.e., will never cause our approaches to remove probes that are in fact necessary
to cover the desired set).

As in previous chapters, we are measuring very small overhead ratios for our test subjects,
and variance in our measurements is a threat to internal validity. As before, we ran all
experiments on a lightly-loaded machine, and ran many trials for each application. We do, in
fact, see some variance in our results (mostly in execution-time measurements); however, we
assessed the statistical likelihood of our results (see Section 4.3), and found that our measured
overhead differences are very unlikely to occur by chance (p < 0.01 for all non-trivial
reductions). While we have not formally proven the correctness of our implementations,
we did take steps to verify probe sets returned by each optimizer. We spot-checked a small
selection of results for each approach on the smaller benchmarks, and verified that we returned
valid coverage sets. The locally optimal approach is, by design, a coverage set verifier, so we
used it to verify sets returned from the fully optimal implementation and the dominator-based
approximation.
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4.5 Related Work

Closely related work optimizes placement of binarized coverage probes. Agrawal [4] optimizes
probes by forming “superblocks” from sets of basic blocks based on dominance and post-
dominance relations. Later, Agrawal [3] extends this work to interprocedural dominance
relations; Li et al. [105] and Xu et al. [185] extend these optimizations beyond superblocks.
Tikir and Hollingsworth [169] also optimize coverage probe placement via dominators, but
use a faster, simpler approach (and no post-dominance information) for online instrumentation.
Our approximation in Section 4.2.3 is inspired by many of these prior approaches. However,
because we support multiple crash points (via input parameter X), we cannot directly take
advantage of post-dominator information as per Agrawal [3, 4]. Furthermore, because we
allow customization of desired and instrumentable locations (via input parameters D and I,
respectively), we develop a generalization of these existing approaches, facilitating many
coverage optimization scenarios that are not supported by any prior work. Particularly for local
coverage data (i.e., without the transformation from Fig. 4.1b), dominance and post-dominance
relations do not capture the tightest coverage set definition from Definition 4.3; in essence, the
use of dominance information for coverage optimization assumesmultiple function executions
are possible. Thus, our approaches can optimize instrumentation more aggressively than any
prior work.

Binarized coverage only needs to observe each probed location one time: once a coverage
value becomes true, it stays true. Building on this insight, prior work optimizes coverage
gathering via dynamic insertion and deletion of probes [38, 85, 117, 118, 141, 169]. These
techniques are complementary to our own: we optimize where to insert probes, while such
techniques address how and when to insert probes. While they may be useful in conjunction
with csi-cc, note that these approaches can be somewhat more invasive. Specifically, all
such techniques require either a virtual machine or other run-time monitoring support to insert
or remove instrumentation dynamically. Kasikci et al. [85] achieve this monitoring through
extremely lightweight code breakpoints which remove the relevant instrumentation code when
triggered; such a minimally-invasive approach with low run-time cost may be an good match.

Many commercial tools gather program coverage over test suites (e.g., [20, 62, 74, 166]).
These tools gather complete program coverage, whereas our work allows a developer to focus
tracing to reduce overheads and/or limit possible instrumentation.

Prior work has optimized instrumentation to gather frequency counts of statements or
edges, often to identify program “hot spots.” Knuth and Stevenson [89] optimize frequency
counter placement for program statements, and Knuth [88] optimizes instrumentation for edge
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counts. Ball and Larus [21] formalize these classic approaches, and generalize the counting
problems for vertices and edges. While these classic approaches run in polynomial time, their
solutions cannot be used for binarized instrumentation: they rely on Kirchoff’s current law,
which does not hold of binarized indicators. Furthermore, while coverage data can obviously
be derived from count data, many use cases that we consider would not make use of the more
detailed count information. The cost of gathering counts is higher than the cost of gathering
coverage. In contexts where counts are not required, binarized coverage has a number of
advantages: (1) each probe is less expensive to execute, (2) each probe requires only one bit
of storage, whereas integers for counts require more storage and are susceptible to overflow,
(3) instrumentation is easily made thread-safe on all architectures, and (4) probes can be
removed after they are first triggered.

As noted at the start of this chapter, prior work reduces the run-time cost of gathering cov-
erage post-deployment by tracing a limited set of program entities. For example, Pavlopoulou
and Young [143] monitor coverage for code that remains uncovered by a program’s test
suite. The GAMMA project [31, 139] spreads coverage-gathering tasks across large user
communities to reduce the overhead burden of each individual tracing instance. In the terms
of this chapter, each individual entity only traces a subset of the overall desired set, D. Our
optimizations are directly applicable here, further reducing required coverage probes for each
deployed instance.

Prior work optimizes the set of test cases required to achieve a specific coverage criterion [4,
26, 113, 187]. Early approaches to test-suite minimization have much in common with
approaches to minimizing coverage probes. Most notably, these techniques can also make
use of dominance information to determine which test paths will achieve the same coverage
criteria. However, our problem is different in that desired coverage information must be
guaranteed for any run, rather than attained from a minimal set of runs.

Other work has developed the idea of relative coverage in the context of web services [24,
59, 116]. Our work can also facilitate customizing coverage metrics to context-dependent
targets, but deals with optimizing coverage probe placement rather than how to gather and
present this data to users of a web service.
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In this part, we describe new postmortem analysis approaches that operate on imperfect
failure data from deployed software. These approaches are realized in two analysis systems,
csi-spotlight and csi-grissom. Both of these analysis systems share some common
engineering and experimental design features that we describe here.

As in Part I, all experiments used a quad-core Intel Core i5-3450 CPU (3.10GHz) with
32GB of RAM running Red Hat Enterprise Linux 6. Subject applications are the same
as those used in Part I, Chapter 2, and are mostly from the Software-artifact Infrastructure
Repository [55, 154]. Some versions of our subject applications have multiple faults which
can be enabled separately; this results in substantially more total build variants for some
applications than in previous chapters. In all experiments, we only enabled one fault at a time.

All analyses obtain failure data from applications instrumented with csi-cc, using
various mechanisms described in Part I of this dissertation. All experiments use Clang/LLVM
3.5 [101] without compiler optimization, as unoptimized code is most conducive to debugging.
Our trace data is valid with optimization (and efficient, per Part I results); our analyses produce
correct data over optimized programs as well.

Recall from Chapter 2 that csi-cc traced data is stored in-memory, and, thus, is left
behind in core dumps produced when applications fail unexpected or are forced to abort. We
extract this data with a debugger (in our case: gdb [1]) based on the embedded metadata
pictured in Fig. 2.1. For test cases where core dumps were already produced, we used the
generated core file. If a test case produced bad output without crashing, we used the output
tracing tool of Horwitz et al. [73] to identify the first character of incorrect output, and forced
the application to abort at that point. This infrastructure results in a core dump containing
csi-cc trace data for each failing test case in the test suite of each fault for each version of
each application.
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5 active nodes, edges, and slices

Substantial portions of this chapter are derived from a 2013 conference paper by
Ohmann and Liblit [135], and a 2016 journal paper by Ohmann and Liblit [137].

When failures occur in production, detailed postmortem information is invaluable but
difficult to obtain. Based on any information available in a production failure report, developers
can benefit from postmortem analysis tools that help narrow debugging focus to relevant
portions of the failing program code. One major challenge in analyzing post-deployment
failures is sparsity in traced information. In fact, our tracing mechanism designs in Part I
were motivated by the fact that dense execution tracing is infeasible for deployed applications.
There, we took advantage of readily-available information in core memory dumps from
failing applications, enhancing this data with lightweight, customizable tracing. However,
our techniques were far from complete tracing. Thus, any postmortem analysis technique
targeting post-deployment failures must readily adapt to incomplete data in failure reports.

Ideally, a failure report would contain all information necessary to completely reproduce
the failing execution. Prior work with symbolic execution derives inputs and/or thread
schedules that match a failed execution [35, 36, 42, 78], and some of that work begins with
core dumps [153, 178, 193]. However, finding inputs for executions matching failure data
is undecidable in general, very computationally expensive, and may present other concerns
regarding user privacy (depending on data included in failure reports). Our analyses take a
different approach.

In this chapter, we present two analysis techniques that serve as preprocessing tools
for debugging based on post-deployment failure reports. These analyses specifically use
our lightweight path tracing and program coverage mechanisms presented in Part I, along
with stack information available in core dumps. Our first analysis technique determines the
set of potentially-executed control-flow graph (CFG) nodes and edges in any failing run
that could produce the input failure data. Our second analysis is a unique hybrid program
slicing restriction that narrows the set of statements that may have impacted the value of a
user-specified set of program variables during any run matching the failure data.

Our analyses are realized in the csi-spotlight analysis engine. We use this engine
to evaluate the postmortem analysis benefit of each of our tracing mechanisms (originally
described in Chapter 2); we examine each independently, and then we examine the “Realistic”
pairing described in previous chapters. We find that there are significant trade-offs between
tracing overhead and analysis benefit among our tracing mechanisms, but specifically highlight
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Figure 5.1: Overview of csi-spotlight. Sharp-cornered rectangles represent inputs
and outputs; rounded rectangles represent computations.

the benefits of our “Realistic” pairing of path tracing and call-site coverage; despite its low cost
(per Chapters 2 and 3), this pairing results in substantial reductions in execution ambiguity
via our analysis. In our evaluation, we see interprocedural slice reductions as high as 78%,
and active node and edge reductions as high as 71% for evaluated applications.

Figure 5.1 shows the csi-spotlight architecture, including how we use the artifacts
from csi-cc instrumentation. Note that the csi-cc design from Fig. 2.1 appears unmodified
in the top-left corner. Each other feature of this diagram is described in the remainder of this
chapter.
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5.1 Background

In this section, we provide necessary background for the analyses described in the remainder
of this chapter. Specifically, we briefly outline program slicing, which serves as the basis of
one of our analyses.

Program slicing with respect to program P, program point n, and variables V determines
all other program points and branches in P which may have affected the values of V at n.
The original formulation by Weiser [180] proposed the executable static slice: a reduction of
P that, when executed on any input, preserves the values of V at n. In this chapter, we are
concerned with non-executable or closure slices, which are the set of statements that might
transitively affect the values of V .

Ottenstein and Ottenstein [140] first proposed the program dependence graph (PDG), a
useful program representation for slicing. The nodes of a PDG are the same as those in the
CFG, and edges represent possible transfer of control or data. A control-dependence edge is
labeled either true or false and always has a control predicate or function entry as its source.
An edge n1 → n2 means that the result of the conditional at n1 directly controls whether n2

executes. (A node may have multiple control-dependence parents in the case of irregular
control flow such as goto, break, or continue statements.) A data-dependence edge is
labeled with a variable v, and has a variable definition at its source and a variable use at its
target. A backward static slice over a PDG with slicing criterion (n,V) contains the reverse
transitive closure from node n (and its predecessors along incoming data-dependence edges
labeled with some v ∈ V), following control-dependence and data-dependence edges.

Our definition of the system dependence graph (SDG), an interprocedural dependence
graph, is drawn from Horwitz et al. [72]. The SDG combines all PDGs, and adds a number
of new nodes and edges. Each call is now broken out into three types of nodes: a call-site,
actual-in, and actual-out nodes. (We treat globals as additional parameters, following Horwitz
et al. [72].) A special actual-out node is created for the return value. Each PDG is also
augmented with formal-in and formal-out nodes corresponding to formal parameters and the
return value, as well as global variables used or defined in the procedure. Interprocedural
control-dependence edges are added from each call site to the called procedure’s entry node.
Interprocedural data-dependence edges are added for all appropriate (actual-in, formal-in)
and (formal-out, actual-out) pairs, including the return value. Finally, summary edges
from actual-in to actual-out nodes are computed; these represent transitive data dependence
summarizing the effects of each procedure call. Details on the computation of these edges
can be found in Horwitz et al. [72].
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A static slice considers all possible program inputs and execution flows. While debugging,
one prefers a slice that is constrained to a particular execution. Korel and Laski [93] first
proposed dynamic slicing as a solution to dataflow equations over an execution history. We
are interested in closure dynamic slices similar to those proposed by Agrawal and Horgan [6].
The authors propose four variants of dynamic slicing, given a full trace of the CFG nodes
executed on a program run. The first variant simply marks all executed nodes, and performs a
static slice over that subset of the graph. The second recognizes that each executed node has
exactly one control-dependence parent and one reaching definition for each variable used in
the statement. Therefore, this variant slices using only dependence edges actually observed as
active during the execution. The third approach recognizes that different instances of each
node may have different dependence histories. Therefore, this approach creates a dynamic
dependence graph by replicating each statement each time it occurs in the execution trace,
attaching only the active dependence edges for that instance of the statement. Agrawal and
Horgan’s final approach only replicates nodes with unique transitive dependencies.

Dynamic slicing can be very expensive, potentially requiring data equivalent to a full
execution trace. To make matters worse, one must trace all memory accesses due to pointer
variables, arrays, and structures to have a completely accurate dynamic slice in the general
case [5, 94]. Kamkar et al. [83] reduce the cost of dynamic slicing by requiring only a
complete call trace of the analyzed run, while Zhang and Gupta [196] compact the size of
the dynamic dependence graph. However, despite these advances, the cost of fully-accurate
dynamic slicing remains too high for production use. Venkatesh [176] and Binkley et al. [28]
formalize the semantics of program slicing, and discuss the distinctions and orderings among
the different types of program slices.

5.2 Analysis Approaches

We develop two analyses that take advantage of our new tracing mechanisms from Part I of
this dissertation. Our first analysis restricts the feasible execution set of CFG nodes and edges
based on dynamic information from a failing run. Our second analysis builds on a novel static
program dependence graph restriction algorithm, which can be used without knowledge of
slicing criteria to allow future restricted static program slicing.

For both analyses, we assume that we are given an SDG that is also overlaid with the
control-flow edges in each procedure (as the PDG contains all nodes from the CFG by our
definition). In the remainder of this chapter, we refer to a graph with both CFG and PDG
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edges as a combined graph. Both analyses are defined with respect to csi-cc data collected
as per Chapter 2. For combined graph, G, we assume that this data has been extracted from
the core file and is named and organized as follows:

• stack = 〈frame1, frame2, . . . , framen〉: a representation of the stack at program termina-
tion. Each framei has the following fields:

– coverage = {n1: b1, n2: b2, . . . , n|coverage|: b|coverage|}: a mapping from trace points
to Boolean values. All ni are nodes in the combined graph for framei’s function,
and each bi indicates the value of the coverage bit (true or false) corresponding to
ni’s trace point from csi-cc instrumentation. A particular coverage mechanism
contributes entries to coverage only if it was actively traced on the failing execution;
optimized coverage instrumentation (e.g., via Chapter 4) only has entries for those
points that were actually instrumented.

– path = 〈p1, p2, . . . , p|path|〉: a vector of nodes from framei’s combined graph.
This vector indicates the execution suffix for this frame; in our case, this suffix
is gathered via the path tracing mechanism from Chapter 2. This vector always
contains at least one entry: either the final crash location (for the innermost frame
on the stack) or the location of the still-in-progress call to the next inner frame (for
all other frames), even if path tracing was not active in framei’s tracing scheme.

• globalCoverage= { f1: coverage1, f2: coverage2, . . . , f|globCov|: coverage|globCov|}: amap-
ping from each function in G to coverage maps as defined previously, regardless of the
state of the program stack. Boolean values in each coveragei indicate the value of the
global coverage bit (true or false); that is, they indicate whether the corresponding trace
point was ever executed across the entire failing execution. Trace points for a particular
coverage mechanism, m, over a particular function, fi, are contained in globalCoverage
only if m was in the selected tracing scheme for fi on the failing run. Hence, if some fi
had no coverage tracing enabled, its coveragei is empty.

5.2.1 Restriction of Execution Paths

Our first analysis determines the set of CFG nodes and edges which could not have executed
given the crashing program stack and tracing data collected. This analysis involves only
computing static control-flow graph reachability based on the path and coverage data. As
the analysis is very lightweight, it could be used before debugging to filter portions of the
program structure shown to a programmer.
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Procedure intra_active_nodes(G f , path, coverage)
input: a single-function combined graph G f

input: a vector of nodes path = 〈path1, . . . , path |path |〉 representing a path in G f

input: a mapping coverage = {n1: b1, n2: b2, . . . } from trace points in G f to Boolean
output: a set of nodes retain

coverage_reduce(G f , coverage, path |path |);
retain = path.nodes ∪ cfg_backward_reachable(G f , path1);

Figure 5.2: Intraprocedural active node analysis

Procedure coverage_reduce(G f , coverage, last)
input: a single-function combined graph G f

input: a mapping coverage = {n1: b1, n2: b2, . . . } from trace points in G f to Boolean
input: a node last representing the last executed node in f

unusedPoints = {ni such that (ni: false) ∈ coverage};
G f .nodes −= unusedPoints;
G f .nodes = cfg_forward_reachable(G f , f .entry) ∩ cfg_backward_reachable(G f , last);

Figure 5.3: Coverage reduction

Let P be a program with combined graph G. While the control-flow statements and
edges in G represent all possible control flows on any execution of P, they are a static
over-approximation of those active in any possible run of P. A full execution trace for a
specific run r can precisely yield the set of executed statements and edges in G. With this
information, one might reasonably restrict G to a subgraph Gr containing only the CFG nodes
and edges active during r, and use the restricted subgraph during debugging or subsequent
r-specific analyses.

If the complete execution trace is unavailable, but possible execution flows can be safely
over-approximated, then the graph Gr can likewise be approximated, giving a subgraph that is
larger than ideal, but still smaller than G. In our case, we have stack and globalCoverage as
defined above (based on path traces and program coverage data, as described in Chapter 2).
This trace data is incomplete and ambiguous: many runs can produce the same data. Our
goal is to use this trace data to determine the set of possibly-active nodes and the set of
possibly-active edges on any run that is consistent with the trace data.

Figure 5.2 shows the algorithm for intraprocedural active nodes analysis. This algorithm
determines all potentially-active nodes, indicated by the output set, retain. We first run the
procedure coverage_reduce() shown in Fig. 5.3. This procedure eliminates all trace points
in the function that were not executed in a particular activation record, as well as any other
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input: a whole-program combined graph G
input: a vector of frames stack
input: a mapping globalCoverage from functions to coverage maps
output: a set of nodes retain

forall ( f : coverage) in globalCoverage do
G f = fragment of G representing function f ;
coverage_reduce(G f , coverage, f .exit);

retain = ∅;
foreach frame in 〈stack |stack |, . . . , stack1〉 do

G′ = temporary copy of G restricted to frame.function;
retain′ = intra_active_nodes(G′, frame.path, frame.coverage);
retain ∪= retain′;

end_call = call node located at frame.path |frame.path |;
calls = {n ∈ retain′ such that n is a call};
if end_call < cfg_backward_reachable(G′, frame.path1) and
end_call < {frame.path1, . . . , frame.path |frame.path |−1} then
calls −= end_call;

foreach call in calls do
retain ∪= nodes interprocedurally forward-reachable from

call.target without crossing any return edges;

Figure 5.4: Interprocedural active node analysis

program points that could not have executed given that the trace points did not execute. The
procedure has two phases. First, it extracts the set of nodes that did not execute according to
coverage data, unusedPoints, and removes these from G f . Second, it determines the set of
nodes forward-reachable from function entry and the set of nodes backward-reachable from
the function’s end (in this case, the crash point). Any node not in the intersection of these two
sets either (1) only executes if an eliminated trace point executes or (2) only occurs after the
crash point. Then, continuing with Fig. 5.2, all nodes in the path trace must be kept, along
with any nodes backward-reachable from the first path entry (path1). All other nodes can be
eliminated. Though not shown, determination of active edges is identical; the only difference
is that we track edges crossed rather than nodes visited for each stage.

The interprocedural algorithm in Fig. 5.4 is largely an extension of the intraprocedural
algorithm, with some complexities to deal with stack data. We apply the logic from Fig. 5.3
to every procedure in the entire application, now using globalCoverage. After this, for each
frame on the stack, we execute the intraprocedural algorithm over a mutable copy of the
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procedure’s CFG, G′. This temporary copy is necessary because intra_active_nodes() will
remove nodes fromG′ via a call to coverage_reduce(), and the final result of the interprocedural
algorithm must respect the retain sets of all invocations of each procedure on the stack (in
the case of recursion) and all possible invocations through transitive calls. To incorporate
possible execution flows outside the visible stack, we collect the set of possibly-executed calls
(excluding the final call, end_call, corresponding to the crash location for the relevant stack
frame), and determine the set of CFG nodes that may have executed during those calls. This
set is determined as all forward-reachable CFG nodes from the entry of each called function.
This reachability analysis crosses call edges (to get full interprocedural information) but not
return edges (to preserve context-sensitivity). Instead, we assume that the intraprocedural
CFG contains an intraprocedural edge corresponding to the call and return for each call site.
As with the intraprocedural variant, gathering active edge information is nearly identical.
Here, an additional requirement is that we also maintain a set of possible return edges (which,
for this analysis, can be derived directly from the set of possible call edges). After all frames
have completed, we can eliminate nodes and/or edges which were eliminated for all frames
(i.e., were never added to retain).

5.2.2 Static Slice Restriction

Our second analysis is a novel technique for program dependence graph (PDG) restriction
based on an early dynamic program slicing algorithm originally proposed by Agrawal and
Horgan [6]. Note, however, that we are not actually computing a dynamic slice: during
analysis, the slicing criteria (program point and variables of interest) may not yet be known.
Rather, we restrict the static PDG to respect the failing execution data. This analysis can be a
preparatory step for multiple future slice queries for any given slicing criteria.

Let P be a programwith combined graph G. As with the CFG in Section 5.2.1, dependence
edges in G are a static over-approximation of those active in any possible run of P. Suppose
in this case that one knew exactly which control-dependence and data-dependence edges
were actually used during a specific run r . One might reasonably restrict G to a dependence
subgraph Gr containing only the dependence edges active during r, and use the restricted
subgraph during subsequent r-specific analyses. For example, a backward static slice over Gr

would yield an r-restricted dynamic slice for any program point of interest. This technique
corresponds to approach 2 in Agrawal and Horgan [6].

As in the CFG case, our path traces and program coverage data from Chapter 2 allow
us to over-approximate the exact set of dependence edges active in r, yielding a safe over-
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input: a single-function combined graph G f

input: a vector of nodes path = 〈path1, . . . , path |path |〉 representing a path in G f

input: a mapping coverage = {n1: b1, n2: b2, . . . } from trace points in G f to Boolean
output: a restricted version of G f with respect to path and coverage

coverage_reduce(G f , coverage, path |path |);
retain = intra_control_retain(G f , path) ∪ intra_data_retain(G f , path, ∅);
G f .pdg_edges ∩= retain;

Figure 5.5: Intraprocedural dependence graph reduction

approximation of the ideal Gr . Specifically, we compute a trace-restricted dependence graph
that retains every dependence edge that could possibly have been active in any run that is
consistent with the trace data.

For our formulations, we are given a combined graph, G, as defined earlier. In Figs. 5.6
to 5.8, “→” always refers to a control-dependence (not control-flow) edge, while “→v” refers
to a data-dependence edge defining v. For the high-level descriptions of the algorithms given
here, we collapse all actual-in and actual-out nodes into their associated call nodes for ease of
presentation.

5.2.2.1 Intraprocedural Restriction

Figure 5.5 shows the overall process of computing intraprocedural PDG restrictions, which
proceeds in several phases. This algorithm resembles that in Fig. 5.2 for active CFG nodes,
but determining active dependence edges is somewhat more complex. To begin, coverage
information is used to prune the reachable nodes in the combined graph per Fig. 5.3, described
earlier. Next, we identify the control-dependence and data-dependence edges that must be
retained. This process is more complex than simple reachability required for CFG nodes and
edges; details for each of control-dependence and data-dependence edges appear in Figs. 5.6
and 5.7, respectively. Lastly, we remove all dependence edges not selected for retention.

Figure 5.6 shows the process for determining the retained set of control-dependence edges.
The goal is to identify the immediate control-dependence parent of each node in path and each
node potentially executed prior to path. The vector unattributed holds path entries for which
the algorithm has yet to determine the most direct controlling node. The outer foreach loop
walks backward (beginning from the crash point) through the entries in path. The inner loop
begins with the entry immediately prior to the current node, again walking backward through
path. During this inner-loop search, if a node is encountered that controls the execution of
the outer-loop node, then the control-dependence edge between those nodes was “active” in
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Function intra_control_retain(G f , path)
input: a single-function combined graph G f

input: a vector of nodes path = 〈path1, . . . , path |path |〉 representing a path in G f

output: a set of nodes retain

unattributed = path;
retain = ∅;
foreach (n, i) in (path |path |, |path|), . . . , (path1, 1) do

foreach p in pathi−1, . . . , path1 do
if p→ n is a control-dependence edge in G f then

retain ∪= {p→ n};
remove slot i from unattributed;
break;

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→ n such that n ∈ reachable};
retain ∪= {q→ n such that q ∈ reachable ∧ n ∈ unattributed};

Figure 5.6: Intraprocedural control-dependence retention

the traced execution, and thus must be retained. Once such a node is found, the outer-loop
node has found its directly-controlling conditional; it is removed from unattributed and the
search for that node ends. After attributing control-dependence parents to as many path
entries as possible, the algorithm determines the set of nodes backward-reachable from the
first entry in the trace (path1). These nodes have no additional dynamic information: any
control-dependence edge from a reachable node could have been active in some run producing
this trace. Finally, all remaining unattributed nodes from path must retain all incoming
control-dependence edges from reachable nodes.

Determining the retained set of data-dependence edges, detailed in Fig. 5.7, follows a
similar process, albeit with some additions. Here, each node must determine active data-
dependence parents for each variable used at that node. The algorithm first determines which
variables must be defined and may be used by each node in the combined graph. For brevity
in presentation, mustDef and mayUse are computed as sets of (node, variable) pairs, but will
also be interpreted as mappings from nodes to sets of variables. Each entry of the unattributed
vector again corresponds to a node from the path trace, but now maps each node to a set
that tracks all unattributed variable uses at that node. The calleeExclusions parameter is
unused by the intraprocedural analysis. The nested loops step backward through path, as in
control-dependence retention. In this case, the outer loop finishes with a path entry only once
it has attributed each variable used (or potentially used, in the case of pointers) at that node.
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Function intra_data_retain(G f , path, calleeExclusions)
input: a single-function combined graph G f

input: a vector of nodes path = 〈path1, . . . , path |path |〉 representing a path in G f

input: a set of variables calleeExclusions unused at call site path |path |
output: a set of nodes retain

mustDef = {(n, v) such that n ∈ G f .nodes ∧ n must define v};
mayUse = {(n, v) such that n ∈ G f .nodes ∧ n may use v};
unattributed = 〈mayUse[pathi] for i in 1, . . . , |path|〉;
unattributed |path | −= calleeExclusions;
retain = ∅;
foreach (n, i) in (path |path |, |path|), . . . , (path1, 1) do

foreach p in pathi−1, . . . , path1 do
if unattributedi = ∅ then break;
if p→v n is a data-dependence edge in G f for some v ∈ unattributedi then

retain ∪= {p→v n};
if v ∈ mustDef [p] then

unattributedi −= {v};

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→v n such that n ∈ reachable};
forall (n, i) in (path1, 1), . . . , (path |path |, |path|) do

retain ∪= {q→v n such that q ∈ reachable ∧ v ∈ unattributedi};

Figure 5.7: Intraprocedural data-dependence retention

Otherwise, at each inner loop step, data-dependence edges are retained for any variables not
yet attributed. Summary data-dependence edges (from the appropriate actual-in to actual-out
nodes) should be added to retain whenever a call node is encountered. The path trace does not
contain data-flow information. Thus, in the case of pointers with multiple possible variable
targets, the analysis cannot be certain which dependence for v was active. Therefore, the
algorithm considers a used variable v attributed only if the source must always define v. Lastly,
we conservatively add all possible data-dependence edges to unattributed variable uses, much
as Fig. 5.6 did for control-dependence edges leading to unattributed nodes.

5.2.2.2 Interprocedural Restriction

Figure 5.8 gives the steps for interprocedural restriction. The formulation closely mirrors the
interprocedural slicing method given in Horwitz et al. [72], which is also later used to slice
over the restricted dependence graph. First, we use globalCoverage information to remove
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input: a whole-program combined graph G
input: a vector of frames stack
input: a mapping globalCoverage from functions to coverage maps
output: a restricted version of G with respect to stack and globalCoverage

forall ( f : coverage) in globalCoverage do
G f = fragment of G representing function f ;
coverage_reduce(G f , coverage, f .exit);

retain = ∅;
formals = ∅;
foreach frame in 〈stack |stack |, . . . , stack1〉 do

G′ = temporary copy of G restricted to frame.function;
call = call node located at frame.path |frame.path |;
coverage_reduce(G′, frame.coverage, call);
actuals = variables for actual arguments for call;
connected = {call→v f such that v ∈ actuals ∧ f ∈ formals};
unconnected = {v ∈ actuals such that � call→v _ ∈ connected};
retain ∪= connected;
retain′ = intra_control_retain(G′, frame.path) ∪ intra_data_retain(G′, frame.path, unconnected);
retain ∪= retain′;
formals = {formal such that formal→ _ ∈ retain′};

worklist = all call nodes n such that retain contains any intraprocedural dependence edge from n;
retain ∪= edges interprocedurally backward-reachable from worklist

without crossing any edges from calls to formal-ins;
G.pdg_edges ∩= retain;

Figure 5.8: Interprocedural dependence graph reduction

unexecuted trace points from each function, as well as any other nodes execution-dependent
on those program points.

Next we process each stack frame, beginning with the crashing function. This phase
identifies active dependence edges within and between stack procedures; transitive depen-
dencies from called (and returned) procedures are captured with summary edges. For each
frame, we create G′, a temporary subgraph of G containing only nodes from the frame’s
function. As with the active nodes analysis from Fig. 5.4, interprocedural restriction must
respect the retain sets of all possible invocations of each procedure. We then remove unused
trace points via a call to coverage_reduce(). At this point, we need to connect this frame to the
previous frame by retaining data-dependence edges from formal-in nodes to actual variables
from the call. For the innermost frame, this step has no effect. For other frames, connected
will contain those edges to formal-in nodes that correspond to (transitively) potentially-used
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formals in the previous stack frame; these must be retained. unconnected contains any actuals
not connected to a useful formal. Note that here the intraprocedural restriction algorithms
are used as subroutines. We now use the third parameter to intra_data_retain: the algorithm
does not consider unused actuals to be “unattributed,” as incoming data-dependence edges for
these variables were unused.

The final step of the algorithm retains dependence edges from transitive calls beginning
from the stack frames. A worklist is populated with all calls not corresponding to the crash
point in this frame. All dependence edges backward-reachable in the SDG from the worklist
nodes (including edges corresponding to function returns but excluding those corresponding
to function calls) must be retained. These edges correspond to transitive interprocedural
dependencies for previously-returned calls. The algorithm does not need to “re-ascend” to
calling procedures because summary edges are included in both phases.

5.2.2.3 Additional Considerations and Relationship to Dynamic Slicing

Slices over a restricted graph, like those of Agrawal and Horgan [6] and Horwitz et al. [72],
are closure slices. These over-approximate the set of statements that may have affected the
variable values at the chosen slice point, but are not necessarily executable or equivalent to
the original program.

Unlike Agrawal and Horgan, our dependence graph restriction algorithms are not actually
computing dynamic slices: they are not “slicing from” any particular program point. In fact,
one way to define our analysis is as partial-trace dynamic slicing from every point along our
execution suffix. The choice of static-slice criteria is orthogonal to this restriction. Every
static slice taken over the restricted graph is consistent with the trace data, modulo the loss
of accuracy (as in Agrawal and Horgan’s approach 3) when a node is executed multiple
times with different incoming dependence edges. Our dependence graph is static, so these
dynamically-distinct nodes are necessarily collapsed into one static node.

It would be possible for our algorithms to unroll all traced paths into the SDG and track
individual dependencies. This approach for a full execution trace produces what is known as
a dynamic dependence graph, and is equivalent to Agrawal and Horgan’s approach 3; our
approach would produce a partial-dynamic dependence graph. While it can yield smaller
dynamic slices, this approach also makes the SDG significantly larger and more complex to
understand. Despite advances in compressing dynamic dependence graphs (e.g., Zhang and
Gupta [196] and the final approach by Agrawal and Horgan [6]), graph sizes remain quite
large, increasing the time and mental effort for a developer to sift through graph data to find
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Table 5.1: Evaluated applications, ordered by size.

Application Description Variants Mean LOC

tcas Siemens 41 173
schedule2 Siemens 9 373
schedule Siemens 9 413
print_tokens2 Siemens 10 568
print_tokens Siemens 7 727
ccrypt Linux utility 1 5,280
gzip Linux utility 20 8,114
space ADL interpreter 34 9,563
sed Linux utility 31 14,314
flex Linux utility 53 14,946
grep Linux utility 19 15,460
gcc C compiler 1 222,196

a reasonable slice point. Thus, we do not work with dynamic dependence graphs for our
analysis results.

None of our tracing mechanisms from Part I track updates to memory locations as would
be necessary for fully-accurate interprocedural dynamic slicing [5]. This also means that we
restrict static data dependencies using only control-flow trace data. We accept a potential
loss of accuracy that comes with static alias analysis for globals and pointer variables when
crossing procedure boundaries.

5.3 Experimental Evaluation

We conducted experiments to assess the effectiveness of our algorithms and, in tandem, the
utility of the information from our tracing mechanisms described in Part I. Table 5.1 gives
details about our test subjects. These applications are nearly identical to those used to evaluate
our tracing mechanisms in Chapter 2, except that we exclude two Siemens subjects (replace
and tot_info) that exhibit significant issues in mapping failure data onto our combined graphs.
(We describe this process in upcoming Section 5.3.1.2.) As noted in the introduction to this
part of the dissertation, some applications have multiple versions and multiple faults which
can be enabled separately; the “Variants” column of Table 5.1 counts unique builds across all
versions and all available faults. Of the Software-artifact Infrastructure Repository subjects:
space contains real faults, sed contains both seeded and real faults, and the remaining subjects
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(the Siemens applications, flex, grep, and gzip) contain only seeded faults. ccrypt and gcc are
real, released versions with real faults.

Results presented in this section are aggregates across all versions, bugs, and test suites
of each application. In general, results vary little among builds of a given application; we
note any exceptions below. We also aggregate results for all applications from the Siemens
test suite to simplify presentation in figures. These are very small, simple applications, and
results indicate that they have similar results for our analyses. We note any exceptions in our
textual descriptions. All analysis runs in this chapter complete within 10 minutes, so we omit
analysis run times.

5.3.1 Analysis Implementation

This section describes details related to our implementation and evaluation of the analyses
described in Section 5.2 of this chapter.

5.3.1.1 Implementation Details

CodeSurfer 2.2p0 [14] produces our combined graphs. These match the SDG description
given in Section 5.1, and are overlaid with CFG edges. All CFG nodes (i.e., all nodes except
for those representing “hidden” formal and actual parameters such as global variables) have
associated source-code location information.

Our analysis implementation follows that given in Section 5.2. However, there we
simplified presentation by collapsing both global and local formals and actuals into their
associated call node. Formals and actuals are separate nodes in CodeSurfer SDGs, and our
analysis treats them separately; thus, retention can distinguish between used and unused
formal and actual parameters, the unconnected set (Fig. 5.8) is composed of nodes (rather
than variables), and summary edges exist from actual-in nodes to actual-out nodes (which are
relevant for intraprocedural analysis).

5.3.1.2 Sources of Ambiguity

We encountered a number of sources of ambiguity in our analysis framework. Note that
ambiguity in our results is expected: our tracing mechanisms from Part I intentionally
sacrifice full-trace detail to reduce run-time overhead. However, because we use two different
pieces of software (Clang and CodeSurfer) to determine statement locations for path trace
entries and coverage trace points, additional ambiguity from minor disagreements in program
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if (code != REG && !exp_equiv_p (p->exp, p->exp, 1, 0))

if (elt) elt = elt->first_same_value;

(a) Multiple expressions on a single line

if (GET_CODE (op) == CONST_INT
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)

p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
GET_MODE (arg1));

(b) Single statements across multiple lines

Figure 5.9: Examples of matching ambiguity

representations is inevitable. Much of the ambiguity in matching program locations stems
from the fact that line numbers are the smallest granularity at which we can reliably match
Clang AST nodes to CodeSurfer graph nodes. We also find disagreements in the selection
of line numbers to assign to particular program points. Naturally, our matching approach
must always be conservative with respect to our analyses to ensure that our results safely
under-approximate (but never over-approximate) the optimal reduction we can achieve.

We are generally unable to individually match different expressions occupying the same
source line, as Clang and CodeSurfer may break or order the expressions differently. This
means that the start, end, and size of expressions can differ, as well as the number of nodes
or operations involved. Consider the two code lines shown in Fig. 5.9a. In the first line,
the LLVM bitcode contains significantly more instructions than the number of expressions
in the CodeSurfer CFG (dereferences, the unary “!” operation, etc.). The ordering of the
actual parameters in the call to exp_equiv_p and evaluation of their expressions need not
correspond, so we also cannot count on an ordered many-to-one relationship.

This in-line ambiguity is particularly problematic for path traces and statement coverage
data, but also has a small impact on call-site coverage matching. For path traces, we handle
the ambiguity by matching each path trace entry with a set of nodes matching the given line
number (rather than a single node). This set can be refined based on existing CFG edges to
previous or from following entries in the trace; nevertheless, significant ambiguity is common.
Specifically, we are never able to distinguish paths through a single line, such as the if
statement given on the second line of Fig. 5.9a. Our analyses from Section 5.2 suffer further
from this problem because we often miss out on opportunities to remove a node from the
unattributed sets (Figs. 5.6 and 5.7) due to not knowing if an assignment definitely executes
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on a particular line. Ambiguity due to the matching of LLVM line numbers to CodeSurfer
nodes reduces the precision of our analysis in the correspondence and coverage stages of
Fig. 5.1. Statement coverage, similarly, cannot always distinguish between multiple basic
blocks that occur in the same line. However, as mentioned in Chapter 2, Section 2.2.2, the set
of called functions is also recorded for each basic block in our statement coverage metadata;
this can often help to distinguish blocks occurring purely within the same line. Call-site
coverage is unable to distinguish between calls to the same function on the same line.

Our tools must also grapple with statements that span multiple lines. This is because Clang
and CodeSurfer builds do not necessarily agree about whether to assign the line number(s) for
a statement or expression to the first line, last line, or (in CodeSurfer’s case) all relevant lines.
Figure 5.9b shows two examples of statements demonstrating this issue. This issue arises most
frequently with conditional expressions, ternary expressions, and calls. Actual parameters
(unless they contain other expressions that necessitate their own line number, such as another
call) tend to be assigned the line number of the call statement (which is usually either the first
or last line of the entire statement). Because of the great uncertainty in matching multi-line
expressions, we intentionally introduce ambiguity into the combined graph to safely match
Clang’s output. We collapse all line numbers within each set of nodes corresponding to a
multi-line expression into a single set, which we assign to all nodes of the expression. This
change impacts path traces, statement coverage, and call-site coverage. For path traces, this
collapsing further increases ambiguity regarding which expression each path trace entry refers
to on a particular line. For statement coverage, it necessitates that we only remove nodes for
which all trace points corresponding to that line have “false” as their coverage bit. For call-site
coverage, we must ensure that call nodes are only removed if they are either the only call site
on the line (for indirect calls), or the only call to the specified function (for direct calls).

Other intricate issues also necessitate some further minor introduction of ambiguity into
the combined graph. For example, LLVM 3.5 assigns the line number of the close of the
statement block (i.e., the closing “}” brace) to the conditional of a do–while statement.
Naturally, this character has no semantic value, so it will not appear in the CodeSurfer graph.
Thus, we must include all line numbers up to the most recent statement within the loop in
the set of line numbers for the loop-guard conditional. These changes, as well as changes
necessary for multi-line expressions, are referred to as the fix graph stage in Fig. 5.1. Finally,
in flex, gcc, and one version of grep, we had to modify one source-code line by eliminating a
line break at the start of an if statement that otherwise caused irreconcilable disagreement
between Clang and CodeSurfer line numbers.
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Unfortunately, this ambiguity is quite common in the applications we examined. In fact,
all four code lines from Fig. 5.9 are taken from one single function of gcc. Nevertheless,
our analysis results show that we can significantly reduce ambiguity in the failing execution
despite this ambiguity in our analysis framework.

5.3.2 Analysis Effectiveness

We evaluated the benefit of our analyses described in this chapter. We used core dumps
produced by each failing test case for each faulty application variant, and ran each of our
three analyses: active nodes, edges, and slices. For intraprocedural results, we ran each
analysis over every function on the stack that has at least one ambiguous branch on a path
from function entry to the crash point.

We also varied which tracing mechanisms were enabled. In all cases, the tracing
mechanisms specified were enabled for all functions in each application, without coverage
optimization per Chapter 4. Path traces are purely intraprocedural tracing; therefore, restricting
tracing to functions appearing in crashing stacks (the “Realistic” configuration from Chapters 2
and 3) does not result in any loss of information. As mentioned in Chapter 2, gcc has thirteen
functionswithmore than 263 acyclic paths that cannot be instrumented for path tracing; however,
all program coverage remains available for these functions. Due to memory constraints,
we were unable to gather complete analysis results for gcc. Specifically, we excluded six
gcc functions that we could not analyze on a 32GB RAM machine with our memory-based
analysis: assign_parms, expand_expr, fold, fold_truthop, rest_of_compilation,
and yyparse. gcc’s large size also prevented us from constructing the whole-program
combined graph. Therefore, we omit interprocedural analysis results for gcc.

5.3.2.1 Restriction of Execution Paths

The restriction algorithms in Section 5.2.1 can eliminate CFG nodes and edges that could
not possibly have been active during a given run. Figures 5.10 and 5.11 show results
(intraprocedural and interprocedural, respectively) for “active edges” as a percentage of all
CFG edges. We show only results for edges here, as “active nodes” show very similar patterns.
These numbers are relative to context-sensitive, stack-constrained, backward reachability,
indicated by the “None” bar. For the intraprocedural analysis, we count backward-reachable
nodes and edges from the frame’s crash point. For the interprocedural analysis, we work back
from the crash point of the innermost stack frame. Smaller numbers here are better: values
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Figure 5.10: Intraprocedural active edges

close to the “None” result indicate little reduction, while values closer to 0% mean that our
analysis eliminated many inactive edges.

Figure 5.10 shows intraprocedural results. Here, we measured the set of possibly-active
CFG edges as a percentage of all CFG edges in each stack frame’s function. As previously
stated, we ran our analysis over every function on the stack that has at least one ambiguous
branch on a path from function entry to the crash point. We first measured the reductions for
each tracing mechanism individually. Reductions for the smaller Siemens applications are
modest across all tracing mechanisms. Execution ambiguity is generally very low for these
applications due to the small size of most functions. Results for larger applications, however,
are much more impressive. Note that, by our analysis formulation from Section 5.2.1, function
coverage does not contribute to intraprocedural analysis (as all functions in the crashing
stack are clearly already executing). Our other three tracing mechanisms all perform well,
though complete statement coverage obtains the best results for all applications except sed
(which achieves a 1% better reduction with path tracing). The high cost of statement coverage,
however, motivates consideration of the “Realistic” scheme from Chapters 2 and 3: the
combination of path traces and call-site coverage. Results indicate that the two mechanisms are
complementary. For example, gcc sees an additional 20% reduction due to the combination.
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Figure 5.11: Interprocedural active edges

The realistic configuration is the optimal choice for all but two of the applications (ccrypt and
gcc), and averages 41% reduction, with a maximum reduction of 54% (sed), across the larger
applications. It achieves these reductions at significantly less tracing cost than statement
coverage, per results from Chapter 3, Section 3.3.

Figure 5.11 shows interprocedural results for active edges. Here, the plot shows the set
of possibly-active CFG edges as a percentage of all edges in the entire program (excluding
external libraries). Again, reductions for smaller applications are modest. There are, however,
some exceptions: one version of print_tokens sees an average 46% interprocedural reduction
in active edges. However, in general, as with intraprocedural analysis, execution ambiguity is
very low, often with only one stack frame besides main. Considering the larger applications,
however, results are again much more impressive. Some patterns are clear. Coverage data is
the dominating factor for interprocedural analysis. This is not surprising: coverage maintains
global-scope information not available to path tracing. However, path traces do still contribute
to the reduction for our “Realistic” result in all larger applications except space (which generally
has very little ambiguity within the failing stack). Comparing our coverage mechanisms,
it is clear that the coarse-grained global information provided by function coverage often
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still leaves a great deal of execution ambiguity that can be rectified by the finer-grained
coverage mechanisms. Statement coverage provides a clear benefit for some applications (e.g.,
flex, grep, and sed), but, for others, the reductions obtained for the inexpensive “Realistic”
configuration are comparable.

Overall, results for the combination of path tracing and call-site coverage are quite
impressive, with average reductions as high as 71% (ccrypt, interprocedural). Most applications
are uniform across versions, but versions of sed have active edge reductions ranging from
38%–66% in the intraprocedural case, and 51%–85% in the interprocedural case. space
versions vary from 9%–56% intraprocedurally and 6%–54% interprocedurally. In general, for
complex applications, we find that a stack trace alone leaves great ambiguity as to which code
was active. Our lightweight tracing mechanisms from Part I of this dissertation significantly
reduce this ambiguity with negligible impact on performance. Furthermore, our analysis is
able to derive substantial reductions in active nodes and edges, despite the imperfect data
traced by our mechanisms.

5.3.2.2 Static Slice Reduction

Our SDG restriction algorithms from Section 5.2.2 can compute a restriction of the static
SDG based on traced data. Per Section 5.2.2.3, the computed restriction is independent of
(and can be computed prior to selecting) the slicing criteria. For our evaluation, we compute
interprocedural static slices backward from the crash point in the innermost stack frame;
intraprocedural slices work backward from the crash point in each function in the crash stack.
In both cases, we slice for all variables used at the slice point. All interprocedural slices are
callstack-sensitive [29, 73, 96], using the approach from Krinke [96]. Results show, to a large
extent, very similar patterns to those for active edges.

Intraprocedural slicing results are shown in Fig. 5.12, where bars indicate the slice size
for each stack frame’s function as a percentage of all PDG nodes that have a source-code
representation (i.e., that map to a line number). Note that a line can have more than one node.
For example, for a call with multiple parameters, we count each actual parameter separately,
as some may be included in the slice while others are not. The “None” bar represents the
slice size for a backward static slice from the crashing location in each active stack frame
without the benefit of our dependence graph restriction. Smaller numbers are again better:
values close to “None” indicate little reduction in slice size, while values closer to 0% mean
that slices were much smaller with our restriction analysis than without. Smaller applications
again see less benefit. However, larger applications show much better results. Considering
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Figure 5.12: Intraprocedural slicing

each tracing mechanism individually, statement coverage again has the strongest results.
However, the combination of path tracing and call-site coverage again performs extremely
well, with the best results for all applications except grep (for which it lags behind statement
coverage by a mere 1.5% reduction). Intraprocedural slice reductions average 40% across all
larger applications, with a maximum reduction of 53% for gcc, the largest application in our
experiments.

Figure 5.13 shows interprocedural slicing results. Here, bars indicate the slice size as a
percentage of all SDG nodes in the entire program (excluding external libraries). The “None”
bar represents the slice size for a callstack-sensitive backward slice from the crashing location
without the benefit of our dependence graph restriction.

As in all previous cases, the Siemens applications see only a small benefit, though there
are some exceptions: one version of schedule has an average interprocedural slice reduction
of 73%, but the absolute slice sizes in this particular case are small, so the absolute ambiguity
is not large. Results improve substantially for larger applications, with interprocedural
slice reduction showing better results (53%–78% reduction, “Realistic” trace data) than the
intraprocedural variant. Coverage data is again the dominating factor in interprocedural
analysis. Here, however, the benefit of statement coverage over the combination of call-site
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Figure 5.13: Interprocedural slicing

coverage and path traces is much less pronounced. Even for grep (the application with the
largest discrepancy), statement coverage further reduces slice size by only 14% beyond the
realistic tracing scheme. Overall, the realistic scheme obtains the majority of the benefit of
statement coverage at a much lower cost. space is the only larger application with highly
varied results, ranging from 6%–46% intraprocedurally and 9%–62% interprocedurally.

Overall, the results for path traces and call-site coverage are again very impressive,
especially interprocedurally. Even for flex, the worst among the large applications, our
approach cuts interprocedural slice sizes in half. The best results, for ccrypt, show a 78%
reduction.

5.3.3 Discussion

Overall, our results indicate that our csi-spotlight analysis techniques can substantially
reduce ambiguity in the failing program’s execution using the lightweight, imperfect trace
data from Part I of this dissertation. Our slice restriction results are particularly interesting,
in that we are able to substantially reduce ambiguity in a program’s data flow using only
inexpensive control-flow trace data.
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There are clearly substantial trade-offs regarding coverage in our domain. While function
coverage has unmeasurably small overhead, its postmortem analysis benefit is often significantly
smaller than other options. Statement coverage comes at a high overhead cost, but is useful
where its cost can be tolerated. Call-site coverage provides most of the benefit of statement
coverage at significantly less cost; thus, it is likely the best choice in many real-world deployed
scenarios.

Recall that we previously hypothesized (beginning in Chapter 2) that path traces and
call-site coverage data would complement one another, as path traces densely trace near the
failure point within the active stack, while call-site coverage focuses tracing on calls: generally
the most significant point of ambiguity in interprocedural analysis. Our results in this chapter
support this hypothesis, and we see substantial reduction from this scheme, despite its low
tracing overhead cost. For interprocedural slice reductions, our most substantial result (78%
reduction for ccrypt) comes at a cost of only one half percent of execution time overhead
(per “Realistic” results in Chapter 3, Fig. 3.2). On average, we see an interprocedural slice
reduction of 63% for the larger (non-Siemens) applications by pairing path tracing and call-site
coverage; this reduction comes at an average run-time overhead of just 2.0%. Note that path
traces have the additional benefit of providing a detailed (though incomplete) partial trace
leading up to the point of failure. We further address the important question of presentation
for trace and analysis data in Chapter 7.

Overall, our goal was to show that postmortem analysis can adapt to (and significantly
benefit from) tracing mechanisms with low enough cost for production use. We have now found
success in both aspects of this goal via lightweight, customizable tracing and postmortem
analysis that adjusts to various levels of detail in postmortem data. Our “Realistic” scheme
proved widely applicable. However, if higher execution overheads can be tolerated, statement
coverage proved helpful for many applications. If execution constraints are tightened, simple
function coverage can still yield significant benefit in many scenarios.

5.4 Threats to Validity

As in previous chapters, we attempted to gather fair and generalizable results, but have not
formally proven the correctness of our analysis implementations. Here, we discuss threats to
the validity of our results, and measures taken to mitigate these risks.
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5.4.1 Threats to Internal Validity

As stated in previous chapters, bugs in our algorithm design or software implementation
could impact the correctness or accuracy of analysis results. We hand-verified a selection of
analysis results over our smallest applications, and added basic checks for consistency (e.g.,
agreement between intraprocedural and interprocedural results).

Section 5.3.1.2 notes changes we required in order to match static information between the
two tools we used for our analysis experiments. The intentional addition of this ambiguity into
our combined graphs makes our results a safe over-approximation of the optimal result, but
could impact the relationship between the results of different tracing methods. In particular,
it may have a larger effect on some tracing methods when compared with others. From
a subjective and cursory inspection, this ambiguity seems to impact our path traces most
significantly.

5.4.2 Threats to External Validity

We use the same subjects as experiments from previous chapters. As before, our results
may not generalize to all deployed software, and particularly to software written in modern
object-oriented languages (since all of our applications are written in C).

Many applications had seeded faults, raising typical concerns as to whether such faults are
realistic [144]. All applications include test suites with both failing and successful runs; we
distinguished these runs by comparing the result with that produced by a non-buggy reference
version of the same application. In real deployed applications, it may be more difficult
to identify failures or to obtain failing core dumps (either due to not recognizing failures
until later in execution, or due to security concerns). While this difference does not directly
impact the utility of our traced information, it could make it more difficult for a developer to
select appropriate functions for instrumentation/tracing, or impact the “distance” between the
failure and the fault. Longer fault-propagation distances likely increase the benefit of traced
information and analyses that can handle imperfect failure data, but the overall impact is not
clear from our lab experimental setting.

5.5 Related Work

Several prior efforts use symbolic execution to reconstruct execution information from
incomplete failure data [35, 36, 42, 78, 79, 153, 193]. Replay via symbolic execution can be
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very expensive and is undecidable in the general case; further, our analyses expect only very
limited trace data from a failing run, which makes full replay much more challenging. Our
analysis goal is also different: we present data valid for any execution producing matching
failure data, whereas replay techniques derive inputs for one complete execution that produces
matching data. We see related work on symbolic execution based on core dumps as possible
beneficiaries of the restriction analyses we perform.

Clause and Orso [39] track environment interactions for replay and minimization of failing
executions. While we do not incorporate environment trace data, this approach may provide
additional valuable sources of information that could be used in conjunction with the analyses
described here. Manevich et al. [112] use backward dataflow analysis to reproduce failing
executions based on only a failure location and typestate information regarding the failure.
While efficient, this approach is geared toward solving specific typestate problems with simple
types (e.g., tracking NULL values for null-pointer dereferences). Our approach uses denser
information, but targets a wider range of failures: anything that can be made to dump core.

Gupta et al. [67] compute slices within a debugger; ordered break points and call/return
traces restrict the possible paths taken. While Gupta et al. focus on interactive debugging, our
approach is intended for deployed applications. This focus imposes different requirements,
leading to different solutions. We expect run-time tracing with minimal overhead relative
to a completely uninstrumented application, not merely relative to an application running in
an interactive debugger. Gupta et al. use complete break-point and call/return traces, while
we have only the bounded trace data from Part I of this dissertation. Takada et al. [163]
offer near-dynamic slicing by tracking each variable’s most recent writer. All of our tracing
mechanisms gather control-flow data; in the presence of pointers and arrays, lightweight
dynamic data-dependence tracing in the style of Takada et al. could be a useful addition.
However, dataflow tracing is expensive, and would need to be adapted for deployed use: the
authors report a 3.4× increase in execution time. Call-mark slicing [129] marks calls that
execute during a given run, then uses this information to prune possible execution paths,
thereby shrinking static slices. The first phase of our interprocedural slice restriction algorithm
uses a similar strategy. However, we support a wider range of trace data: global coverage
information as well as segregated coverage and path trace information for each stack frame.
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6 answering control-flow queries

Substantial portions of this chapter are derived from a 2015 workshop paper by
Ohmann et al. [132] and a 2017 conference paper by Ohmann et al. [130].

When programs crash at user sites, traced data inevitably results in an incomplete picture
of any failing execution; tracing must balance run-time costs with benefits for debugging and
postmortem analysis. This incompleteness is present not only for our tracing mechanisms
from Part I of this dissertation, but for other post-deployment monitoring techniques as
well [25, 44, 85, 135, 139, 143, 170].

While our analyses from Chapter 5 proved effective in reducing execution ambiguity
and slice sizes based on csi-cc trace data, they cannot directly take advantage of other
constraints from existing and future tracing tools. Furthermore, the active nodes, edges, and
slicing analyses tackle specific analysis tasks, and cannot answer general user-or-tool-specified
queries about the failing execution. However, obtaining answers to questions about the failing
run is a key part of debugging. LaToza and Myers [99] find that developers commonly ask
reachability questions, often based entirely on the program’s control flow. For example,
developers asked about possible transitive function callers/callees and possible calling contexts.
Additional cases might arise when debugging deployed applications. If developers suspect
missed initialization, they might ask, “Is it possible that init() did not run?” or, “Could x
have been used here before being initialized there?” Developers might also ask whether an
application has set the appropriate privilege level, locked appropriate resources, or opened
appropriate streams. Some queries may be non-interactive (e.g., a batch analysis job that runs
overnight), similar to the analyses from Chapter 5. Such analyses could allow time for precise
answers, since users are not directly waiting for an answer to a single query. Other questions
may be interactive (e.g., during an active debugging session), and require very fast answers.

In this chapter, we develop an analysis framework that allows developers to ask yes/no
control-flow questions (e.g., may a particular statement have executed on the failing run?), and
answers whether the query is Possible or Impossible based on failure report data. We formalize
and evaluate three different underlying solvers that present trade-offs in expressiveness for
failure constraints, precision in analysis results, and scalability. The first of these is very
expressive and precise, and accepts any failure constraints or user queries that can be defined
as symbolic visibly-pushdown automata (s-VPA) [47]. However, this solver has substantial
analysis costs for large programs and/or failure reports. Our second solver is based on symbolic
finite automata (s-FA) [174, 175], and supports constraints and queries defined as regular
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languages. For our final solver, we define a new class of subregular languages, the unreliable
trace languages, that are particularly suited to answering control-flow queries in polynomial
time. We also describe encodings for our csi-cc trace data for each of our solvers, along with
various other common features of failure reports, including stack traces and call sequences.

Our framework is realized in the csi-grissom analysis engine. We evaluate our
techniques by extracting best-effort program coverage data (labeling each program statement
as “Yes,” “No,” or “Maybe”) based on different granularities of csi-cc failure report data.
Experimental evaluation shows that there are substantial trade-offs in analysis efficiency and
precision. Notably, we find that we can answer a broad class of queries remarkably efficiently
when encoding all failure constraints and user queries as unreliable trace languages.

6.1 Example

This section describes the structure of csi-grissom using the illustrative example given in
Fig. 6.1. Section 6.3 defines each shown element more formally.

The left side of Fig. 6.1 shows a source code skeleton and its corresponding control-flow
graph (CFG). This is a somewhat more complex example than that used in previous chapters.
Here, each node refers to a statement in the program, solid lines refer to intraprocedural
control flow, dotted lines indicate calls, and dashed lines denote returns. Call and return edges
are labeled with the call site and the called procedure. The CFG includes three procedures:
main consists of nodes {A, B,C,D, E, F,G}, foo consists of {H, I, J,K, L}, and bar consists
of {M, N}. Upon receiving a failure report like the one at the top of Fig. 6.1, we allow a
developer to pose queries like the one shown on the right of Fig. 6.1.

The example failure report contains two elements: a failing stack trace (the program
crashed at statement N in function bar, which was called from function foo at statement J,
etc.), and a single log message from the failing run. For the purposes of this example, assume
that we have statically determined that the message “Processed” could only be printed by
either statement B or C. Note that our system is far less bound to csi-cc data specifically,
in comparison to our analyses from Chapter 5. In Section 6.6, we discuss how to encode
the elements shown in Fig. 6.1, the various types of csi-cc trace data from Part I of this
dissertation, and other common failure report elements.

The right end of Fig. 6.1 shows a user query as prose. We formally define our class of
queries in Section 6.3. In brief, we allow any control-flow query that can be expressed as a
visibly-pushdown language [12]. Our system answers the query with respect to the provided
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CFG and failure report. That is, queries implicitly begin with: “On at least one path through
the CFG consistent with the failure report, . . . .”

In each of our approaches, we first encode the CFG, each failure report element, and the
query as formal languages whose member strings correspond to sequences of statements and
call/return edge labels from the CFG. If the intersection of all of these languages is non-empty,
then there exists such a sequence that (1) could occur in the CFG, (2) is consistent with the
entire failure report, and (3) satisfies the query. Thus, we respond that the query is Possible.
Otherwise, we answer Impossible. An imprecise solver may always answer Possible to a
query. In Fig. 6.1, a precise solver should answer Impossible, as there is no path through the
CFG that passes through node E before resulting in the final crashing stack. The example
contains neither loops nor recursion, and statement E must always follow the return from the
in-progress call to foo seen in the stack trace. Thus, a precise solver will ensure that the
language of the CFG respects calling context by matching labels on call and return edges
(simulating a program stack).

Our three analysis approaches in this chapter vary in the machinery used to implement
this high-level strategy. Specifically, the languages for each element are encoded differently
by each technique, and, therefore, the methods of computing intersections and checking for
language emptiness differ as well.

6.2 Background and Definitions

In this section, we provide necessary background and definitions for the approaches described
in the remainder of this chapter. We first provide formal definitions for CFGs and program
traces, which we use to define our context-sensitive and context-insensitive query recovery
problems. We then review the automata models we use for our first two analysis approaches.

We begin by defining a tagged alphabet. Given a set of symbols S, we use (S to
denote the set of open symbols {(s for all s ∈ S} and )S to denote the set of close symbols
{)s for all s ∈ S}. The tagged alphabet of S is the set Ŝ = S ∪ (S ∪ )S.

6.2.1 Control-Flow Graphs and Program Traces

Our definition of a control-flow graph in this chapter is more rigorous than those used in
previous chapters. This is because we represent interprocedural flow through calls and returns
(unlike the intraprocedural analysis of Chapter 4), and require a formal semantics for program
traces (unlike Chapter 5, which built upon existing dependence graph representations).
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Definition 6.1. A control-flow graph (CFG) is a tuple G = (N, n0,L, Ei, Ec, Er) where:
• N is a finite set of nodes;
• n0 is the entry node;
• L is a finite set of function names;
• Ei ⊆ N × N is a set of internal (intraprocedural) edges;
• Ec ⊆ N × (N × L) × N is a set of function-call edges, such that
for every (n, (n1, α), n′) ∈ Ec, n = n1; and

• Er ⊆ N × (N × L) × N is a set of function-return edges.

In the following, we say that G operates over N and L. Concretely, all edges in Ec are of
the form (n, (n, α), n′) denoting that control transfers from node n to n′ through a call identified
by function α. Notice that the call site is also part of the edge label. Similarly, edges in Er are
of the form (n, (n1, α), n′) where control transfers from node n to n′ through a function return
from α called from site n1. In the CFG from Fig. 6.1, edges are annotated with the calling
node, subscripted by the called function label from L for brevity.

Let E = Ei ∪Ec ∪Er denote the set of all edges. We define the semantics of a control-flow
graph G using configurations over N×(N × L)∗, where G is in configuration c = (n, 〈l1 · · · lk〉)
if the current node is n and the call stack contains the labels l1 · · · lk where each lm ∈ N × L.
The initial configuration is c0 = (n0, ε) where ε is the empty stack. A sequence of edges
π = 〈e1 · · · e j〉, where all e_ ∈ E , forms a valid context-sensitive path in the CFG, G, iff there
exists a sequence of configurations 〈(n0, l̄0) · · · (n j, l̄ j)〉 such that for every i ≥ 1:

1. If ei ∈ Ei and ei = (v, v′), then ni−1 = v, ni = v′, and l̄i−1 = l̄i;

2. If ei ∈ Ec and ei = (v, (v, α), v′), then ni−1 = v, ni = v′, and l̄i = l̄i−1 ◦ (v, α);

3. If ei ∈ Er and ei = (v, (v1, α), v′), then ni−1 = v, ni = v′, and l̄i−1 = l̄i ◦ (v1, α).

Informally, a valid context-sensitive path only allows return edges to be triggered for the last
unmatched function call. This definition allows paths to terminate at any node reachable from
n0, and in configurations that contain a non-empty stack, i.e., with pending function calls.

A sequence of edges π = 〈e1 · · · e j〉, where all e_ ∈ E , forms a valid context-insensitive
path in G iff there exists a sequence of configurations 〈n0 · · · n j〉 such that for every i ≥ 1:

1. If ei ∈ Ei and ei = (v, v′), then ni−1 = v, ni = v′;

2. If ei ∈ Ec and ei = (v, (v, α), v′), then ni−1 = v, ni = v′;

3. If ei ∈ Er and ei = (v, (v1, α), v′), then ni−1 = v, ni = v′.
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Informally, a valid context-insensitive path does not force function calls and returns to be
well-matched, effectively not distinguishing between Ei, Ec, and Er .

Definition 6.2. Define the projection proj(〈e1 · · · e j〉) of a path as 〈n0 proj(e1) · · · proj(e j)〉,
where for each edge, e:

proj(e) =


v′ if e ∈ Ei and e = (v, v′)

(v,αv′ if e ∈ Ec and e = (v, (v, α), v′)

)v1,αv
′ if e ∈ Er and e = (v, (v1, α), v′)

Informally, the projection of a path is the sequence of CFG nodes, calls, and returns traversed
by the path. Formally, it is a sequence over the tagged alphabet �N ∪ (N × L).

For the remainder of this chapter, we use NL to denote the alphabet N ∪ N × L and N̂L to
denote the alphabet �N ∪ (N × L).

Definition 6.3 (Traces). Let G be a CFG. Given a valid context-sensitive path π in G,
proj(π) ∈ N̂L is a valid context-sensitive trace in G. Given a valid context-insensitive path π
in G, proj(π) ∈ N̂L is a valid context-insensitive trace in G. Ls(G) and Li(G) denote the set of
all context-sensitive and context-insensitive traces in G, respectively.

The following theorem is immediate from our definitions and shows that every context-
sensitive trace is also a context-insensitive trace.

Theorem 6.4. For every CFG G, Ls(G) ⊆ Li(G).

6.2.2 Symbolic Automata

Symbolic visibly-pushdown automata (s-VPAs) describe languages of nested words over large
or infinite alphabets [47]. Nested words are linear encodings of words with hierarchical
structure, such as traces of procedural programs. An s-VPA operates over a tagged alphabet,
Σ̂, and manipulates a stack. The s-VPA pushes onto the stack only when reading symbols in
(Σ, and pops only when reading symbols in )Σ.

This partition of symbols is a visibly-pushdown alphabet, since it instructs the automaton
on how to manipulate the stack: call symbols push onto the stack, while return symbols pop
from the stack (similar to function calls and returns in a program trace). A nested word over
the alphabet Σ is a sequence of symbols from Σ̂∗. To avoid explicit transition on all possible
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symbols, s-VPA transitions carry predicates describing sets of symbols from Σ. The set of
predicates must be closed under Boolean operators, and checking satisfiability of a predicate
must be decidable [47]. We let PX represent the set of predicates in our algebra with free
variables X . For example, if our alphabet is the set of integers {1, . . . , 100}, the predicate
ψ(x, y) = (x , y ∧ x ≤ 10 ∧ y ≥ 5) is in Px,y. In this chapter, we use the algebra where
predicates are unions of intervals over integers, and we allow equalities between variables.
Concretely, each symbol in our alphabet—e.g., a node in the CFG—is mapped to a unique
integer. This algebra has all of the required properties above.

The class of visibly-pushdown languages recognized by s-VPAs maintain some of the
expressiveness of context-free languages (including the ability to express matched calls and
returns), but with important properties of regular languages. In particular, they are closed
under intersection [12]. (Recall from our informal problem description in Section 6.1 that we
check intersection-emptiness for the languages of our CFG, failure report, and query.)

Definition 6.5. A symbolic visibly-pushdown automaton is a tuple A = (Q, q0, P, F, Σ, δi, δc, δr)
where:

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• P is a finite set of stack symbols,
• F ⊆ Q is the set of final (i.e., accepting) states,
• Σ is a set of input symbols,
• δi ⊆ Q × Px × Q is a finite set of internal transitions,
• δc ⊆ Q × Px × Q × P is a finite set of call transitions, and
• δr ⊆ Q × Px,y × P ×Q is a finite set of return transitions.

A transition (q, ϕ, q′) ∈ δi, where ϕ(x) ∈ Px , when reading a symbol a such that ϕ(a) is
true, starting in state q, updates the state to q′. A transition (q, ϕ, q′, p) ∈ δc, where ϕ(x) ∈ Px ,
and p ∈ P, when reading a symbol (a such that ϕ(a) is true, moves from state q to q′ and
pushes the symbol (p, a) on the stack. A transition (q, ϕ, p, q′) ∈ δr , where ϕ(x, y) ∈ Px,y, is
triggered when reading an input )b, starting in state q, and with (p, a) ∈ P × Σ on top of the
stack such that ϕ(a, b) is true; the transition pops the top stack element and moves to state q′.

A run of A is a sequence of configurations over Q × (P × Σ)∗, where A is in configuration
c = (q, 〈(p1, σ1) . . . (pk, σk)〉) if the current state is q with stack 〈(p1, σ1) . . . (pk, σk)〉. The
initial configuration is c0 = (q0, ε) where ε is the empty stack. An accepting run for A is
defined similarly to valid context-sensitive paths through a CFG. Informally, an accepting run
is a sequence of configurations where transitions match return symbols to the most recent
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unmatched call symbol, and where all predicates on transitions are satisfiable. A nested word,
w, is accepted by A iff there exists an accepting run for w in A. We use L(A) to denote the set
of all words accepted by A.

In the figures and descriptions of this chapter, we largely follow the style of D’Antoni
and Alur [47], and label transitions “I: ϕx ,” “C: ϕx/p,” and “R: ϕx,y/p” for Internal, Call, and
Return respectively. Here, ϕx denotes a unary predicate on the input symbol x (for internal
and call transitions), while ϕx,y denotes a binary predicate (for return transitions) with y as
the current input symbol and x as the input symbol for the matched call transition. For calls
and returns, p is the pushed or popped stack symbol.

An s-VPA that contains only internal transitions is a Symbolic Finite Automaton
(s-FA) [174, 175]. An s-FA can still operate over alphabet Σ̂ for a set of symbols Σ
and not use a stack. An s-FA that operates over a finite alphabet accepts a regular language.
Regular languages can be recognized by (non-symbolic) finite state automata (FSA). All
alphabets in our formulations are finite; thus, we use the terms s-FA and FSA interchangeably
when describing our approaches, though our implementation (see Section 6.8) uses FSAs.

6.3 Problem Definition

In this section, we formally define our query recovery problem in two variants (context-sensitive
and context-insensitive) which impact the problem complexity and precision of results. We
use the word “constraint” to describe a language. A constraint C is s-VPA-definable (resp.
s-FA-definable) if there exists an s-VPA (resp. s-FA) AC such that L(AC) = C. Concretely, we
will always provide constraints as effective models such as automata or regular expressions.

The inputs of our problem are:

• G, a control-flow graph

• {FP1, . . . ,FPn}, a set of s-VPA-definable failure constraints describing the failure report.
These can be given in various forms such as s-VPAs, s-FAs, or regular expressions.

• R, an s-VPA-definable query constraint describing a property we want to check against
our failure report. For example, per Fig. 6.1, we might want to ask whether the node E

was traversed, given our failure report.

Definition 6.6 (Context-sensitive recovery). Given a control-flow graph G with nodes in N

and labels in L, a set of s-VPA-definable failure constraints {FP1, . . . ,FPn} of nested words
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over the alphabet NL, and an s-VPA-definable query constraint R of nested words over the
alphabet NL, the context-sensitive query recovery problem is to check whether

Ls(G) ∩
⋂

i

FPi ∩ R = ∅.

If we assume that Ls(G) is s-VPA-definable, then the query recovery problem is clearly
decidable, as we can use known algorithms [47] to check intersection-emptiness over the
provided set of s-VPAs. In Section 6.4, this procedure forms our first analysis approach,
coupled with a description of how we encode CFGs as s-VPAs. Sadly, this approach has
high computational complexity (as detailed in Section 6.4), and we also consider a friendlier
alternative.

Definition 6.7 (Context-insensitive recovery). Given a control-flow graph G with nodes in N

and labels in L, a set of s-FA-definable failure constraints {FP1, . . . ,FPn} of words over the
alphabet N̂L, and an s-FA-definable query constraint R of words over the alphabet N̂L, the
context-insensitive query recovery problem is to check whether

Li(G) ∩
⋂

i

FPi ∩ R = ∅.

This definition only uses s-FAs. Again, if we assume that Li(G) is s-FA-definable, then we
can clearly solve our problem using known intersection-emptiness algorithms for s-FAs [48].
This constitutes our second analysis approach in Section 6.4, coupled with a description of
how we encode CFGs as s-FAs.

As one might expect, any solver for the context-insensitive query recovery problem can
be used to provide an unsound but complete algorithm for the context-sensitive problem.
Observe that a nested word over the alphabet NL is also a word over the alphabet N̂L. The
proof then follows naturally from our definitions and Theorem 6.4:

Theorem 6.8. Given

• a control-flow graph G with nodes in N and labels in L,

• a set of s-VPA-definable failure constraints {FP1, . . . ,FPn} of nested words over the
alphabet NL, and

• an s-VPA-definable query constraint R of nested words over the alphabet NL,
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if {FP′1, . . . ,FP′n} and R′ are s-FA-definable languages of words over the alphabet N̂L, such
that for all i, FPi ⊆ FP′i and R ⊆ R′

Li(G) ∩
⋂

i

FP′i ∩ R′ = ∅ =⇒ Ls(G) ∩
⋂

i

FPi ∩ R = ∅

Proof. Assume, to demonstrate a contradiction, that Li(G) ∩
⋂

i FP′i ∩ R′ = ∅, but Ls(G) ∩⋂
i FPi∩R , ∅. This assumption implies that there exists a wordw ∈ N̂L

∗
such thatw ∈ Ls(G),

w ∈ FPi for all i, and w ∈ R. Since, for all i, FPi ⊆ FP′i and R ⊆ R′, we have that w ∈ FP′i
for all i, and w ∈ R′. From Theorem 6.4, we know that Ls ⊆ Li; therefore w ∈ Li. Hence,
w ∈ Li(G) ∩

⋂
i FP′i ∩ R′, which means that this set cannot be empty: a contradiction. �

The choice of including or excluding context-sensitivity in the query recovery problem
partly depends on the types of constraints provided. For example, consider a selection of the
example queries given at the start of this chapter. Constraints involving whether an application
was executing at the appropriate privilege level during a failure would be s-VPA-definable,
but not s-FA-definable, if the privilege is established by the calling context (e.g., by a function
such as doPrivileged()). However, s-FA are perfectly capable of expressing the query “Is
it possible that init() did not run?” where calling context is not necessary. There are also
computational-complexity implications for including context sensitivity, as we note while
describing our first two analysis approaches in the following section.

6.4 Two Automata-Based Analyses

Our first two analysis approaches, described in this section, answer queries by directly checking
intersection emptiness of automata. Recall from the previous section that, since all other
problem input is definable as automata by assumption, we need only describe our encoding of
CFGs into each form of automata. We consider two encodings of a control-flow graph, G (from
Definition 6.1), as an automaton. The first preserves calling-context sensitivity by encoding G

as an s-VPA. Due to the complexity of checking intersection-emptiness for s-VPAs, we also
consider a second approach that encodes G as an s-FA. The s-FA encoding cannot ensure
calling-context sensitivity, reducing precision but improving scalability. Our encodings are
similar to those from prior work in model checking to encode transition systems [10].

We also briefly comment on the computational complexity of our analyses, which is
based on our choice of CFG encoding and the encodings of constraints provided. Table 6.1
summarizes our complexity results, including a novel result of polynomial-time complexity
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Table 6.1: Complexity of the best knownalgorithm for computing intersection emptiness
for various classes of languages

s-VPA s-FA UTL
Context-Sensitive CFG EXPTIME EXPTIME EXPTIME
Context-Insensitive CFG EXPTIME PSPACE [95] PTIME

for a new subclass of regular languages, the unreliable trace languages, described in the next
section of this chapter.

6.4.1 Symbolic Visibly-Pushdown Automata

Given a CFG, G = (N, n0,L, Ei, Ec, Er), we can perform a straightforward translation of the
edges in G to transitions in an s-VPA, A = (Q, q0, P, F, Σ, δi, δc, δr), that accepts nested words
over alphabet NL. We begin by introducing final states for each node in the CFG; that is, for
every n ∈ N , n ∈ Q and n ∈ F. Then, we introduce a unique initial state q0, and

q0
I:x=n0−−−−−→ n0 ∈ δi

For each (n1, n2) ∈ Ei,

n1
I:x=n2−−−−−→ n2 ∈ δi

For each (n1, (n1, `), n2) ∈ Ec,

n′2 ∈ Q

n1
C:x=(n1,`)/0−−−−−−−−−→ n′2 ∈ δc

n′2
I:x=n2−−−−−→ n2 ∈ δi

For each (n1, (nc, `), n2) ∈ Er ,

n′2 ∈ Q

n1
R:x=y=(nc,`)/0−−−−−−−−−−−→ n′2 ∈ δr

n′2
I:x=n2−−−−−→ n2 ∈ δi

States and transitions in A match the nodes and edges of G, plus one additional state and
transition for each return site and each procedure entry. These additional transitions allow us
to express failure report constraints and queries over procedure entries and return points.

Figure 6.2 shows the s-VPA encoding for the CFG from Fig. 6.1. Note that our construction
has a somewhat unusual translation for stack symbols: our CFG automaton has exactly one
stack symbol (“0”) for the entire program, and instead relies on equality predicates on return
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I : x = A

I : x
=
B

I : x
=
C

I : x
=
E

C: x
=
C foo/0

I : x = D

I : x
=
E

I : x = F
C: x = Fbar/0

I : x = G

I : x = H
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=
I

I : x
=
J

I : x
=
L

C
: x
=
Jbar /0I : x = K

I : x
=
L

R: x
=
y
=
C

foo /0

I : x = M

I : x = N

R
: x
=
y
=
J ba

r/
0

R: x = y = Fbar/0

Figure 6.2: s-VPA encoding for the CFG from Fig. 6.1

transitions for calling-context sensitivity. Perhaps the most intuitive encoding would use
one stack symbol per call site, simulating addresses pushed onto a program’s run-time stack.
However, standard product-set constructions for s-VPA intersection [48] can generate an
exponential increase in stack symbols; we briefly examined this intuitive encoding (see
Section 6.8), but found that it was much less efficient in practice. We similarly minimize
unique stack symbols when encoding failure report elements; we describe these in Section 6.6.

We have now described how we encode Ls(G) as an s-VPA. Since the context-sensitive
query recovery problem fromDefinition 6.6 requires that all the languagesFPi and R are s-VPA-
definable, the problem is now trivially solved; we answer Impossible if Ls(G)∩

⋂
i FPi∩R = ∅,

and Possible otherwise. However, this process is expensive. Intersection emptiness for s-VPA
can be solved in exponential time. Moreover, since reachability is known to be co-PTIME,
it is unlikely that a PSPACE algorithm exists for computing s-VPA intersection emptiness.
Table 6.1 thus lists this complexity for any recovery problem using at least one s-VPA.

6.4.2 Symbolic Finite Automata

Given a CFG, G = (N, n0,L, Ei, Ec, Er), our translation to an s-FA, A = (Q, q0, F, Σ, δi), is
again a straightforward enumeration of the edges in G; in this case, however, our translation
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Figure 6.3: FSA encoding for the CFG from Fig. 6.1

results in a calling-context-insensitive representation of G, since we are unable to express
call/return pairing relations. Here, A accepts words over N̂L. Our translation is essentially
identical to that given in Section 6.4.1, except that call and return transitions are instead
replaced by internal transitions on the corresponding tagged symbol from N̂L.

Recall that an s-VPA containing only internal transitions over a finite alphabet recognizes
a regular language, which can be recognized by a (non-symbolic) FSA. We omit the “I: x =”
prefix on transitions in all context-insensitive automata figures. Figure 6.3 shows the FSA
encoding for the CFG from Fig. 6.1.

This translation encodes Li(G) as an s-FA, completing the input for the context-insensitive
query recovery problem from Definition 6.7; our analysis answers Impossible iff Li(G) ∩⋂

i FPi∩R = ∅. Since our alphabet, N̂L, is finite, the intersection emptiness problem for s-FAs
has complexity PSPACE [95]. In our evaluation, we find that we can answer context-insensitive
queries more efficiently, though large numbers of constraints still cause performance issues.

In the following section, we describe a new algorithm that can solve the context-insensitive
query recovery problem in polynomial time when all the languages FPi and R fall in a
restricted class of languages called unreliable trace languages (UTL). Table 6.1 summarizes
these complexity results.



120

6.5 Unreliable Trace Languages

This section introduces a new class of subregular languages: the unreliable trace languages.
The class is so named because the accepted languages correspond with traces of observed
program points that are “unreliable” in that they do not guarantee that we have seen every
instance of each observed point. Section 6.5.2 gives a polynomial-time algorithm for checking
intersection-emptiness of the language induced from a context-insensitive CFG with n

unreliable trace languages. Our approach does not encode the CFG and failure constraints as
automata (as we did in Section 6.4); instead, our analysis operates directly over the CFG and
tests for intersection-emptiness over context-insensitive traces as in Definition 6.3.

6.5.1 Formal Characterization

For an alphabet Σ, unreliable trace languages are of the class

UTL =
{
Σ
∗ σ1 Σ

∗ σ2 Σ
∗ . . . Σ∗ σn Σ

∗ for n ≥ 0 and such that all σi ∈ Σ
}

So, for example, the unreliable trace language (defined over Σ = N̂L from Fig. 6.1)

Σ
∗ M Σ∗ L Σ∗ M Σ∗

indicates that accepted strings must contain an M at some point before an L which itself
precedes another occurrence of M. However, other occurrences of M or L may occur at
any point before, during, or after this sequence. Note that we can represent an unreliable
trace language by a vector of symbols from Σ; the above example corresponds to the vector
〈M, L, M〉. The remainder of this chapter uses this compact vector notation.

The unreliable trace languages are a sub-class of the piecewise-testable languages [146,
159], which can be characterized as anyBoolean combination of unreliable trace languages [87].
While very restricted, unreliable trace languages are able to expressmany possible failure report
elements, including program coverage data from csi-cc and other sources [85, 139, 143, 170],
as well as sampled observations [107]; with some loss of precision, they can also encode
many other common failure report elements, including csi-cc path traces (see Section 6.6).

Unreliable trace languages are closed under concatenation, but not under other Boolean
operations such as negation, complementation, conjunction, and disjunction. Unfortunately,
there are constraints that cannot be expressed (even imprecisely) as unreliable trace languages.
For example, they cannot express disjunction. Thus, the printed log message from Fig. 6.1
is inexpressible since the CFG node that printed it is ambiguous. The property of PTIME
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n1 n4 n5

n2 n3 n6 n7

n8

n9

n11 n10

n1.nodes = {A} n7.nodes = {J}
n2.nodes = {B} n8.nodes = {(Jbar}
n3.nodes = {C} n9.nodes = {D, E, F,K, L, M,

N, (Fbar, )Cfoo, )Jbar}
n4.nodes = {(Cfoo} n10.nodes = {)Fbar}
n5.nodes = {H} n11.nodes = {G}
n6.nodes = {I}

Figure 6.4: Condensation of the CFG from Fig. 6.1

decidability for our context-insensitive recovery problem (see Definition 6.7) is tightly tied to
this language class. In Appendix A.2, we consider two natural extensions of UTL that would
allow us to precisely encode a larger class of failure report elements; we prove that both result
in NP-hard recovery problems.

6.5.2 Checking Emptiness

We check intersection-emptiness directly over the program’s context-insensitive CFG, G

(from Definition 6.1), and do not encode Li(G) using automata. Our input consists of:
• G = (N, n0,L, Ei, Ec, Er), a control-flow graph;
• crash ∈ N, the stopping point in the innermost stack frame from the failing run; and
• constraints = 〈c1, . . . , cm〉, a vector of UTL constraints where each ci is a vector over

N̂L. These constraints correspond to each FPi and the query, R, from our problem input
in Section 6.3.

We answer Possible if there exists a context-insensitive trace in G, proj(π), such that
proj(π)|proj(π)| = crash and each ci is a subsequence of proj(π) (i.e., Li(G) ∩

⋂
i(ci) , ∅).

Otherwise, we answer Impossible.
We first split all labeled edges in G, adding a new node named from the tagged symbol of

the split edge label, forming graph G′. For the example CFG from Fig. 6.1, this results in
6 new nodes: (Cfoo , (Fbar , (Jbar , )Cfoo , )Fbar , and )Jbar . We then collapse all strongly-connected
components of G′ to form the condensation of G′, sccG. Note that sccG is always a directed
acyclic graph (DAG). Each node of sccG is labeled with its set of collapsed nodes. Figure 6.4
shows the condensation for the CFG from Fig. 6.1.
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〈〈B, F〉 , 〈C, E〉〉

〈〈F〉 , 〈C, E〉〉 〈〈B, F〉 , 〈E〉〉

〈〈〉 , 〈C, E〉〉 〈〈F〉 , 〈E〉〉 〈〈B, F〉 , 〈〉〉

〈〈〉 , 〈E〉〉 〈〈F〉 , 〈〉〉

〈〈〉 , 〈〉〉

⊥

= >

Figure 6.5: Example lattice for UTL emptiness analysis

Intuitively, our goal is to walk forward through G, consuming symbols from each vector
in constraints in order as we cross the corresponding nodes and edges. If every vector in
constraints has been completely consumed on some path to crash, then we have found a
possible execution that is consistent with the program and failure report. Shifting our attention
from the original CFG, G, to the condensation graph, sccG, has two key effects. First, passing
through a nontrivial condensation node scc consumes all scc.nodes symbols appearing in the
unconsumed prefix of any constraint. This technique is valid because each node in a nontrivial
strongly-connected component can reach all other nodes in the same component as often as
we like. Second, the lack of cycles in sccG means that if we do not consume some symbol
when passing through the corresponding node, we will never have any future opportunity to
do so. Thus, we proceed greedily: consume as many symbols as possible, as early as possible,
because we will never get the chance to do so again.

More formally, checking intersection emptiness for Li(G) from Definition 6.3 (i.e., the
context-insensitive CFG language) with a set of unreliable trace language constraints (given
as vectors per Section 6.5.1) can be cast as a standard iterative data-flow analysis problem over
sccG, with one caveat related to the definition of ourmeet (u) operation. The data-flow facts are
vectors of vectors over N̂L, forming a finite lattice where the maximal element> = constraints,
and there exists a unique minimal element ⊥ that indicates that the provided constraints are
Impossible to satisfy. The second smallest element is the vector of m empty vectors, which
indicates that all constraints have been satisfied. Elements are ordered such that f1 v f2 iff
for all i, f1i is a trailing substring of f2i (i.e., f2i = v q f1i for some vector v where “q” is
vector concatenation). Informally, this indicates that fact f1 has consumed more of each initial
constraint than f2 has. Figure 6.5 shows an example lattice for constraints = 〈〈B, F〉 , 〈C, E〉〉.
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Function consume(scc, inFact)
input: scc, a node from the condensation graph
input: inFact, the input fact from the predecessors of scc as a vector of vectors over N̂L

(indicating remaining constraints)

outFact = 〈〉;
foreach constraint ∈ inFact do

start = 1;
while constraintstart ∈ scc.nodes do start++ ;
if start > 2 and scc is trivial then return ⊥ ;
outFact q=

〈
〈constraintstart . . . constraint |constraint |〉

〉
;

return outFact
Figure 6.6: Update constraints satisfied by consuming as much of each constraint as
possible

The standard [123] data-flow equations for a node scc are

in(scc) =


Init if n0 ∈ scc.nodes/
P∈Pred(scc)

out(P) otherwise

out(scc) = Fscc(in(scc))

Instantiating this for our particular problem,

Init = constraints

f1 u f2 = merge( f1, f2)

Fscc(in(scc)) = consume(scc, in(scc))

Figure 6.6 shows function consume(). This function iterates through each element of the in-
put vector, marking as many observations as possible as being now satisfied by passing through
this strongly-connected component of sccG. For example, consume

(
n9,

〈
〈E〉 , 〈F, E, F,G〉

〉)
returns

〈
〈〉 , 〈G〉

〉
. Trivial strongly-connected components may only consume one element of

each constraint vector, because paths through G may only traverse that node once. Note that
no later information can ever invalidate prior satisfaction of a constraint.

Figure 6.7 shows function merge(). Given a pair of input facts, this procedure selects the
minimal fact via our definition of v above. That is, it finds the fact that is an element-wise
trailing substring of the other. If neither fact qualifies, then the provided constraints are
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Function merge(f1, f2)
input: f1, a data-flow fact as a vector of vectors over N̂L
input: f2, a data-flow fact as a vector of vectors over N̂L

assert |f1| = |f2|;
if ∀i ∈ 1 . . . |f1|, f1i = αi q f2i for some αi then

return f2
else if ∀i ∈ 1 . . . |f2|, f2i = αi q f1i for some αi then

return f1
else return ⊥ ;

Figure 6.7: Merge information from predecessor facts

mutually unsatisfiable, and we return ⊥. Since sccG is a DAG, this situation indicates that no
possible path through sccG can satisfy all constraints, because each symbol from N̂L appears
in at most one strongly-connected component. For example,

merge
(〈
〈B, F〉 , 〈C, E〉

〉
,
〈
〈F〉 , 〈C, E〉

〉)
=

〈
〈F〉 , 〈C, E〉

〉
merge

(〈
〈F〉 , 〈C, E〉

〉
,
〈
〈B, F〉 , 〈E〉

〉)
= ⊥

Note that merge() is not precisely the meet (u) operation for our lattices, like the one shown
in Fig. 6.5. There, 〈〈F〉 , 〈C, E〉〉 u 〈〈B, F〉 , 〈E〉〉 = 〈〈F〉 , 〈E〉〉, while merge() returns ⊥.
We thus stop immediately upon encountering mutually-unsatisfiable facts. This differs
from standard data-flow analysis, but it is correct for our problem: we want to recognize
discrepancies in constraint satisfaction, rather than abstracting to a state where both are
satisfied. Furthermore, merge() is not associative; for example, per Fig. 6.5 and Fig. 6.7,

merge
(
merge

(〈
〈〉 , 〈〉

〉
,
〈
〈F〉 , 〈〉

〉)
,
〈
〈〉 , 〈E〉

〉)
= merge

(〈
〈〉 , 〈〉

〉
,
〈
〈〉 , 〈E〉

〉)
=

〈
〈〉 , 〈〉

〉
merge

(〈
〈〉 , 〈〉

〉
,merge

(〈
〈F〉 , 〈〉

〉
,
〈
〈〉 , 〈E〉

〉) )
= merge

(〈
〈〉 , 〈〉

〉
,⊥

)
= ⊥

We return to the issue of associativity later in this section.
The design of both the consume() andmerge() functions crucially relies on a “now-or-never”

principle. Three key observations underly this principle: (1) UTL constraints only encode
what did happen during the failing execution, and never encode what didn’t happen; (2) each
symbol from N̂L appears in at most one node of sccG; and (3) sccG is acyclic. Recall that
the goal is to find a path satisfying as many constraints as possible. Thus, while running
consume() on a given node, scc, from sccG, we must consume as many symbols as possible
from each constraint vector now (i.e., at scc), or we will never get the chance to do so again
(because no symbol in scc.nodes appears in any other strongly-connected component, and
sccG is acyclic). Furthermore, any time merge() encounters incomparable data-flow facts, it
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can be certain that no future consume() call will ever fully satisfy all of the constraint vectors
for both facts. Again, future satisfaction is impossible because sccG is acyclic, so each node
in sccG is only visited (i.e., passed to consume()) once along any path. For example, looking
to Fig. 6.4, note that the constraints 〈B〉 and 〈C〉 are unsatisfiable. To satisfy these constraints,
our analysis would need to find a path through sccG containing both n2 and n3; no such path
exists, and we would discover this point while running merge() on incoming facts for n9.

Note that our data-flow analysis is operating over a DAG; therefore, we topologically order
the nodes in sccG and only compute the data-flow fact for each node once. Thus, we will
need to perform merge() and consume() at most once for each strongly-connected component.
Suppose that S is the number of nodes in sccG, C is the size of constraints, and L is the
length of the longest constraint vector in constraints. In the worst case, merge() operates on a
number of predecessor facts on the order of S (all nodes in sccG), each of which contains C

constraints of length L. We can process all predecessors in one merge() operation, which
will find a predecessor vector that is an element-wise trailing substring of all others. This
operation requires a linear scan over S predecessor facts, each with C constraints, each of size
L; this operation thus requires S × C × L total comparisons. Next, the call to consume() for
a given strongly-connected component, scc, must find the first element of each c ∈ C that
is not a member of scc.nodes. In the worst case, each constraint still contains L elements,
so this operation requires C × L set-membership checks. Thus, merge() and consume() are
each polynomial in the size of sccG, constraints, and the longest constraint vector. Since we
perform at most S calls to each, the whole approach is polynomial.

Recall that merge(), as defined in Fig. 6.7, is not associative. Fortunately, for any
strongly-connected component, scc, we can always select scc’s predecessor that satisfies
the most constraints by processing all of scc’s predecessors in one operation, as mentioned
earlier. Furthermore, if we process sccG in a topological order, as previously suggested, the
“now-or-never” principle (which relies on the fact that each symbol from N̂L appears in at most
one strongly-connected component) ensures that we can never encounter a situation where
any pair of predecessors of a strongly-connected component have incomparable data-flow
facts, but there nevertheless exists a path through sccG that satisfies all constraints.

For the final result, we answer Possible if there exists some scci such that out(scci) is
the vector of empty vectors (i.e., all constraints have been satisfied) and crash ∈ scci .nodes.
Otherwise, we answer Impossible. For partial correctness proofs (including a proof of
soundness with respect to Definition 6.7), see Appendix A.3.
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6.5.3 Constraint Negation

As stated previously, unreliable trace languages are not closed under negation in general.
However, for single-element UTL vectors, we can support negated constraints using the
emptiness procedure outlined in the previous section. Note that a single-element constraint,
〈n〉 (for some n ∈ N̂L), asserts that symbol n must occur at least once in any valid context-
insensitive trace over G. To negate this constraint, we must ensure that n occurs in no valid
traces over G. The simplest way to accomplish this goal is to remove n’s corresponding node
or edge from G. This removal effectively modifies Li(G), rather than adding an additional
constraint into the constraints vector. Note that we must modify G prior to the construction
of sccG, because removing a node or edge could change the structure of strongly-connected
components in G.

This property of negation does not extend to UTL generally. Specifically, negating a
constraint with more than one element corresponds to subtracting sub-paths from G (rather
than nodes or edges); thus, the same approach to removing nodes and edges from G does
not apply in the general case. For example, we cannot negate the constraint 〈C, E〉 over the
example CFG from Fig. 6.1 by removing either node C or node E (or, in fact, any combination
of edges) from the graph, because doing so would also remove some valid context-insensitive
paths from Li(G). In fact, Gabow et al. [63] show that the closely-related “impossible pairs
constrained path problem” is NP-complete. (This problem, given a CFG, G, and a set of pairs
of nodes over G, finds a path through G containing at most one node from each pair.) For
both automata-based approaches from Section 6.4, the formal language classes are closed
under negation, and, hence, negating any constraint is trivially possible. We further discuss
encodings for single-element constraints (which are used to encode program coverage data) in
Section 6.6.2.

6.6 Encoding Failure Reports

We now describe how to encode csi-cc trace data and other common failure report elements
as s-VPA, FSA, and unreliable trace languages. Each failure element supplies a constraint
that limits which runs can be consistent with the failure. All elements are defined over a CFG,
G = (N, n0,L, Ei, Ec, Er). Unless stated otherwise, all FSA constraints are identical to their
s-VPA counterparts but with all transitions internal over N̂L.
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I: true

C: true/0

C: x = Cfoo/1

R: x = y/0

C: true/1
R: x = y/1

I: true

I: true

C: true/0

C: x = Jbar/1

R: x = y/0

C: true/1
R: x = y/1

I: true

I: true

C: true/0

I: x = N

R: x = y/0

C: true/1
R: x = y/1

I: true

(a) Represented as an s-VPA
Σ

Cfoo

Σ

Jbar

Σ

N

(b) Represented as an FSA

Figure 6.8: Encodings of crashing stack [Cfoo, Jbar, N] as automata

6.6.1 Crashing Stack

Many failure reports include a stack trace at the point of failure, including core dumps prior to
enhancement with csi-cc tracing. A crashing stack trace consists of a sequence of symbols

[`0, `1, . . . , `n, crash]

where each ì ∈ N × L and crash ∈ N . Each ì indicates a call that remains on the program
stack at the time of the failure. Note that we require call edge labels (rather than call sites
from N) because even calls through function pointers are unambiguous when the call remains
on the final crashing call stack. Intuitively, a stack trace constrains the ordered, unmatched
calls on any corresponding execution. Concretely, we represent this constraint as

L(stack) =W `0 W `1 W . . . `n W crash

whereW corresponds to a “well-matched” region of execution (corresponding to the rest of
the program’s execution between the calls that appear in the crashing program stack).

Automata For visibly-pushdown languages, W perfectly encodes matched sequences of
calls and returns. Accepted runs end with unmatched calls exactly matching those in the
final crashing stack. Figure 6.8a shows the s-VPA encoding of the example crashing stack
from Fig. 6.1. Note that here we again minimize stack symbol usage (as we did for CFG
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encoding in Section 6.4.1). In this case, we require two symbols, 0 and 1. Whenever a 0
symbol is on the stack, we are in an “unmatched” state, and must match returns with all call
transitions pushing 1 symbols before returning to a well-matched state based on the final call
stack. Regular languages cannot express matched call/return sequences, so we replaceW with
a simple Σ∗ self-loop. Figure 6.8b shows the corresponding FSA for our running example.

Unreliable Trace Languages The FSA encoding of stacks very nearly expresses an unreli-
able trace language. The corresponding unreliable trace language is

〈Cfoo, Jbar, N〉

This vector does not directly encode that execution must halt after reading N as the final
symbol. Instead, this is managed via the parameter crash in Section 6.5.2. This difference
does not impact the precision of results.

6.6.2 Statement Coverage

Some production-run failure reports may include statement coverage data. For example,
our csi-cc instrumentation from Part I of this dissertation gathers coverage data at various
granularities, both globally and within stack frames. Other tools allow developers to gather
coverage data for untested code [139, 143]. Like our csi-cc data, some tools gather
coverage at limited program locations (e.g., call sites) to aid analysis tools but pay lower
tracing cost [67, 129]. Binarized statement coverage data consists of a set of independent
observations, where each is a binary indicator (valued true or false). So, for example,

{s1: true, s2: false}

indicates that statement s1 executed at least once during the failing run, and statement s2

did not execute. Note that this characterization precisely matches extracted csi-cc data
for local coverage maps and global globalCoverage maps per Section 5.2. We impose one
constraint for each covered or uncovered statement. For our current encodings, we only
use globalCoverage data for our interprocedural analysis; local coverage maps are used for
intraprocedural analysis over single-function CFGs.

One could encode false entries via an automaton similar to that in Fig. 6.9a. However,
note that this automaton simply ensures that s2 appears in no accepted strings (representing
paths through the CFG). Thus, in practice, we use a much simpler approach, and remove s2

from the CFG prior to encoding other failure constraints.
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C: true/0
R: true/0
I: x , s2

(a) Encoding of “s2: false”

C: true/0
R: true/0

I: true
I: x = E

C: true/0
R: true/0

I: true

(b) Encoding of “E: true”

Figure 6.9: Encodings of coverage data entries as s-VPAs

Automata For “s1: true”, we must ensure that any accepted string contains at least one
occurrence of s1. If we let s1 = E , we are encoding precisely the query from Fig. 6.1. Fig. 6.9b
shows the s-VPA to enforce this constraint.

Unreliable Trace Languages The above true constraint (for s-VPAs and FSAs) expresses
an unreliable trace language. Specifically, the constraint we want to impose for “E: true”
corresponds to the vector 〈E〉. For false entries, we can support negated single-element
vectors as UTL constraints per Section 6.5.3.

6.6.3 Path Traces

Our csi-cc tracing from Part I of this dissertation includes stack-local, bounded path traces.
Per extracted failure data from Chapter 5, Section 5.2, path traces extend the stack trace
previously described: each frame has at least the call that remains on the active stack at the
crash (per our stack trace encoding), but may also contain a vector of nodes leading up to the
call. Formally, a stack with path traces is a sequence of vectors

[〈p00, . . . , p0 |p0 |
, `0〉 , 〈p10, . . . , p1 |p1 |

, `1〉 , . . . , 〈pn0, . . . , pn |pn |, `n〉 , 〈pc0, . . . , pc |pc |, crash〉]

For our example in this section, we will describe encoding for just one stack frame
including its path trace; frames are still connected via call transitions on each ì ∈ N × L,
precisely as in Section 6.6.1. Our running example from Fig. 6.1 is not complex enough to
demonstrate all details of path trace encoding. Instead, we use the following generalized
vector representing a stack frame with its path trace containing three nodes:

〈t0, t1, t2, `〉

For this example, suppose that t1 is a call site, and ` ∈ N × L indicates the active call to the
next stack frame.
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. . . . . .

I: true

C: true/0

I: x = t0

R: x = y/0

C: true/1
R: x = y/1

I: true

I: x = t1

C: true/0
R: x = y/0

C: true/1
R: x = y/1

I: true

I: x = t2 C: x = `/1

(a) Represented as an s-VPA

. . . . . .

Σ

t0 t1

(N×L

Σ

)N×L

t2 `

(b) Represented as an FSA

Figure 6.10: Encodings of crashing stack frame with path trace 〈t0, t1, t2, `〉 as automata

Automata Figure 6.10a shows the s-VPA encoding for the above constraint. Note that this
figure corresponds to just one frame of the crashing program stack (indicated by ellipsis). We
begin with a well-matched region (W) to indicate any execution within the frame prior to path
trace data. Then, our automaton only accepts strings containing the path trace entries, which
much be in sequence with no gaps for other execution. The transition after t1 is an exception.
Since t1 is a call site, we expect another well-matched region of execution before continuing
with the intraprocedural path trace. Note that path tracing does not record the target of indirect
calls (e.g., through function pointers), so we do not specify the label of the called function.

As before, since regular languages cannot express context sensitivity, our FSA encoding
replaces each well-matched call region (W) with an unspecified call, return, and Σ∗ self-loop.
Thus, note that matched substrings between t1 and t2 are not guaranteed to preserve calling
context. Figure 6.10b shows the corresponding FSA.

Unreliable Trace Languages Unlike basic stack traces, path trace data introduces elements
into the crashing stack that cannot be modeled precisely with UTL. Specifically, consecutive
transitions (such as those for t0 and t1 in Fig. 6.10b) that previously had no Σ∗ self loop
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C: true/0
R: true/0
I: x < S

I: x = C

C: true/0
R: true/0
I: x < S

I: x = F

C: true/0
R: true/0
I: x < S

I: x = F

C: true/0
R: true/0
I: x < S

Figure 6.11: Call trace “[C, F, F]” as an automaton, where S = {C, J, F}

can no longer be precisely encoded, since UTL cannot ensure that these statements occur
consecutively. For the example frame, the UTL encoding is 〈t0, t1, t2, `〉.

6.6.4 Call Traces

Call traces record occurrences of specific call sites during a program’s execution. These traces
come in many forms, from logs of every call and return during a program’s execution [44,
155, 182] to data gathered in short bursts [25]. Here we focus on traces over some set of
call sites S = {s1, . . . , sn} (not necessarily every call site in the program), where each si ∈ N .
Bursty traces are encoded similarly, and add unconstrained execution (i.e., Σ∗) before and
after each burst. A call trace is of the form:

[c1, c2, . . . , cm]

where each ci ∈ S. Crucially, such a trace indicates that we have seen every instance of each
ci during the traced execution.

As an example, consider the call trace [C, F, F] with respect to the CFG from Fig. 6.1.
Assume that S = {C, J, F} (i.e., all call sites). This failure constraint cannot possibly be
satisfied in any context-sensitive paths through G.

Automata To encode the above constraint, we form an automaton that accepts precisely the
observed sequence of calls, with no other instances of symbols from S. Figure 6.11 shows the
s-VPA encoding for [C, F, F]. Note that this call trace constraint is regular, since it does not
encode the matching relations between calls and returns, but, rather, simply their order.

Unreliable Trace Languages Call trace constraints are reliable traces, because they in-
dicate that we observe all occurrences of each traced call. Unfortunately, as we prove in
Appendix A.2.2, we cannot precisely encode reliable traces and use any known polynomial-
time solver to obtain query answers. Instead, we can encode the “[C, F, F]” constraint as the
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C: true/0
R: true/0

I: true
I: x ∈ {B,C}

C: true/0
R: true/0

I: true

Figure 6.12: Ambiguous coverage data entry “{B,C}: true” as an automaton

unreliable trace language 〈C, F, F〉 with some loss of precision. Specifically, this constraint
no longer enforces the requirement that we have seen all instances of the call sites from S.

6.6.5 Ambiguous Observations

Failure report data may be ambiguous. For example, when a program logs some of its activity,
an analysis tool may be unable to determine precisely which output statement printed the
message. Here, exactly one of the output statements executed on the failing run. In fact, all of
the above constraints have generalized variants, where each observation is a set of symbols,
rather than a single symbol. Here, we consider the specific case of ambiguous coverage data.

Ambiguous binarized statement coverage data consists of a set of independent, Boolean-
valued observations of statement groups. For example, for S1, S2 ⊆ N ,

{S1: true, S2: false}

indicates that at least one statement from S1 executed during the failing run, and at least one
statement from S2 did not execute. The failure report from Fig. 6.1 contains a log message
that was written by either statement B or statement C. This corresponds to the ambiguous
coverage observation “{B,C}: true”.

Automata For “S1: true,” all accepted strings must contain at least one occurrence of some
s ∈ S1. Figure 6.12 shows the s-VPA to enforce the constraint “{B,C}: true.”

The encoding for “S2: false” is less elegant, and potentially requires an exponential number
of states in the size of S2. We create one unambiguous true coverage automaton for each
s ∈ S2 per Section 6.6.2. Then, using this set of automata, A, the desired encoding is

¬
( ⋂

a∈A

a
)

Unreliable Trace Languages Recall that unreliable trace languages (defined in Sec-
tion 6.5.1) do not allow disjunction. In fact, ambiguous constraints (such as ambiguous
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coverage data) cannot be expressed, even with loss of precision, as unreliable trace languages.
Put another way, since unreliable trace languages do not support character classes in con-
straints, the above coverage constraints can only be expressed as Σ∗. In Appendix A.2.1,
we prove that precisely encoding ambiguous observations results in NP-hard complexity for
context-insensitive query recovery.

6.7 Best-Effort Coverage Analysis

As stated at the start of this chapter, one might use our solvers to answer a variety of interactive
and non-interactive queries in many postmortem analysis and debugging scenarios. Here, we
describe one example of a non-interactive batch analysis: recovery of best-effort program
coverage data based on failure reports provided. Later in this chapter, we will use this analysis
for evaluation of our three solvers. Our best-effort coverage problem (BECP) is defined as
follows.

Given a CFG, G = (N, n0,L, Ei, Ec, Er), and a failure report, {FP1, . . . ,FPn} containing
s-VPA-definable languages, an answer to the BECP is a partition of N into subsets Yes, No,
and Maybe. The set Yes contains nodes from N that necessarily exist on all paths through G

that are consistent with the failure report. Conversely, No contains nodes that cannot exist on
any such path, while Maybe contains all nodes from N that are not in either Yes or No (most
precisely: nodes that exist on some but not all paths consistent with the failure report). Thus,
an imprecise solver for BECP may always place all n into Maybe for all n ∈ N .

Our context-sensitive and context-insensitive query recovery problems (Definition 6.6 and
Definition 6.7, respectively) can be used to solve BECP. Inputs G and {FP1, . . . ,FPn} are
given as above. Then, for each node n ∈ N , we pose two queries:

(Q1) May n have executed during the failing run?

(Q2) May n not have executed during the failing run?

These queries are encoded precisely as statement coverage per Section 6.6.2. Recall that each
of these queries can return an answer of Possible or Impossible. We then run our solver for
each query:

possibleYesn = true if (Q1) is Possible, otherwise false

possibleNon = true if (Q2) is Possible, otherwise false
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Table 6.2: Evaluated applications

Mean Count Across Variants

Application Type Variants LoC Functions Basic Blocks SCCs

tcas Siemens 41 173 12 163 163
schedule2 Siemens 9 373 25 268 228
schedule Siemens 9 413 23 229 169
replace Siemens 31 563 27 437 245
tot_info Siemens 23 564 18 231 129
print_tokens2 Siemens 10 568 27 429 395
print_tokens Siemens 7 727 25 385 318
ccrypt Linux utility 1 5,280 116 1,677 1,409
gzip Linux utility 20 8,114 135 3,704 2,411
space ADL interpreter 34 9,563 158 3,895 3,389
sed Linux utility 31 14,314 219 6,612 3,481
flex Linux utility 53 14,946 184 6,408 3,992
grep Linux utility 19 15,460 177 7,121 2,886
gcc C compiler 1 222,196 2,267 142,121 51,668

Our solution to BECP is then:

Yes = {n ∈ N such that possibleYesn ∧ ¬possibleNon}
No = {n ∈ N such that possibleNon ∧ ¬possibleYesn}

Maybe = {n ∈ N such that possibleYesn ∧ possibleNon}

In practice, we only pose the above queries for each basic block, b, from G, and we
represent each basic block by the first statement in that block. If Yes, No, and Maybe do not
partition N after this process, the provided failure report data is inconsistent. (This does not
occur in any of our experiments.) A solver for BECP is more precise if it can soundly increase
the size of the Yes and No sets, and thereby decrease the size of the Maybe set.

6.8 Experimental Evaluation

Our empirical evaluation assesses the precision and scalability of each of our solving techniques.
Specifically, we compared the time it takes our system to solve BECP (from the previous
section) when encoding the CFG and all failure constraints as s-VPA, each of these elements
as FSA, and by answering unreliable trace language queries over the context-insensitive CFG.
We also compared the precision of analysis results when encoding constraints using each of
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Table 6.3: Mean number of constraints intersected

Call-Site Coverage Constraints

Application Stack False True

tcas 2 8 7
schedule2 2 17 24
schedule 2 13 22
replace 2 30 20
tot_info 2 12 14
print_tokens2 2 27 40
print_tokens 2 29 26
ccrypt 2 164 25
gzip 2 381 23
space 2 390 108
sed 2 546 113
flex 2 590 132
grep 2 448 89
gcc 2 12,649 585

the formulations. (Recall that a solver is more precise if it answers Impossible to more user
queries, and, hence, classifies more nodes into the Yes and No sets for BECP.)

Our s-VPA solver builds upon D’Antoni’s symbolic automata library [46], while our
FSA solver uses OpenFst [8]. The analysis infrastructure and our solver for unreliable trace
languages (UTL) from Section 6.5.2 consist of 5,016 lines of Python code. We instrumented
subject applications with csi-cc to gather failure reports. We used Clang to produce our
CFGs; thus, unlike in Chapter 5, we do not suffer from ambiguity in matching our trace data
to our CFG, since csi-cc is also built atop Clang.

We used the same set of failures from Chapter 5, this time including failures for the
replace and tot_info applications because we were able to map all failure data back to our
CFGs effectively. However, we wanted to examine the scalability of our more precise analyses
described in this chapter; many of our techniques required substantially more time and
memory, making a complete evaluation of all failures infeasible. Thus, we randomly selected
one failing run for each fault of each application version, and generated a failure report
by extracting csi-cc trace data and the stack trace from the core dump produced by that
run. Thus, the number of analysis runs for each solver is identical to the number of variants
for each application. Table 6.2 again shows our evaluated applications, and also provides
information about the CFGs for each application: the number of functions, basic blocks, and
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Table 6.4: Incomplete analyses using stacks only

Time, Memory

Application Variants s-VPA FSA UTL

ccrypt 1 1, 0 0, 0 0, 0
gzip 20 20, 0 0, 0 0, 0
space 34 34, 0 0, 0 0, 0
sed 31 28, 3 0, 0 0, 0
flex 53 50, 3 0, 0 0, 0
grep 19 14, 5 0, 0 0, 0
gcc 1 0, 1 1, 0 1, 0

strongly-connected components (SCCs). We gathered these statistics prior to incorporating
any failure constraints which cause us to split basic blocks or SCCs.

6.8.1 Crashing Stack Trace

Our first set of experiments sought to answer two research questions:

(RQ1) How well does each solver scale to larger programs?

(RQ2) How precisely can each solver answer queries over very sparse failure reports?

To answer these questions, we ran BECP for each application failure, where we extracted
failure reports containing only crashing program stacks; that is, we did not encode any
traced csi-cc data extracted from failing core dumps. Thus, each analyzed failure involves
intersecting the query language with exactly 2 other languages: the language of the program’s
CFG and the failing stack trace. This is shown in the “Stack” column of Table 6.3.

To answer (RQ1), we limited solvers to 3 hours of running time and 30GB of memory; we
then tracked whether each analysis run completed all BECP queries within the time limit, ran
out of time, or ran out of memory. Table 6.4 shows these results, omitting rows for applications
that solved all queries for all solvers. For each solver, we report the comma-separated pair of
the number of analysis runs that ran out of time and ran out of memory.

The s-VPA solver times out for all larger applications. This solver completes at least one
query for many of these applications, but note that checking emptiness is significantly more
complex for an s-VPA than for an FSA (where it is simply unconstrained state reachability).
Hence, we find that precisely answering queries with s-VPA does not scale to larger
programs. gcc’s CFG has over 140,000 basic blocks, resulting in over 280,000 queries. No
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Figure 6.13: UTL-relative analysis time using stacks only

solver completed all gcc queries within the 3-hour time limit. Both the FSA solver and the
unreliable trace languages (UTL) solver, however, are able to answer queries in this case. The
FSA and UTL solvers averaged 7.88 and 5.19 seconds, respectively, to answer each query for
those that completed within the time limit.

Next we compared analysis times for those analysis runs that multiple solvers completed.
Figure 6.13 shows these results, plotted as analysis time relative to the UTL solver, averaged
across each application. While each s-VPA bar summarizes fewer runs than the corresponding
FSA bar, note that all runs that completed with the s-VPA solver also completed with the
FSA solver. Missing s-VPA bars toward the right side of Fig. 6.13 echo our earlier finding
that s-VPAs do not scale to large programs. Even for small programs, the s-VPA approach
takes much more time, with slow-downs up to 25× for schedule (where all solvers completed
all failures, per Table 6.4). The FSA solver is slightly slower than the UTL solver on all
non-trivial applications, even when incorporating only the crashing stack as the lone
failure constraint. The largest slow-down here is 2.2× for grep.

Finally, to answer (RQ2), we measured the improvement in precision from using the
more expressive s-VPA solver (and, thereby, solving the context-sensitive query recovery
problem from Definition 6.6). Per Section 6.6.1, s-VPAs allow a more precise encoding of the
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Figure 6.14: Basic blocks categorized as Yes or No using stacks only

conditions producing a failing stack than the regular language encoding. Figure 6.14 shows
the mean percentage of basic blocks that each solver classified into the Yes or No sets for
each failing run. We only show results for the s-VPA and UTL solvers here; FSA results are
always identical to those of the UTL solver, as the language encoding of the CFG and crashing
stack are identical for these solvers. Two patterns are clear. First, for those failures that can
tolerate its cost, the s-VPA solver gives substantially more precise results. For example,
for tot_info, classified basic blocks grow from 8.1% to 19.5%: a 2.4× improvement. Second,
information about the crashing stack alone is not enough to reduce execution ambiguity
significantly for the larger programs. This agrees with our findings from Chapter 5.

6.8.2 Crashing Stack And Call-Site Coverage

For our second set of experiments, we wanted to answer the following research questions:

(RQ3) How well does each solver scale to more dense failure reports (with many
constraints)?

(RQ4) How precisely can each solver answer queries over dense failure reports?
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Table 6.5: Incomplete analyses using stacks and call-site coverage

Time, Memory

Application Variants s-VPA FSA UTL

schedule2 9 0, 9 2, 3 0, 0
schedule 9 0, 8 0, 5 0, 0
replace 31 0, 28 0, 0 0, 0
tot_info 23 0, 17 0, 0 0, 0
print_tokens2 10 0, 10 0, 10 0, 0
print_tokens 7 0, 7 1, 4 0, 0
ccrypt 1 0, 1 0, 1 0, 0
gzip 20 0, 20 4, 7 0, 0
space 34 0, 34 0, 34 0, 0
sed 31 3, 28 2, 26 0, 0
flex 53 18, 35 0, 52 0, 0
grep 19 0, 19 1, 18 0, 0
gcc 1 0, 1 1, 0 1, 0

We used failure reports containing the crashing program stack and csi-cc global call-site
coverage. We optimized instrumentation with the dominator-based approximation from
Chapter 4. We then encoded the resulting coverage data for each failing run as described in
Section 6.6.2. The “Call-Site Coverage Constraints” columns of Table 6.3 show the number
of constraints resulting from the true and false coverage entries for each failing run, averaged
by application. Thus, the sum of these two columns indicates the total number of call sites
instrumented, averaged by application. Note that the number of instrumented sites is very
similar, but not identical, to the number of coverage probes in our coverage optimization
experiments from Chapter 4, Fig. 4.8; this difference arises because enabling faults can change
a program’s control flow, thereby impacting optimal placement of probes. As in Section 6.8.1,
we solved BECP for one failing run per (application, version, fault) triple, and limited solvers
to 3 hours of running time and 30GB of memory.

We first examined (RQ3). Table 6.5 gives the number of analysis runs that ran out of
time or memory for each application. Here, both the s-VPA and FSA solvers ran out of either
time or memory analyzing most failure reports, even for the smaller Siemens applications.
Memory issues are especially prevalent, as intersecting large numbers of constraints results in
a worst-case exponential increase in the size of automata. Thus, neither automata-based
solver scales well to dense failure reports. On the other hand, the UTL solver was able
to solve BECP for every single failure except for gcc, where it averaged 8.12 seconds to
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Figure 6.15: UTL-relative analysis time using stacks and call-site coverage

answer each query that completed within the time limit. The gcc failure had 585 true coverage
entries in its failure report (per Table 6.3), so an automata-based solver would need to compute
an intersection over 587 automata (including the CFG and crashing stack) to answer even
a single query. In our experiments, the FSA solver exceeded the 3-hour time limit while
performing intersections for gcc, but would certainly have exceeded the 30GB memory limit
if given more time.

For a detailed look into (RQ3), we again examined the total analysis time for those runs
that completed with each solver. Figure 6.15 plots these results, again relative to UTL solve
time. Note that s-VPA and FSA bars cannot be directly compared, because the s-VPA solver
did not solve all of the failures solved by the FSA solver. (This discrepancy is especially
relevant for schedule, replace, and tot_info results, where the s-VPA solver was slower, but
timed out on longer-running examples.) Overall, these results indicate that the UTL solver is
dramatically faster. The only exceptions are for the small number of runs that completed for
the FSA solver in gzip, sed, and flex. Here, the particular failures occurred very early in each
application, so the majority of the CFG was quickly placed into the No set by each solver. For
all of the more complex failures that completed with both solvers (including those for the
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Figure 6.16: Basic blocks categorized as Yes or No using stacks and call-site coverage

smaller test subjects), UTL outperforms FSA, often by several orders of magnitude. These
results are unsurprising, given the number of timeouts recorded in Table 6.5.

Finally, we investigated (RQ4). Figure 6.16 shows the percentage of basic blocks classified
in the Yes or No sets by solving BECP over failure reports containing the crash stack plus
coverage data. Recall that a solver is more precise if it classifies more blocks as Yes or No
(rather than Maybe). Again, all failure report data is recorded with equal precision for FSA
and UTL, so we display only the latter. The plot affirms that we gain significant precision
by encoding constraints to respect context sensitivity (via the s-VPA solver). However,
recall that we were able to solve very few failure report analyses with this solver. Another
important result is that precision improves significantly, even for imprecise solvers, when
we incorporate more detailed failure reports. For example the s-VPA solver disambiguates
the execution of 20% of the basic blocks in print_tokens failures using only stack data
(Fig. 6.14). Using csi-cc call-site coverage data, the UTL solver disambiguates 63% of basic
blocks (Fig. 6.16) despite being unable to respect calling-context sensitivity during analysis.
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Table 6.6: Resource usage. Times are in seconds and memory usage is in megabytes.

Running Time (s) Memory (MB)

Application minimal natural minimal natural

schedule 18 28 250 1,176
replace 50 236 1,194 4,460
print_tokens2 46 218 958 6,786

6.8.3 Impact of Minimizing Stack Symbols

Recall from Sections 6.4.1 and 6.6 that our s-VPA encodings attempt to minimize the number
of stack symbols used for encoding our CFGs and failure constraints. Our final set of
experiments examined whether this design choice significantly impacts analysis performance.
We randomly selected one failure from each of three randomly-selected Siemens applications.
We then ran our s-VPA analysis over each failure in two variants. First, we used our solver
precisely as in our primary evaluation (with a small number of stack symbols). Second, we
used a variant of our s-VPA solver with the natural encoding that uses one stack symbol
for each call site in the CFG; here, we replaced each 0 stack symbol in the encoding from
Section 6.4.1 with a unique integer for the calling node, and removed the equality predicate
“x = y” on all return transitions. We measured the execution time and memory usage for
solving our best-effort coverage problem using only the failing stack trace (i.e., no csi-cc
coverage data).

Table 6.6 shows our results. Columns labeled “minimal” use the s-VPA encoding from
our primary experiments; “natural” columns use the encoding with one stack symbol per call
site. Even on these small applications, there is a clear benefit to minimizing stack symbols.
The natural stack-symbol-based encoding sees higher memory usage due to larger automata
from product-set construction for intersections, as well as longer running times (to check
emptiness over the larger automata). In the most extreme case (print_tokens2), running time
increases by 4.7× and memory use increases by 7.1×.

The two encodings should produce identical results for all queries. The automata represent
the same languages; they differ in whether we use return predicates (“minimal”) or stack
symbols (“natural”) to ensure calling-context sensitivity. We verified that all results matched.
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6.8.4 Discussion

In our primary evaluation, we set a 3-hour timeout for solvers to complete all queries for a
given failure (2 per basic block). Nearly all subjects in Tables 6.4 and 6.5 that fail due to
timeout complete at least one query. The only exceptions are in Table 6.5, where all s-VPA
runs on sed and flex, and FSA on gcc, reach the 3-hour time limit, but would have exceeded
the 30GB memory limit if allowed to complete more intersections. Per Section 6.8.1, both
the FSA and UTL solvers handle queries over gcc (the largest subject) within seconds using a
stack trace. Per Section 6.8.2, the UTL solver can even answer gcc queries with the full failure
report (with over 13,000 constraints) in seconds. The s-VPA solver answers queries for most
failures on the larger applications using only a stack trace; the largest non-gcc applications
(sed, flex, and grep) averaged 2 minutes per query. For batch analyses (e.g., extracting
coverage data for an entire program), 3 hours is quite reasonable, and vastly outperforms
a developer reconstructing this information manually. Our solvers are also fast enough to
answer individual, interactive queries, such as the examples from the start of this chapter.

Overall, our results indicate that we can answer many control-flow queries based on failure
data in reasonable time, and point to different use cases for our three different solvers. The UTL
solver answers queries remarkably efficiently, even when we include very large failure reports
(with over 13,000 failure constraints for gcc). However, it sacrifices some expressiveness in
the types of failure report elements that it can precisely encode (see Section 6.6). Thus, we
consider the UTL solver to be an excellent choice for answering interactive queries during a
debugging session, where speed trumps precision. In contrast, the s-VPA solver can answer
queries more precisely in many cases, but requires more time to do so, and struggles with
memory constraints on very large failure reports. Thus, we consider the s-VPA solver to be
well-matched to longer, overnight batch analyses. The FSA solver is a compromise between
these extremes. As with s-VPA, the FSA solver needs to constrain the size of failure reports
to avoid memory issues in its automata intersections, but allows more expressiveness than the
UTL solver, while often maintaining similar efficiency for answering interactive queries.

In this chapter, we evaluated our techniques by solving the best-effort coverage problem,
defined earlier. While this is only one example scenario run as a batch analysis, we nevertheless
can garner insights into the scalability of our techniques and the impacts of failure report
features. Our results suggest that failure reports with a limited number of constraints are
good targets for improving precision by using the s-VPA and FSA solvers. This suggestion
means that detailed failure reports may need to intelligently drop some constraints to make
use of these solvers. Gathering more expensive failure data—e.g., call traces rather than call
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coverage (see Section 6.6.4)—often results in a smaller number of constraints, though at a
higher tracing cost [25, 44, 155, 182]. This move to more expensive data would improve the
performance and precision of the FSA and s-VPA solvers because the complexity of checking
automata intersection emptiness depends on the number of constraints intersected. The fact
that our analyses are much more efficient using only a crashing stack trace suggests that
reducing the number of failure constraints is important in practice; this includes optimizations
like those from Chapter 4.

In the context of the CSI system in general, our results once again indicate that lightweight
core dump enhancement can effectively improve postmortem analysis results at only a small
cost to end-users. As an example, in gzip, ambiguity in executed statements on the failing run
(i.e., the size of the Maybe set) decreases from 98% of the entire CFG (stack only) to just
39% using only global call-site coverage data and our most efficient (UTL) solver.

6.9 Threats to Validity

The threats to validity for our results are similar to those for our evaluation in Chapter 5,
discussed in Section 5.4. Since we evaluate the same set of applications with a subset of
the same failures, the only major changes relate to our mitigation of threats to the internal
validity of our findings. Notably, we do not suffer from the ambiguity issues seen in Chapter 5,
because both our csi-cc failure data and our CFGs are generated by Clang/LLVM.

We also validated our results in two ways. First, each of our analyses should safely
approximate complete, directly-observed coverage. We spot-checked analysis results against
full coverage data (gathered as csi-cc statement coverage) for a selection of failing runs. All
analyses safely approximated the complete information: in every case that we checked, if an
analysis reported “Yes” for a basic block, then that block did actually run; similarly, blocks
reported as “No” did not run. Our second approach to validation compares the solvers to each
other, one basic block at a time. Note that our three solvers have theoretical relationships
that should be reflected in our results. Because all of our queries and coverage constraints
are precisely definable in UTL, and, per Section 6.6.1, our encoding of the crashing stack
is equivalent for FSA and UTL, the results of FSA and UTL should be identical in our
experiments. The s-VPA solver can encode any s-VPA-definable constraint (subsuming all
definable constraints for FSA and UTL), more precisely encodes the crashing stack (see
Section 6.6.1), and ensures well-matched calls and returns for accepted strings; hence, its
result should never be less precise than FSA and UTL. For the subset of blocks where multiple
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solvers’ results are available to compare, FSA and UTL always agree while s-VPA either
agrees or is strictly more precise. That is, s-VPA never answers “Maybe” where FSA or UTL
answered “Yes” or “No.” This perfectly matches the expected theoretical relationships among
the three solvers.

6.10 Related Work

LaToza and Myers [99] find that developers commonly ask reachability questions while
debugging. This supports the usefulness of our technique, as many of the examples they
consider are control-flow questions that we support.

Explorer [60] uses demand-driven pointer analysis to allow users to pose interprocedural
control-flow queries over a program’s call graph. Our system allows queries at the statement
(rather than procedure) level, and answers queries with respect to all runs consistent with a
given dynamic failure report, rather than (statically) all runs whatsoever. Explorer is also
specifically geared toward refining call graphs for modern object-oriented languages; as our
techniques in this chapter assume a pre-built CFG, our techniques may be complementary for
analyzing modern programs with many dynamically-bound calls.

Our weakening of s-VPA constraints to unreliable trace languages resembles work by Place
et al. [147] for automatically separating regular languages by piecewise-testable languages.
UTL is a strict subset of the piecewise-testable languages. Thus, the class UTL may be useful
in other contexts, such as language separation. Other related work approximates context-free
languages with regular languages [40, 119, 127]; thus, it may be possible to automate the
process of weakening failure constraints to UTL.

Gabow et al. [63] and Lal et al. [97] find paths through CFGs that reach desired nodes.
Specifically, Lal et al. allow users to specify a stack trace, ordering pairs among CFG nodes,
and general data-flow analysis properties. They then return a shortest path through the
CFG that satisfies all constraints. Lal et al. also describe uses of their framework in fault
localization. While Lal et al. incorporate other data-flow constraints, we dramatically broaden
the class of control-flow constraints, and offer time/precision trade-offs via three underlying
solvers. Sadly, our frameworks are not immediately compatible as we use different underlying
formalisms (s-VPA versus weighted pushdown systems [152]). Our use of CFG condensation
graphs is similar to that of Gabow et al. [63], who use standard reachability techniques
to find a path satisfying a set of compulsory nodes that must be crossed on any matching
execution. If we allowed only program coverage information (encoded as per Section 6.6.2),
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this approach would suffice for our problem, and is essentially equivalent to UTL emptiness
from Section 6.5.2. In effect, this restriction reduces our problem to a basic forward or
backward reachability analysis over the CFG condensation graph. However, our UTL solver
allows a broader class of constraints, which is why it maintains vectors of constraints, rather
than simply marking compulsory nodes along the path. Our full suite of approaches is much
more general, and allows an expansive family of constraints and queries.

Many prior approaches [35, 36, 42, 78, 79, 153, 193] use symbolic execution to replay
failures based on varying styles of failure data. As stated in previous chapters, matching
failures via symbolic execution is expensive, and undecidable in general. We answer queries
about any run matching failure data, while replay produces one specific run that may or may
not completely match the traced failure. In addition, most prior approaches are limited to
specific categories of failure data [35, 42, 78]. In contrast, our approaches in this chapter can
immediately take advantage of any s-VPA-definable constraint.
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7 front-end tooling and human subjects evaluation

An earlier version of these designs was presented in a workshop paper by Ohmann
and Liblit [136]. The extended work described in this chapter, while not yet
published, includes contributions by Manav Garg and Pallavi Ghosh.

The preceding chapters address two important issues in debugging from post-deployment
failure reports. Chapters 2 to 4 present mechanisms to efficiently gather more detailed
trace data from failures. Chapters 5 and 6 show that combining this lightweight data with
postmortem analyses that adapt to incomplete failure traces can substantially reduce ambiguity
in the failing execution. Both of these issues, however, deal exclusively with how to gather
or extract more detailed failure data. Prior work by Parnin and Orso [142] examines fault
localization tools that present developers with an ordered list of suspect source code lines. The
authors find that mere counts of suspect lines are not always indicative of a tool’s actual impact
on debugging performance, because developers need to also develop an understanding of
failing behavior. Usefulness for actual users debugging deployed applications is the ultimate
test of our analysis techniques; one must also consider how data is presented to developers.

To that end, this chapter describes the design of a front-end tool, CSIclipse, for displaying
CSI tracing and analysis data. CSIclipse is a plugin for the popular Eclipse integrated
development environment (IDE) [167]; our plugin presents CSI data to developers in a
convenient but thorough manner. CSIclipse builds on csi-cc tracing and csi-grissom
analysis to achieve this goal. Specifically, CSIclipse provides support for

1. viewing csi-cc trace data and csi-grissom analysis results,

2. annotating source code with execution coverage information based on our best-effort
coverage analysis from Chapter 6, Section 6.7, and

3. stepping through csi-cc path trace data.

After describing the architecture of CSIclipse, we then briefly outline a preliminary design
for a human subjects study to assess the utility of CSI instrumentation and analysis data as
presented through CSIclipse.
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7.1 CSIclipse

In this section, we present the design of CSIclipse. We begin by reviewing the formats of
instrumentation and analysis data from previous chapters that are used as input to CSIclipse.
Then, we detail how this data is presented in the various aspects of our plugin.

7.1.1 Input Data

Recall from Chapter 5, Section 5.2, that we extract csi-cc trace data from core dumps, and
organize the data as follows:

• stack = 〈frame1, frame2, . . . , framen〉: the failing stack where each framei has fields:

– coverage = {n1: b1, n2: b2, . . . }: a mapping from CFG nodes to Boolean values
indicating whether each ni was executed at least once in framei’s execution.

– path = 〈p1, p2, . . . , p|p|〉: a vector of CFG nodes indicating a partial execution
suffix leading up to the final crash point within framei. Even for a core dump
with no csi-cc trace data, path contains one entry: the final CFG node from the
failing stack trace.

• globalCoverage= { f1: coverage1, f2: coverage2, . . . , f|globCov|: coverage|globCov|}: amap-
ping from each function in the program’s CFG to a coverage map as defined above.
Here, Boolean values indicate whether each node was ever executed globally, that is, at
any point during the entire program’s execution, regardless of the failing stack.

Using any of our solvers from Chapter 6, we can then obtain three global sets—Yes, No, and
Maybe—by solving our best-effort coverage problem from Section 6.7 using globalCoverage
and just the final entry of each framei.path above (i.e., the failing stack trace). We also use this
analysis for each framei to obtain stack-local sets framei.Yes, framei.No, and framei.Maybe.
For each frame, we run our best-effort coverage analysis over the intraprocedural CFG for
framei’s function using framei.coverage and framei.path. For intraprocedural analysis, our
use of path is much more straightforward than our encoding from Chapter 6, Section 6.6:
we immediately add each node in path to framei.Yes, and instead use path1 as the crashing
point (similar to intraprocedural active nodes analysis from Chapter 5, Fig. 5.2). Thus, the
complete result of our analysis is:

• global sets Yes, No, and Maybe
• local sets framei.Yes, framei.No, and framei.Maybe for each framei in stack
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CSIclipse loads instrumentation and analysis data in a simple comma-separated value
(CSV) format, with one record for each file in the program’s source, and one record for each
frame in the failing stack trace. Each record consists of:

• the name and path for a source file, f

• a Yes set containing lines of f

• a No set containing lines of f

• a Maybe set containing lines of f

• a function name (for stack frames only)
• a path trace containing lines of f (for stack frames only)

While we designed this format specifically for ease of integrating csi-cc and csi-grissom
data, CSIclipse will operate with any properly-formatted input data. Thus, other tools that
can produce any portion of this data can use CSIclipse for visualization. The most notable
advantage to this is that CSIclipse is not bound to a particular programming language,
despite the fact that both csi-cc and csi-grissom only support C/C++ programs.

Encoding our analysis data as CSIclipse input is straightforward. First, since CSIclipse
expects line numbers rather than CFG nodes, we need to convert each node in all of our trace
data and analysis results into its corresponding line number. Thus, our Yes, No, and Maybe
sets each contain a (possibly-overlapping) set of line numbers. Then, we split our global
Yes, No, and Maybe sets into sets for each unique source file, and create one CSV record
for each file (function name and path trace are empty for these records). Finally, for each
framei, we create one record consisting of framei’s defining file and function name, along
with framei.Yes, framei.No, framei.Maybe, and framei.path.

7.1.2 Design

As stated previously, CSIclipse is a plugin for the Eclipse IDE. Our plugin is designed
for use during an active debugging session, and, hence, integrates with existing features in
the Debug perspective of Eclipse. We also rely on underlying tooling within Eclipse for
accessing information about the process currently being debugged: in the case of CSI, the
C/C++ Development Tooling. Screenshots from this section are taken with Eclipse version
4.6.3 running on Red Hat Enterprise Linux 6. Throughout this section, we will use an
example crashing run from the program flex; this failure was used for evaluation in previous
chapters. We instrumented the program with csi-cc for path tracing and call-site coverage,
then analyzed the core dump from the failing execution with csi-grissom, producing input
data as detailed in the previous section.
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Figure 7.1: Highlighting and stepping through frame-local CSI data

Figure 7.1 shows a user actively debugging the flex failure. Note that in this and other
screenshots, we do not display many standard views developers would use during debugging
(e.g., local variables, registers, and disassembly) to avoid clutter and to focus on CSIclipse
features. Here, the developer loaded the failing executable and core dump via the Eclipse
postmortem debugging facilities; the crashing stack data in the standard debugging view (in
the top-left corner of the window) indicates that the program crashed at line 13,784 of flex.c,
in function yy_load_buffer_state. In the top-right corner of the screenshot, we see the CSI
stack view. Here, the developer has already loaded input data via the button. Note that
CSIclipse only maintains data for a single crash report, corresponding to analysis results for
a single failing program run. Upon loading a new crash report, the old data is overwritten.

The stack view shown in Fig. 7.1 complements existing Eclipse views. When the developer
selects a stack frame context from the standard Debug view, the CSIclipse stack view
displays path trace information for that frame, if available: the sequence of lines in the frame’s
execution suffix, along with a preview of their source content. Selecting a trace line seeks to
that line in the Eclipse editor; the developer can also step forward and backward through
the trace. By default, clicking on any CSIclipse entry brings the user to a scratch read-only
version of the source file for debugging. This behavior is configurable, and allows our tools
to maintain correspondences among instrumentation metadata, analysis results, and source
code line numbers. CSIclipse creates this copy the first time a user selects a particular file.
Toggling the local annotations button to the “on” position (as in the screenshot) enables
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Figure 7.2: Annotations for global execution data

source code highlighting. CSIclipse highlights each source line in the relevant function with
that line’s execution status for the selected stack frame: green for Yes, red for No, and yellow
for Maybe (by default). The currently-selected path trace entry is also brightly highlighted
and indicated with a filled arrow . In a realistic debugging scenario, a developer is likely
to start from the failure point, and step backward through the provided path trace. In this
example, a user is currently stepping through the path trace gathered for main’s stack frame.

While looking through main’s execution, the developer will notice that the function flexinit
was called on line 160, but is no longer on the active stack; thus, no path trace data is available
for that call. However, flexinit is a complex initialization function, and contains relevant
context information for the failure (which occurred during initialization). Figure 7.2 shows
the CSIclipse global view, which is useful when the debugging task departs from the active
stack. The view presents a tree rendering of all projects in the developer’s Eclipse workspace,
annotated with global information from loaded CSI data. The tree gives Yes, No, and Maybe
line counts for each function, along with a visual representation of the ratios of these three
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sets as a colored bar. The view also aggregates this data for containing elements; for example,
each file is annotated with the summary of Yes, No, and Maybe data for all functions in
that file. Selecting any element from the view again opens a buffer (read-only by default),
centered on the selected function. When the developer toggles the global annotations button
“on” (as in the screenshot), CSIclipse adds source annotations based on global data. Each

marker indicates the line’s execution status (Yes , No , or Maybe ) for the entire program’s
execution. These markers are less invasive than their local counterparts (as small icons in the
side-bar of the source file). Being standard Eclipse markers, global annotations are also visible
in the file overview to the right of the scroll bar. This has a number of advantages: it allows a
developer to quickly assess how much of a given file’s code was used (visually complementing
the summarized information in the global view), helps to identify large regions of executed or
unexecuted code, and facilitates navigation to interesting code regions. These global markers
also do not overlap with local annotations; the two classes can provide useful information
when used together. For example, a line annotated locally No and globally Yes indicates that
the containing function executed previously. A function whose final statement is marked as
globally No never executed outside the crashing stack context.

7.2 Preliminary Design for Human Subjects Evaluation

In this section, we outline a preliminary design for evaluation of the CSI toolchain with
human subjects. This procedure is inspired by previous studies in software engineering and
program analysis research [90, 91, 100, 108]. While we have not performed this experiment,
we present it here to guide future work. The study aims to answer three research questions:

1. Does CSI data (as presented by CSIclipse) impact the time for developers to fix bugs
from failure reports?

2. Does CSI data (as presented by CSIclipse) impact the quality of bug fixes?

3. Does CSI data (as presented by CSIclipse) impact developer perceptions of debugging
from failure reports?

Item 1 addresses the most intuitive question: can developers save time on post-deployment
debugging by using CSI? This question is undoubtedly important, but far from the only
important factor for debugging tools. Recalling that CSIclipse is specifically geared toward
helping developers better understand failing runs (and complement existing failure data),
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Item 2 looks at the quality of bug fixes. Underlying this question is the hypothesis that a
developer who better understands failing behavior is less likely to contribute incomplete fixes
or miss edge cases. Finally, Item 3 asks how developers perceive the contributions of CSI, and
whether it lessens common frustrations with postmortem debugging. Because our techniques
described throughout this dissertation target debugging post-deployment failures, the relevant
beneficiaries of our tools are industrial software developers (rather than software designers or
students learning to write code). We assume significant prior debugging experience.

The study uses a two-condition, within-subjects design with two debugging tasks. Each
task consists of an application and three failure reports pertaining to bugs for that program;
each failure report consists of a written summary and a core dump from the failing run. All
participants complete both tasks. In both conditions, participants use the Eclipse IDE with
support for postmortem debugging via gdb (through standard Eclipse tools); the second
condition adds the CSIclipse plugin (from Section 7.1) to Eclipse. We counterbalance by
randomizing both the order of tasks and the pairing of experimental conditions to tasks.

First, participants undergo refresher training on gdb features in Eclipse. Then, participants
attempt each task in a laboratory setting for a fixed time duration (e.g., 20min). Prior to the
task that uses CSI data, we present a brief overview of CSIclipse. After completing each
task, participants take a survey about their experiences on that task, with questions such as:

• How difficult was the application’s code to understand? (Scaled 1–10)
• [For each failure report] If you attempted it, how difficult was the bug in this failure
report? (Scaled 1–10)

• [For each failure report] If you completed it, how successful do you believe that you
were in fixing the bug in this failure report? (Scaled 1–10)

• Please estimate how much time you spent on each of the following activities during
this task. (If time was spent doing more than one activity simultaneously, count it for
both.) (1) Understanding the source code, (2) Understanding the failure, (3) Coding
(fixing bugs, writing tests, etc.), (4) Running the code or tests, and (5) Trying to get the
provided tools to work as expected.

After the completion of both tasks, a semi-structured interview gathers further comparisons
between tasks and asks specifically about the strengths and weaknesses of CSIclipse. Here,
we pose questions such as:

• Which of the tasks was more difficult? Why was it more difficult?
• In what situations was the CSI data useful? In what situations was it not useful?
• What did the CSIclipse tool not do that it should have done?
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All of these surveys address our third research question: they provide insight into whether a
developer perceives that debugging was more successful with CSI data, regardless of whether
or not this is actually the case.

To address the first two research questions, we also ask participants to mark particular
failure reports as “Complete” when finished with them, and gather participant modifications to
the code at the study’s completion. Then, we use the time data to calculate the total time that
each participant spent on each bug, and normalize by the number of bugs attempted (so as not
to penalize for bugs that a participant did not attempt to fix). The difference in fix times for our
two conditions (if significant) provides evidence for our first research question. However, as
stated earlier, the quality of fixes is also relevant in our context. Thus, assuming that a fix does
indeed correct execution for the original failing input, an independent experimenter assesses
the quality of each fix on a three-point scale: 0 indicates that the bug was not attempted, 1
indicates an incorrect or superficial fix (e.g., hard-coded return values), 2 is a near-perfect
fix (perhaps missing an edge case), and 3 indicates a completely-correct fix. Note that this
assessment can (and should) be blind to our experimental condition (i.e., whether CSIclipse
was used for the fix). If these quality values measurably improve when participants use
CSIclipse, we find evidence to answer our second research question.

In closing this section, we briefly comment on our study population. Recall that the
target for CSI instrumentation and analysis is industrial software developers with significant
prior debugging experience. Thus, unlike many prior studies [91, 160], our setup precludes
recruiting exclusively university students. Specifically, students without significant experience
on large industrial software projects are not within the target demographic for this study.
An acceptable condition would likely be that participants have at least six months of non-
academic software development experience, and an acceptable level of familiarity with gdb
as a debugging tool.

7.3 Related Work

Others [71, 120, 121] have developed Eclipse plugins to evaluate and display program
coverage information. Often, such tools operate in the context of running or automatically
generating JUnit test cases for Java programs. We draw inspiration from these tools on how
to present coverage information in the Eclipse IDE. However, our analyses (1) work in the
context of a single failure, (2) must handle partial coverage data (i.e., cases where multiple
executions could possibly lead to a provided failure report), (3) must recover this data from
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external failing executions (rather than Eclipse-local test executions), (4) segregate global
and stack-local best-effort coverage data, and (5) also include path trace information. These
concerns lead to different design choices. First, we use an explicit annotation for unknown
(i.e., Maybe) execution data, as some ambiguity is the normal case, even after csi-grissom
analysis. Second, we load execution data from external sources in CSV format; this also
allows CSIclipse to integrate with other instrumentation and analysis tools. Finally, we
separately analyze and display global versus local data; this allows us to take advantage of the
full range of CSI tools from this dissertation, and adapt to different debugging contexts.

Many prior tools present program traces to developers [9, 86, 125]. The Path Projection
toolkit [86] visualizes program paths from static analysis reports in an IDE, and provides
users with a variety of tools with which to explore, understand, and compare different error
paths. Our traces differ in some important respects: they are incomplete, and are derived
from incomplete data from deployed applications. Nevertheless, these are mature tools with
support for visualizing “nested” stack frame traces. CSIclipse could potentially improve
trace visualization by adopting similar approaches, or perhaps integrate with existing tools.

Whyline [92] is a debugging tool that allows programmers to ask “why” and “why not”
questions about a program’s execution in the context of an interactive debugging session.
The tool uses a combination of static and dynamic analysis to suggest and answer relevant
questions. CSIclipse similarly aids developers in understanding failing program executions,
but operates in a different context. We assume that failure data is recovered from deployed
software, and, thus, both our instrumentation and analysis techniques intentionally sacrifice
detail to improve tracing efficiency. Program slicing (in the context of debugging) extracts
portions of a program’s code that are relevant to a point of interest. Whyline and many other
tools [14, 69, 76] allow a developer to perform static (generalizing all possible executions) or
dynamic (restricted to a single failing execution) slicing within an IDE. Our csi-spotlight
analysis from Chapter 5, Section 5.2.2, performs dependence graph restriction (loosely:
partially-dynamic program slicing), and tools such as CSIclipsemay benefit from displaying
this data. While some foundational research suggests that slicing meshes with how developers
debug in practice [179], more recent work suggests that most developers are unaware of
slicing tools [145], and that even dynamic slices are often too large for practical use [194].

Recently, more software engineering researchers have evaluated tool effectiveness by
performing studies with human subjects [90, 91, 100, 108]. Our preliminary study design
from Section 7.2 is inspired by these prior studies. Our design could be used for evaluating
the effectiveness of the CSI system or other similar tools.
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8 conclusions

In this dissertation, we described the tools and techniques that make up the instrumentation
and postmortem analysis system, CSI, which specifically targets the requirements of deployed
applications. Overall, we showed that very low-overhead tracing can yield large benefits for
postmortem analysis of post-deployment failures. The coordination of customizable run-time
tracing with analysis techniques that can tolerate imperfect failure data was key to our designs.

In Part I, we developed and evaluated new program instrumentation techniques and
methods of tracing customization with overheads suitable for deployed applications. In
Chapter 2, we began by introducing two lightweight tracing mechanisms—path traces and
in-memory program coverage—that enhance readily-available information in core memory
dumps from crashing applications; overheads were only 0.5% for running time and 1.8%
memory use for a realistic combination of our path traces with coverage at call sites. In
Chapter 3, we built on this success and investigated methods to allow users and developers
to adjust tracing on-the-fly (without re-compilation and re-deployment). This additional
flexibility came at a cost of just 2.0% running time on average, and slowed no application
we studied by more than 4.6%. Finally, in Chapter 4, we presented broadly-applicable
optimization techniques for gathering program coverage based on customized requirements
post-deployment. Particularly for dense instrumentation, our optimizations significantly
reduced both compilation and run-time costs. Even for our call-site coverage mechanism
(which already focuses tracing significantly: targeting only call statements), we reduced static
instrumentation by up to 57%, and dynamic executions of coverage probes by up to 55% in
our experiments.

In Part II, we described and evaluated new postmortem analyses that work with incomplete
trace data from post-deployment failures, including our own techniques and other common
failure report elements. Our techniques focus on presenting results that are relevant for any
failing run matching the provided failure data, and are thereby relevant for both very sparse
failure reports (e.g., only stack traces) and very dense reports (e.g., near-full execution traces).
In Chapter 5, we described two families of analyses that restrict the relevant code that a
developer would need to consider while debugging, using our trace data from Part I. Our first
analysis restricted the set of control-flow graph nodes and edges that were potentially active
during matching failing runs, while our second analysis computed a trace-restricted program
dependence graph to facilitate hybrid static-dynamic slicing over incomplete failure reports.
Despite working with limited failure data, we see active node and edge reductions as high
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as 71%, and interprocedural slice reductions as high as 78%. In Chapter 6, we presented
a system for answering arbitrary control-flow queries over incomplete failure reports. This
system went beyond our prior analyses both in the queries we supported and the failure report
elements we were able to encode. We also introduced a new subclass of regular languages, the
unreliable trace languages, that are especially suited to answering user queries in polynomial
time. Finally, in Chapter 7, we presented a front-end tool to display tracing and analysis data.

At a high level, our results clearly indicate that instrumentation and postmortem analysis
techniques for deployed applications work best in coordination with one another. Our
techniques manifest this cooperation in numerous ways. In Chapters 2 and 5, we saw that
combining dense stack-local tracing (path traces) with interprocedural-focused coverage data
(at call sites) proved both an efficient and valuable combination. For example, one of our
evaluated applications, space, crashes within a loop in a complex function containing many
branches and a large switch statement. The bug is a missing exit statement within one
switch case. Our csi-spotlight analysis is able to provide the complete branch trace
within the crashing function, reducing the possible set of executed statements by over 65%.
This benefit comes at a tracing-time overhead of just 0.6% relative to uninstrumented code
(per Chapter 3, Fig. 3.2). In fact, the analysis of this space failure is a relatively simple,
intraprocedural example. Interprocedurally and in aggregate, for just 0%–5% execution time
overhead and 0%–4% dynamic memory overhead, we reduce interprocedural slice sizes by
51%–78%, per Chapter 5.

Our tracing mechanisms compensate for one another’s weaknesses for use in analysis: path
tracing provides dense data, but only at a limited distance from the failure point, while call-site
coverage is coarse-grained, but extends to both local and global scope. Our analyses are
structured, rather than simply adapted, to accept the imperfect failure reports that inevitably
arise from post-deployment crashes. This design is especially evident in our csi-grissom
analysis from Chapter 6, which accepts a large range of failure constraints from many tracing
tools (including our own from csi-cc). Here, we see a clear example of analysis scaling
based on failure report detail: our s-VPA solver precisely answers queries over small failure
reports (e.g., using only a stack trace), while our unreliable trace language solver gives up
some precision in our base analysis for a large overall benefit in precision by handling reports
with over 13,000 failure constraints (Chapter 6, Fig. 6.16).
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8.1 Lessons for Tool Developers

This section describes some key lessons relevant for developers who build tools for debugging
deployed applications. These lessons derive from our findings throughout this dissertation.

Everything is “best effort” Failure data is rarely or never perfect, especially for deployed
applications. Successful post-deployment tool developers should think about the meaning
of trace data and/or how analysis data can be interpreted in the presence of ambiguity and
imperfection. In our approaches, we always maintain soundness: we provide best-effort
results that reduce developer burden, but our results always generalize any single run that
could have produced the provided failure data.

Ambiguity using multiple tools Large instrumentation and analysis systems are built from
multiple tools, and different tools inevitably manifest differences in program representations.
Wemost notably grapple with this problem in Chapter 5, where differences in compilation-time
debug information between Clang and CodeSurfer cause disagreements in mapping our trace
data to CFG nodes. We largely avoid this problem with our csi-grissom analysis from
Chapter 6 by producing analysis CFGs from Clang as well; however, even there, we need to
map stack trace line numbers to CFG nodes, and multiple nodes may share the same line
number. These mapping challenges provide further evidence that postmortem analysis tools
should prepare for imperfect failure data (in this case: ambiguity in failure data).

Instrumentation changes have subtle impacts Seemingly simple factors can have dispro-
portionate impacts when tracing deployed applications and measuring single-digit overheads.
For example, effects on architecture-level caching behavior and branch prediction can become
dominant (and very relevant) at low overheads. Our path tracing mechanism from Chapter 2
makes seemingly small changes to the classic path profiling approach from Ball and Larus [22].
Nevertheless, we see much smaller overheads, partly because we meticulously designed our
instrumentation approaches, even down to how we implement modulus operations for circular
buffer wrap-around at the machine-code level. Cache effects also should not be discounted:
we move buffers into the stack and always access elements consecutively.
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8.2 Future Directions

This dissertation shows that postmortem analysis can draw great benefit from even imperfect
tracing data from post-deployment executions, especially if that tracing is chosen purposefully.
These successes also reveal several future directions for continued research, and we consider
some of the most promising venues in this section.

8.2.1 Instrumentation

Chapters 2 and 4 identify projects related to our path tracing and optimized coverage
mechanisms that could be adopted into csi-cc. For example, prior work [15, 173] specializes
path profiling to a subset of all paths through a procedure; coupled with an analysis
that determines the most “interesting” paths for failure analysis, these techniques may
apply in our scenario. Similarly, other techniques extend path profiles beyond single-
procedure acyclic paths [13, 51, 104, 115, 156, 164, 164]; the trade-offs between tracing
cost and path trace detail would be interesting to explore. For binarized coverage, existing
work [38, 85, 117, 118, 141, 169] dynamically inserts and deletes probes after they are first
triggered. The overhead savings here are often very large; an unintrusive method of dynamic
code modification would complement our optimizations from Chapter 4.

A key open question stemming from Chapter 4 is how to improve the efficiency of our
coverage optimizations. One primary target for improvement is the search for ambiguous
triangles in our locally optimal formulation. Despite the optimizations discussed in that
section, our approach performs a large amount of redundant computation by re-exploring
many sub-paths in the ambiguous triangles search. We have not proven a lower bound on
the complexity of this search, and a dynamic-programming solution or other memoization
techniques could improve performance. The fully-optimal approach from Chapter 4 may
also benefit from these improvements if adapted to use the sufficiency condition involving
ambiguous triangles from Section 4.2.1 more directly.

Another possible direction is to consider special cases where coverage optimization can
be much more efficient. For example, the “superblock” approach that combines a procedure’s
dominator and post-dominator trees, originally from Agrawal [4], appears to be near-optimal
for reducing coverage instrumentation at all statements over complete executions. Ball and
Larus [21] categorize instances of optimization for statement counts (i.e., where probes are
counters rather than Boolean-valued indicators) as undirected-cycle-breaking problems, and
analyze the complexity of these instances. No similar categorization exists for binarized
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coverage, and the complexity of important special cases (e.g., coverage instrumentation within
loops) remains an open question.

Our coarse-grained coverage mechanisms proved a useful complement to dense, stack-local
path traces. However, one might consider moving beyond coverage at call sites, and instead
capture occasional calling-context snapshots; prior work in precisely encoding call contexts
may be applicable [30, 162]. All of our tracing techniques from Part I focus on control flow,
though our PDG restriction analysis from Chapter 5 also disambiguates data flow. To leverage
aspects of data flow in our tracing, analyses such as those from Yuan et al. [192] to identify
“most-useful” variables may provide a starting point.

Our instrumentation from Chapter 3 proved efficient in supporting post-deployment tracing
customization. However, there we assumed that a developer would manually select tracing
schemes for each function in the program. This selection could be a daunting task, as it can be
difficult to predict which trace information will be particularly valuable for unknown failures;
the value of trace data certainly is not uniform across applications or procedures. We describe
some static filtering in Chapter 3 that reduces redundant tracing. Future work might consider
dynamic improvements to tracing, perhaps beginning with all functions tracing no data, then
gradually refining tracing based on previously-observed failures, building on our “Realistic”
configuration from Chapters 2 and 3. Additional tracing, in principle, should reduce the
entropy [158] or ambiguity of analysis results over future failing runs; however, many open
questions remain, including how to calculate this entropy measure, and how to estimate the
cost of enabling specific run-time tracing.

8.2.2 Postmortem Analysis

While our analyses from Chapters 5 and 6 efficiently reduce ambiguity in failing executions
and answer a wide range of control-flow queries based on a failure report, all approaches
are defined over just a single failure report. Future work could aggregate data from multiple
failures. For example, building on our PDG restriction analysis from Chapter 5, unions of
slices [27, 124] (though not necessarily valid slices [50]) could help to generalize from a
single failing run, while intersections of slices could highlight failure “hot spots.” Many
real-world software products use heuristics to cluster related failure reports [45, 65, 122], and
much research also exists on the topic [43, 52–54, 148, 177]. Traced data or analysis results
could improve the accuracy of clustering techniques.

Chapter 6 introduces the unreliable trace languages (UTL), and gives an algorithm to
answer user queries in polynomial time over a failure report consisting of UTL constraints. This
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polynomial-time decidability appears to be tightly linked to the UTL class (see Appendix A.2).
However, other extensions to UTL may be possible, and the theoretical relationship between
UTL and polynomial-time answers to queries over control-flow graphs remains open for
exploration. We discuss negation for a very limited subclass of UTL in Section 6.5.3 of
this chapter: specifically, negation for single-statement observations. This allowed us to
answer user-level queries as Yes, No, or Maybe (see the best-effort coverage problem from
Section 6.7) when solvers only answer individual queries as Possible or Impossible. Whether
one could answer queries in polynomial time while allowing negation for a larger subclass of
UTL remains an open question.

Formally, this classification of Yes, No, and Maybe closely resembles the problem of
evaluating a formula with respect to a partial (i.e., incomplete) model. For the latter, the best
possible result is given by the formula’s supervaluational meaning [33, 151, 172, 188]. For
our query recovery problems, the control-flow graph and failure report encodings play the role
of an incomplete model, and the user’s query corresponds to the formula to be evaluated. Our
language-based definitions from Chapter 6 have analogs in formal logic; for example, regular
languages are definable in monadic second-order logic [34]. The depth and implications of
this connection remain open for exploration.

Recent work [35, 36, 42, 78, 79, 153, 193] uses symbolic execution to synthesize inputs
matching failure data at various granularities. Our combination of lightweight tracing and
flexible postmortem analysis proved effective in significantly reducing failing execution
ambiguity. Whether our analyses are used as a pre-pass over the program’s CFG or our trace
data is used directly as constraints to a symbolic execution engine, our techniques throughout
this dissertation could prove useful in synthesizing failing inputs via symbolic execution. For
example, Jin and Orso [78] treat traced information as a series of goals; one could likely
encode csi-cc data in a similar framework.

Fault localization using post-deployment failure data has been a very popular research
topic [2, 23, 79, 82, 102, 106, 150, 195]. The techniques in this dissertation—whether for a
single failure or in aggregate—might similarly hold promise in the realm of fault localization.
Future work could consider techniques based on slice-based fault localization [102], or
investigate whether nuggets of traced data can serve directly as features correlated with failing
execution.

All analysis techniques from Chapters 5 and 6 operate over single-threaded applications.
All tracing from Part I of this dissertation is safe and valid for concurrent execution, but
the data does not specifically target concurrency primitives. Since parallel applications are
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becoming pervasive in the modern era, analyzing threaded or distributed applications is an
important future research direction.

A study similar to the human subjects evaluation outlined in Chapter 7 would be a
complement to the experiments from this dissertation. We have shown that our tracing
and analysis techniques can effectively reduce ambiguity in program executions from post-
deployment failure reports. Detailed studies of how developers debug in practice, and the
impact of tools like CSIclipse, would greatly benefit developers and tool designers. In the
long term, powerful tracing and analysis tools combined with studies of how to best present
their data could significantly improve the debugging experience for post-deployment failures.
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a proofs

A.1 Ambiguous Triangle Correctness Proof

In this appendix, we show that our two coverage set characterizations from Chapter 4 are
equivalent; that is, we show that coverage sets as defined in Definition 4.3 are equivalent to
the ambiguous triangles characterization from Section 4.2.1. More specifically, we prove
the contrapositive by negating our original definitions (which corresponds with how they are
actually used algorithmically): We show that there exists at least one ambiguous triangle
formed of paths from Pαβ, Pαd , and Pdβ—with Y1 and Y2 sets as defined in Section 4.2.1—if
and only if there exist two paths p1 and p2 that differ only in a desired node, violating
Definition 4.3.

For this proof, we are given a control-flow graph, G = (V, E), with entry vertex, e, and
input sets S, D, and X . From Definition 4.3, note that S is not a coverage set of D iff:

∃x ∈ X and ∃p1, p2 ∈ e→ x such that

V(p1) ∩ S = V(p2) ∩ S ∧ V(p1) ∩ D , V(p2) ∩ D

From Section 4.2.1, further note that the triple (α, β, d) where

α ∈ S ∪ {e} β ∈ S ∪ X d ∈ D \ S

forms an ambiguous triangle for G, S, and X iff:

Y1 , ∅ ∧ Y2 , ∅ ∧ Pαd , ∅ ∧ Pαβ , ∅ ∧ Pdβ , ∅

for (α, β, d) (using the additional path sets defined in Section 4.2.1).

Theorem A.1. For a given control-flow graph, G = (V, E), with entry vertex, e, and input
sets S, D, and X:

∃ ambiguous triangle (α, β, d) ⇐⇒ S is not a coverage set of D

We are thus proving a dual implication, and, in the remainder of this appendix, we cover
each implication in a separate section. Specifically, Theorem A.1 follows directly from
Lemma A.2 and Lemma A.5 in the following sections. We abuse notation slightly, and use
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V(. . . ) to indicate the set of vertices encountered along a single path or a set of paths. Thus,
for a set of paths P,

V(P) =
⋃
p∈P

V(p)

A.1.1 First Implication

In this section, we prove that ambiguous triangles correspond to two actual paths violating
Definition 4.3.

Lemma A.2. For a given control-flow graph, G = (V, E), with entry vertex, e, and input sets
S, D, and X:

∃ ambiguous triangle (α, β, d) =⇒ S is not a coverage set of D

Note that this section uses destructive assignment for computed paths y1 and y2 to simplify
presentation.

Proof. The proof is constructive, and forms appropriate paths p1 and p2 violatingDefinition 4.3
given an ambiguous triangle (α, β, d). The construction proceeds in four steps, as follows.

Step 1: Pick triangle Select any

pαβ ∈ Pαβ pαd ∈ Pαd pdβ ∈ Pdβ

from the ambiguous triangle computation such that there is only one occurrence of d along
path pαd ◦ pdβ. (Note that this is always possible: simply remove all nodes between the first
and last occurrence of d on any chosen path with multiple occurrences of d.) Thus, for the
remainder of the proof, we will consider the “Connected Excluding” predicate along pαd and
pdβ to be “

<S\Y∪{d}
−−−−−−−→,” except, of course, that we allow d to occur as the last vertex in pαd and

the first vertex in pdβ.

Step 2: Form y1 Next, we form the appropriate y1 ∈ Y1 for the selected paths. We start with

y1 = π ∈ Y1 such that V(π) ⊇ V(pdβ) ∩ V(Y1)
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Note that such a path must exist. All of the vertices in π can occur along e
<{d}
−−−→ α paths,

because all vertices in π are selected from V(Y1). Furthermore, the vertices can all occur
in the same path, because they occur in order along pdβ (where the “Connected Excluding”

predicate is more strict: it is “
<{d}
−−−→” for y1, but “

<S\Y∪{d}
−−−−−−−→” for pdβ).

Then

∀v ∈ V(pαβ ∪ pαd) ∩ V(Y1) :

update y1 = y1 ◦ π where π ∈ α
<{d}
−−−→ v

<{d}
−−−→ α

Again, note that the required paths must always exist. The α
<{d}
−−−→ v path exists because it

already occurs in pαβ or pαd . The v
<{d}
−−−→ α path exists because v ∈ V(Y1).

Step 3: Form y2 Finally, we form the appropriate y2 ∈ Y2 for the selected paths. Similar to
the y1 case, we start with

y2 = π ∈ Y2 such that V(π) ⊇ V(pαd) ∩ V(Y2)

By a parallel argument from the previous case, such a path must exist. All of the vertices in π
can occur along β

<{d}
−−−→ x paths (for at least one x ∈ X), because all vertices in π are selected

from V(Y2). Furthermore, the vertices can all occur in the same path (ending at some x ∈ X),
because they occur in order along pαd (where the “Connected Excluding” predicate is more
strict: it is “

<{d}
−−−→” for y2, but “

<S\Y∪{d}
−−−−−−−→” for pαd).

Then

∀v ∈ V(pαβ ∪ pdβ) ∩ V(Y2) :

update y2 = π ◦ y2 where π ∈ β
<{d}
−−−→ v

<{d}
−−−→ β

As before, the required paths must always exist. The β
<{d}
−−−→ v path exists because v ∈ V(Y2).

The v
<{d}
−−−→ β path exists because it already occurs in pαβ or pdβ.
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Step 4: Form p1 and p2 We can now form the required paths p1 and p2 that violate
Definition 4.3. They are:

p1 = y1 ◦ pαβ ◦ y2

p2 = y1 ◦ pαd ◦ pdβ ◦ y2

Both paths contain the same set of observation vertices:(
V(y1) ∪ V(y2) ∪ {α, β}

)
∩ S

However, d < V(p1) but d ∈ V(p2). �

A.1.2 Second Implication

In this section, we prove that any two paths that violate Definition 4.3 imply the existence of a
closely-related ambiguous triangle, as defined in Section 4.2.1. We begin by defining new
terminology in order to prove a necessary sub-lemma, before proceeding to prove the primary
lemma of this section.

Definition A.3. For vertex v and path π, occurrences(v, π) = {i such that πi = v}.

Lemma A.4. If there exists p1, p2 ∈ e→ x such that:

• V(p1) ∩ S = V(p2) ∩ S

• d < p1

• |occurrences(d, p2)| > 1

then there exists p3 ∈ e→ x such that:

• V(p1) ∩ S = V(p2) ∩ S = V(p3) ∩ S

• |occurrences(d, p3)| = 1

Proof. Consider each index i ∈ occurrences(d, p2). We begin by finding j, the index of the
first observation preceding index i in p2:

1 ≤ j < i such that p2j ∈ S ∪ {e} and
∀ j′ such that j < j′ < i, j′ < S ∪ {e}
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We then find k, the index of the first observation succeeding index i in p2:

i < k ≤ |p2 | such that p2k ∈ S ∪ {x} and
∀k′ such that i < k′ < k, k′ < S ∪ {x}

Next we find any:

a such that p1a = p2j

b such that p1b = p2k

Note that vertices for a and b must exist, since V(p1) ∩ S = V(p2) ∩ S.
Case 1: If b < a, we can construct:

p3 = 〈p11 . . . p1a〉 ◦ 〈p2j . . . p2k 〉 ◦ 〈p1b . . . p1 |p1 |
〉

Because p11 = e and p1 |p1 |
= x, we know that p3 ∈ e → x. Further, note that 〈p2j . . . p2k 〉

contains exactly one occurrence of d, because we selected j to be the first observation vertex
index prior to i, and k to the be first observation vertex index following i. In effect, we are
“stitching” part of path p2 (specifically, a sequence that contains exactly one occurrence of d)
into p1 (which contains no occurrences of d, by assumption). At this point, we have found an
appropriate p3, and not need consider further indices from occurrences(d, p2).

Case 2: If a ≤ b, we note the following possible substitution:

〈p2j . . . p2k 〉 7−→ 〈p1a . . . p1b〉

which would effectively “remove” the occurrence of d at p2i by “stitching in” a part of p1.
Note that any such substitution would not remove any observation vertices from p2, because j

and k are the most directly adjacent observations to i in p2.
If we perform all of the above substitutions for every index in occurrences(d, p2), we

would end up with a path containing no occurrences of d. Hence, if no index i fits the b < a

case above, we can construct p3 by applying all but one of the above substitutions to our
original p2, leaving exactly one occurrence of d. �

With this sub-lemma available, we now proceed to prove the primary lemma of this
section.
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Lemma A.5. For a given control-flow graph, G = (V, E), with entry vertex, e, and input sets
S, D, and X:

S is not a coverage set of D =⇒ ∃ ambiguous triangle (α, β, d)

Proof. The proof is again constructive, and forms an ambiguous triangle (α, β, d) from two
paths p1 and p2 that show that S is not a coverage set of D (via Definition 4.3). At a high level,
the proof selects appropriate α and β vertices that occur in both p1 and p2, which creates a
resulting Y set. Importantly, the selected α and β are such that the three sub-path “legs” of the
resulting triangle (paths pαβ, pαd , and pdβ as pictured in Fig. 4.2 from Section 4.2.1) contain
only vertices from p1 and p2, and no vertices from S \ Y .

We begin by assuming that we are given a pair of paths, p1 and p2, that serve as witness to
the violation of Definition 4.3. Then, by Definition 4.3, we know that:

d < V(p1) d ∈ V(p2)
V(p1) ∩ S = V(p2) ∩ S

Further, we assume that d occurs exactly once in p2. By Lemma A.4, such a single-d p2 is
guaranteed to exist if any p2 exists that satisfies the constraints above. The general approach
of this proof is to find an appropriate α and β such that the set Y = V(Y1) ∪ V(Y2) contains all
vertices in V(p1) ∩ S, while maintaining the necessary reachability relations between α, β,
and d to form the triangle.

The construction proceeds in three steps, as follows.

Step 1: Initialize the triangle Initialize the working triangle (not yet an ambiguous triangle
by our definition from Section 4.2.1) as follows:

pex = p1

ped = 〈p21 . . . p2n〉 such that p2n = d

pdx = 〈p2n . . . p2 |p2 |
〉
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Note that, at this stage, V(pex) ∩ S = V(ped ◦ pdx) ∩ S by construction. This further implies
both

V(ped) ∩ S ⊆ V(pex) ∩ S

V(pdx) ∩ S ⊆ V(pex) ∩ S

Step 2: Find α Find vertex v ∈ S∪ {e} such that pexi = ped j = v and where j is maximized.
That is, we find the latest occurrence of a shared vertex between pex and ped . Then, let

α = v

After this change, we now have an incomplete triangle formed by α and d (we have yet to
select β). Thus, we can define the following paths:

pαx = 〈p1i . . . p1 |p1 |
〉

pαd = 〈p2j . . . p2n〉

We can now compute the set Y1. We have at least two (possibly identical) paths in Y1: the
subpath from e to α from pex (i.e., 〈p11 . . . p1i〉), and the subpath from e to α from ped (i.e.,
〈p21 . . . p2j 〉). Note that this adds all earlier vertices in pex and ped to V(Y1), since they now

exist along some e
<{d}
−−−→ α path.

The first key observation is that V(pαd) ∩ S = ∅, since we chose j to be the latest
observation in ped . Thus, all vertices in V(ped) ∩ S will be included in V(Y1) after this step.
Recall that V(pex) ∩ S =

(
V(ped) ∪ V(pdx)

)
∩ S by our initial triangle construction. Thus, we

can further conclude that V(pex) ∩
(
S \V(Y1)

)
= V(pαx) ∩

(
S \V(Y1)

)
= V(pdx) ∩

(
S \V(Y1)

)
.

Step 3: Find β Now, we simply do a similar procedure in reverse for β. We find vertex
v ∈ S ∪ X such that pαxk = pdx` = v and where k is minimized. That is, we find the earliest
occurrence of a shared vertex between pαx and pdx . Then, let

β = v
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After this change, we now have a complete ambiguous triangle formed by α, β, and d. Thus,
we can define the following paths:

pαβ = 〈p1i . . . p1k 〉
pdβ = 〈p2n . . . p2` 〉

We can now compute the set Y2. We have at least two (possibly identical) paths in Y2: the
subpath from β to x from pαx (i.e., 〈p1k . . . p1 |p1 |

〉), and the subpath from β to x from pdx (i.e.,
〈p2` . . . p2 |p2 |

〉). Note that this adds all later vertices in pαx and pdx to V(Y2), since they now

exist along some β
<{d}
−−−→ x path.

To show that the triple (α, β, d) forms an ambiguous triangle, it will suffice to show
that V(pex) ∩

(
S \ V(Y1 ∪ Y2)

)
= ∅, since, by our initial assumption about paths p1 and p2

from Definition 4.3, V(pex) ∩ S = V(ped ◦ pdx) ∩ S. Recall that, after Step 2, we concluded
that V(pαx) ∩

(
S \ V(Y1)

)
= V(pdx) ∩

(
S \ V(Y1)

)
. Therefore, since we chose k to be the

earliest shared observation in pαx , we observe that V(pαβ) ∩
(
S \ V(Y1)

)
= ∅. Trivially, then,

V(pαβ) ∩
(
S \ V(Y1 ∪ Y2)

)
= ∅. Recall that pex is equivalent to (y1 ∈ Y1) ◦ pαβ ◦ (y2 ∈ Y2).

Thus, V(pex) ∩
(
S \ V(Y1 ∪ Y2)

)
= ∅. We have therefore constructed an ambiguous triangle

(α, β, d) by assuming the existence of two paths, p1 and p2, that violate Definition 4.3. �

A.2 Proofs of NP-hardness for Two Generalized Trace
Language Classes

Substantial portions of this appendix are derived from a 2017 technical report by
Ohmann et al. [131].

Unfortunately, the unreliable trace languages (described in Section 6.5.1) are a very tight
class. Specifically, the useful property of polynomial-time decidability for queries in unreliable
trace languages appears not to generalize beyond this restrictive class. Here, we prove that
two small extensions of the unreliable trace languages (to more generalized language families
describing program trace properties) result in language intersection problems with NP-hard
complexity.

Throughout this section we will often use regular expressions to define regular languages,
though most of our techniques are defined over automata. The equivalence of regular
expressions and finite-state automata is well-known, and, for each of the trace languages we
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define, this conversion is trivial and requires no more than a constant-factor increase from the
number of regular expression terms to the number of FSA transitions.

A.2.1 Allowing Ambiguity

The first generalization that we consider relaxes the requirement that each constraint be
composed of a sequence of characters, instead allowing a sequence of character classes.
Specifically, we consider the class of languages:

A =
{
Σ
∗C1 Σ

∗C2 . . . Σ
∗Cn Σ

∗

for n ≥ 0 and such that all Ci ⊆ Σ
}

Theorem A.6. The context-insensitive query recovery problem from Definition 6.7 is NP-hard
if all FPi ∈ A and R ∈ A.

Proof. The proof is via a straightforward reduction from Boolean SAT on formulae in
conjunctive normal form (CNF) [84].

We are given a CNF formula:

f = (p1,1 ∨ p1,2 ∨ . . . ) ∧ (p2,1 ∨ p2,2 ∨ . . . ) ∧ . . .

We begin by converting each conjunct into a regular expression as follows:

fi = pi,1 ∨ pi,2 ∨ · · · ∨ pi,n

⇓
ri = Σ

∗ [pi,1 pi,2 . . . pi,n] Σ∗

Our alphabet, Σ, is comprised of all literals in all of these conjunct formulae, along with
their negations. That is, from the single conjunct

π1 ∨ π2 ∨ π3

we would add the following characters to Σ:

π1, π1, π2, π2, π3, π3
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Note that all ri ∈ A; that is, all ri are generalized trace languages by our extended definition.
Furthermore, all ri are languages over Σ.

Next, we need to construct a language to enforce the principle of excluded middle. In
terms of our trace language, this corresponds to recognizing only strings with exactly one
of each literal (from our original CNF formula) or its negation. To do so, we construct our
principle of excluded middle regular expression:

L(M) = [σ1 σ1][σ2 σ2] . . . [σ|Σ | σ|Σ |]

from each σi ∈ Σ. This language recognizes those strings assigning “true” or “false” to each
literal appearing in the original CNF formula. Note that L(M) corresponds exactly to Li(G)
for a control-flow graph, G, that is a sequence of branches. Now, recall that each ri enforces
one of the original conjuncts of f . Thus, if⋂

i

(ri) ∩ L(M) , ∅

the original formula ( f ) is satisfiable. Each of the above steps is a straightforward linear
transformation from our original formula into a regular language, and, hence, the whole
transformation is clearly polynomial. Therefore, determining intersection-emptiness for this
generalized class of trace languages is NP-hard. �

A.2.2 Constrained Paths

The second generalization that we consider relaxes the requirement that each constraint have
no detail on what happens during execution between observation points. Specifically, if our
original alphabet is Σo, we consider the class of languages:

B =
{
C∗ σ1 C∗ σ2 C∗ . . . C∗ σp C∗

for p ≥ 0, C ⊆ Σo and such that all σi ∈ Σo
}

For the proof, we require a slightly extended alphabet:

Σ = Σo ∪ {#}

where the symbol “#” is not present in Σo, and is used only as a marker in the proof.
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Theorem A.7. The context-insensitive query recovery problem from Definition 6.7 is NP-hard
if all FPi ∈ B and R ∈ B.

Proof. The proof is via reduction from the decision version of the Shortest Common
Supersequence Problem (SCSP) on any alphabet (including a binary alphabet), which is
proven NP-complete by Räihä and Ukkonen [149]. The following input characterizes a SCSP
over an arbitrary alphabet:

• a size, z

• a set of sequences S = s1, s2, . . . , sn such that for all si ∈ S, all characters sij are
members of alphabet Σo = Σ \ {#}.

Solving the SCSP requires that one find a string R such that |R| ≤ z and for all si ∈ S, si is an
ordered subsequence of R (that is, si is obtained by deleting zero or more elements from R).

We begin by converting each si to a regular expression:

si = si1 si2 . . . sim

⇓
ri = Σ

∗ si1 Σ
∗ si2 Σ

∗ . . . Σ∗ sim Σ
∗

Note that all ri ∈ B—that is, all ri are generalized trace languages by our extended definition
(with C = Σ)—and this conversion is a simple enumeration of the sequence (and, hence, is
clearly polynomial). The intersection ⋂

i

ri

is always non-empty, as it always contains the concatenation of sequences s1 s2 . . . sn.
However, any string in this intersection that contains no more than z characters from Σo serves
as a witness for the original SCSP. Now, consider the language

L(Z) = (Σ∗o #)z Σ∗o

This language recognizes exactly those strings with z “#” characters. Furthermore, L(Z) ∈ B
(it is a generalized trace language with C = Σo). Finally, consider the language

L(V) = (# Σ?
o)
∗
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This language requires that every character from Σo be immediately preceded by a “#” character.
Furthermore, note that L(V) corresponds exactly to Li(G) for a control-flow graph, G, that
contains an infinite loop containing a large switch branching to nodes labeled with each
σ ∈ Σo, all branching back together into the single entry node labeled “#”. More concretely,
G = (N, n0,L, Ei, Ec, Er) where:

N = Σ n0 = # L = ∅
Ei = {(#, σ)∀σ ∈ Σ} ∪ {(σ, #)∀σ ∈ Σ}

Ec = ∅ Er = ∅

The language

L(Z) ∩ L(V)

contains those strings with exactly z “#” characters, where each “#” is optionally followed by
a single character from Σo. Hence, this language contains at most z characters from Σo.

Now, if the language

L(R) =
⋂

i

(ri) ∩ L(Z) ∩ L(V)

is non-empty, then a supersequence of size ≤ z exists for the original input sequences. This
supersequence is comprised of the ordered sequence of characters from Σo (i.e., excluding all
instances of “#”) in any witness for L(R). Note that L(R) is an intersection of generalized trace
languages (i.e., languages from B) with a feasible control-flow graph language Li(G), and
the above procedure checks this intersection for emptiness to obtain a solution to the original
SCSP. All transformations in generating L(R) are polynomial. Therefore, determining
intersection-emptiness for this generalized class of trace languages is NP-hard. �

A.3 Proofs of Correctness For Unreliable Trace Language
Intersection

Substantial portions of this appendix are derived from a 2017 technical report by
Ohmann et al. [131].

In this section, we present partial correctness proofs for our approach to checking
intersection-emptiness from Section 6.5.2. Specifically, we prove that our procedure—given
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a control-flow graph, G = (N, n0,L, Ei, Ec, Er), and a vector of unreliable trace constraint
vectors V that correspond to a set of failure report elements FP and a query R—answers
Possible if and only if the language intersection Li(G) ∩

⋂
j FP j ∩ R (by Definition 6.7) is

non-empty.

Theorem A.8. If our data-flow analysis procedure reports Possible, then the context-
insensitive intersection Li(G) ∩

⋂
j FP j ∩ R is non-empty.

Proof. Note that for any node n ∈ sccG, either in(n) = ⊥ or in(n) = out(m) for some
immediate predecessor m of n. If our procedure reports Possible, then there exists a path
p through sccG where n0 ∈ p1.nodes, in(pi) = out(pi−1) for all i ∈ 2 . . . |p|, and out(p|p|)
is a vector of empty vectors. We will use this path through sccG to form a witness to the
non-empty intersection.

Consider the difference between in(pi) and out(pi). This difference contains the set of
constraint observations that were consumed when passing through pi. For each constraint
FP j , the difference corresponds to a sequence of consumed symbols, c j . We then form the
string si = c1 q c2 . . . q c|c |. This string is not necessarily a substring of any trace in Li(G).
Fortunately, all symbols in si correspond to nodes or edge labels from G that are mutually
reachable from one another (i.e., they are in the same strongly-connected component). We
can form a new string, s′i , that corresponds to a partial trace from Li(G), and contains si as a
subsequence. Therefore, s′i contains, in order, all symbols consumed by every constraint at pi.
If the resulting s′i is empty, we update s′i to contain a single arbitrary node from pi .nodes.

For every adjacent pair (s′i, s′i+1), the final symbol in s′i , α, belongs to strongly-connected
component pi (from our path p) and the first symbol from s′i+1, β, belongs to strongly-connected
component pi+1 (also from the path p). Thus, there exists some partial trace wi from Li(G)
where wi1 = α and wi |wi |

= β. The following string is a witness to the non-empty intersection
Li(G) ∩

⋂
j FP j ∩ R:

s′1 q w1 q s′2 q w2 q . . . q s′|s |

�

Theorem A.9. If Li(G) ∩
⋂

j FP j ∩ R is non-empty, then our data-flow analysis procedure
reports Possible.

Proof. If we know that the intersection Li(G)∩
⋂

j FP j ∩R is non-empty, then there must exist
some witness string w over N̂L within the intersection. The context-insensitive condensation
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of G, sccG, induces a mapping from symbols in N̂L to nodes in sccG. We can thus, given a
witness string w, construct a sequence of substrings w1,w2, . . . ,wk where each wi consists of
exactly those symbols in w that mapped to the same strongly-connected component pi.

The induced sequence of strongly-connected components p = 〈p1, p2, . . . , pk〉 describes a
path through sccG. Note that all symbols appearing in all unreliable trace language vectors
V j appear in the witness w, so the consume() function will make no progress in any node
n ∈ sccG where n does not occur in p. That is, consume(n, f ) = f for n that do not occur in
p. This means that for all i ∈ 2 . . . |p|, in(pi) = out(pi−1). Further, no merge() operation (u)
can possibly return ⊥.

Thus, we simply need to show that, given path p over sccG, our data-flow approach
consumes all of the observations so that out(p|p|) is a vector of empty vectors. Concretely,
Fp |p | (Fp |p |−1(. . . Fp1(V))) is the vector of |V | empty vectors. Consider a single constraint
Vj = 〈Vj1,Vj2, . . . ,Vjm〉. Each symbolVjk appears in exactly one strongly-connected component,
pi, from the path p. For a given pair of observations Vja,Vjb with a < b, Vja appears in some
pα, and Vjb appears in some pβ. Note that Vja appears before Vjb in w, because the sequence
of symbols in Vj is a subsequence of w. Since sccG is a condensation of G, we therefore
know that α ≤ β.

Now, all symbols from V occur somewhere within the path p, and moreover, they occur in
order (as demonstrated). Recall (from Section 6.5.2) that consume(pi, in(pi)) will greedily
consume the longest prefix, x, of each vector in in(pi) where each symbol xn ∈ pi .nodes.
Each requirement vector is consumed independently in parallel as we call consume() over
each pi, and, as previously demonstrated, our approach will never merge facts to ⊥ in the
given problem instance. This allows us to conclude that the data-flow procedure consumes
all symbols from each Vj ∈ V , and out(p|p|) is a vector of empty vectors as desired. We then
report “Possible”. �
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b fully-optimal coverage optimization

Substantial portions of this appendix are derived from a 2016 technical report by
Ohmann et al. [133].

Obtaining an optimal solution to the Customized Coverage Probing Problem is an NP-hard
global optimization problem, as shown in Section 4.1.5. In this appendix, we provide a
detailed description of how we construct our optimal solution as a 0–1 mixed-integer linear
optimization problem based on the sufficiency condition for a coverage set from Section 4.2.1.
The full MILP itself is shown in Fig. B.1; we describe each piece in its construction, specifically
focusing on some of the key “widgets” making up the different constraints in our formulation.

In our descriptions, we assume that we are given input per Chapter 4, Section 4.1.1:
• G = (V, E), a directed graph with vertices V and edges E

• e ∈ V , a unique source (or entry) vertex with in-degree 0
• I ⊆ V , a subset of vertices that may be probed
• ci, the cost of probing vertex i ∈ I, where ∀i ∈ I, ci > 0
• D ⊆ V , a set of desired vertices
• X ⊆ V , a set of possible termination points

We build upon the sufficiency condition (and use the ambiguous triangle terminology) from
Section 4.2.1.

To begin, for notational convenience, we define all possible ambiguous triangles for all
possible sets S ⊆ I as the set of triples of vertices

T =
{
(α, β, d) ∈ (I ∪ {e}) × (I ∪ X) × D

}
Then, for each (α, β, d) ∈ T , we define an additional set of vertices corresponding to set Y

from Section 4.2.1. These are vertices occurring on paths from e to α or from β to a terminal
vertex that do not cross vertex d:

Yαβd =
⋃

x∈X,π∈e
<{d}−−−→α∪β

<{d}−−−→x

V(π)

The sets Yαβd can be constructed by simply checking basic graph connectivity, and we define
the numerical parameter

aαβdi =

{
1 if i ∈ Yαβd

0 otherwise
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which is provided as input to our model.
The goal is to find S, a minimal-cost coverage set of D. We first introduce the binary

selection variables
zi = 1 iff i ∈ S

to represent the selected coverage set. Next, we use five sets of binary variables, one for each
path set in the characterization of a coverage set from Section 4.2.1, that, when set to 1, will
force its set of paths to be empty:

sαd = 1 will imply that e
<{d}
−−−→ α = ∅

tβd = 1 will imply that β
<{d}
−−−→ x = ∅ ∀x ∈ X \ {d}

uαβd = 1 will imply that α
<S\Yαβd−−−−−−→ d = ∅

vαβd = 1 will imply that α
<(S\Yαβd)∪{d}−−−−−−−−−−−→ β = ∅

wαβd = 1 will imply that d
<S\Yαβd−−−−−−→ β = ∅

Recall from Section 4.2.1 that S is a coverage set of D if and only if at least one of these five
sets of paths is empty for all (α, β, d) ∈ T . To force this condition, we thus introduce the
constraint:

sαd + tβd + uαβd + vαβd + wαβd ≥ (1 − zd) ∀(α, β, d) ∈ T
The key widget in our formulation is the ability to model, for G = (V, E), whether or not

there exists a path between vertices k and ` (i.e., whether k → ` , ∅). From basic network
flow theory, k → ` , ∅ if and only if the inequality system

∑
j:(i, j)∈E

xi j −
∑

j:( j,i)∈E

xi j =


1 i = k

0 i , k, `

−1 i = `

(B.1)

xi j ≥ 0 ∀(i, j) ∈ E (B.2)

has a solution. Farkas’ Lemma, or basic linear programming duality theory [49], states that
the above system does not have a solution if and only if there exist dual multipliers ξ ∈ R|V |
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such that

ξi − ξ j ≥ 0 ∀(i, j) ∈ E (B.3)

ξk − ξ` ≤ −1. (B.4)

Note that, in this case, we can safely bound the dual multipliers in the range [−1, 1].
We use this widget as the basis of building our model. Note that we will require multipliers

for many choices of starting nodes k and ending nodes `. Specifically, for a fixed (α, β, d) triple,
we must enforce the non-existence of one of five different sets of paths (from Section 4.2.1),
so we again define five sets of variables. These variables are associated with the existence of
a particular vertex i ∈ V along each of the five paths; thus, for each class of variables, we
require one variable for each i ∈ V . For each (α, β, d) ∈ T , the following are the vertex (dual)
multipliers for the linear system (B.3)–(B.4).

θ
αβd
i : dual multipliers associated with e

<{d}
−−−→ α = ∅

η
αβd
i : dual multipliers associated with β

<{d}
−−−→ x = ∅ ∀x ∈ X \ {d}

π
αβd
i : dual multipliers associated with α

<S\Yαβd−−−−−−→ d = ∅

µ
αβd
i : dual multipliers associated with α

<(S\Yαβd)∪{d}−−−−−−−−−−−→ β = ∅

λ
αβd
i : dual multipliers associated with d

<S\Yαβd−−−−−−→ β = ∅

Returning to the higher-level goal, recall that each of the s, t, u, v, and w variables serves
as a forcing variable, ensuring that a particular subpath from the ambiguous triangle is ∅. To
take the simplest example, recall that if sαd = 1, we wish to enforce that e

<{d}
−−−→ α = ∅. Thus,

we must remove vertex d from the flow network given by (B.1). In the dual formulation, the
equivalent operation is to remove the inequality (B.3) for all (i, d) ∈ E and for all (d, j) ∈ E .
Loosely, we model this constraint by removing all incoming and outgoing edges for d from G

for these paths. Finally, our model should exclude e → α paths only when sαd = 1 (recall:
sαd directly implies the condition e

<{d}
−−−→ α = ∅). Thus, we need only enforce the forcing dual

flow constraint (B.4) when sαd = 1. Algebraically, replacing the upper bound in (B.4) with
1 − 2sαd will serve this purpose, since, as previously stated, all dual multipliers are bounded
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between [−1, 1]. Putting this logic together gives us the dual flow system

θ
αβd
i − θαβd

j ≥ 0 ∀(α, β, d) ∈ T , ∀(i, j) ∈ E | i , d, j , d

θ
αβd
e − θαβd

α ≤ 1 − 2sαd ∀(α, β, d) ∈ T

The remaining dual flow systems for η, π, µ, and λ are defined in a similar fashion.
However, there are some important and subtle differences. One complication arising in the
definition of the variables π (which corresponds to Pαd), µ (which corresponds to Pαβ), and
λ (which corresponds to Pdβ), is that we must exclude the set of vertices S \ Y from the
appropriate flow networks. Specifically, we want constraint (B.3) to be redundant when either
i ∈ S \ Yαβd or j ∈ S \ Yαβd . Note that i ∈ S \ Yαβd is equivalent to zi − aαβdizi = 1, since zi

indicates that i ∈ S and aαβdi indicates that i ∈ Yαβd . Thus, for example, in the flow system
for the variables π, constraint (B.3) is modified to be of the form

π
αβd
i − παβd

j ≥ −(zi − aαβdizi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T , ∀(i, j) ∈ E .

If tβd = 1, we wish to enforce that there is no path from β to any termination point

that avoids passing through d. That is, β
<{d}
−−−→ x = ∅ for all x ∈ X \ {d}. To model this

requirement, we introduce a special sink vertex χ with new edges (x, χ) for each x ∈ X \ {d}.
Note that we cannot make this transformation once over the original CFG, G, since the
incoming edges for χ depend on our choice of d. After the transformation, there will be at
least one path in β→ x for some x ∈ X if and only if the expanded network has a path from
β→ χ. That is, ⋃

x∈X\{d}
(β→ x) , ∅ if and only if β→ χ , ∅

Thus, in the flow system for the variables η, constraints (B.3)–(B.4) are modified to be of the
form

η
αβd
i − ηαβd

j ≥ 0 ∀(α, β, d) ∈ T , ∀(i, j) ∈ E | i , d, j , d

η
αβd
β − ηαβd

χ ≤ 1 − 2tβd ∀(α, β, d) ∈ T
η
αβd
x − ηαβd

χ ≥ 0 ∀(α, β, d) ∈ T , ∀x ∈ X | x , d
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The vertex χ is only relevant for these η constraints, and, thus, is not in V (for purposes of any
other constraints).

In the end, our objective is to minimize cost∑
i∈V

cizi

subject to the top-level constraint

sαd + tβd + uαβd + vαβd + wαβd ≥ (1 − zd) ∀(α, β, d) ∈ T

which, as stated earlier, asserts that one of the five subpaths forming an ambiguous triangle
is ∅. As proven in Appendix A.1, this further implies that S = {i ∈ V such that zi = 1} is a
coverage set of D.

With all of the above in place, we put all constraints together, resulting in the full MILP
shown in Fig. B.1. Note that the input is precisely that from Section 4.1, along with the
precomputed set T , and the precomputed Y set represented by numerical parameter a. All
constraints are defined over all triples in T . From the optimal model instance satisfying the
constraints from Fig. B.1 (i.e., the instance that minimizes the cost function), we can then
extract the optimal coverage set as S = {v ∈ I such that zv = 1}.
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min
∑
i∈V

cizi

subject to

sαd + tβd + uαβd + vαβd + wαβd ≥ 1 − zd ∀(α, β, d) ∈ T
θ
αβd
i − θαβd

j ≥ 0 ∀(α, β, d) ∈ T ,
∀(i, j) ∈ E | i , d, j , d

θ
αβd
e − θαβd

α ≤ 1 − 2sαd ∀(α, β, d) ∈ T
η
αβd
i − ηαβd

j ≥ 0 ∀(α, β, d) ∈ T ,
∀(i, j) ∈ E | i , d, j , d

η
αβd
β − ηαβd

χ ≤ 1 − 2tβd ∀(α, β, d) ∈ T
η
αβd
x − ηαβd

χ ≥ 0 ∀(α, β, d) ∈ T ,
∀x ∈ X | x , d

π
αβd
i − παβd

j ≥ −(zi − aαβdizi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,
∀(i, j) ∈ E

π
αβd
α − παβd

d ≤ 1 − 2uαβd ∀(α, β, d) ∈ T
µ
αβd
i − µαβd

j ≥ −(zi − aαβdizi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,
∀(i, j) ∈ E | i , d, j , d

µ
αβd
α − µαβd

β ≤ 1 − 2vαβd ∀(α, β, d) ∈ T
λ
αβd
i − λαβd

j ≥ −(zi − aαβdizi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,
∀(i, j) ∈ E

λ
αβd
d − λαβd

β ≤ 1 − 2wαβd ∀(α, β, d) ∈ T

zi ∈ {0, 1} ∀i ∈ V
sαd, tβd, uαβd, vαβd,wαβd ∈ {0, 1} ∀(α, β, d) ∈ T
θ
αβd
i , π

αβd
i , µ

αβd
i , λ

αβd
i ∈ R ∀(α, β, d) ∈ T ,

∀i ∈ V

η
αβd
i ∈ R ∀(α, β, d) ∈ T ,

∀i ∈ V ∪ {χ}

Figure B.1: The complete MILP formulation
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