
Inferred Interface Glue: Supporting Language Interoperability with Static
Analysis

by

Tristan Ravitch

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2013

Date of final oral examination: 08/09/2013

The dissertation is approved by the following members of the Final Oral Committee:
Ben Liblit, Associate Professor, Computer Sciences
Tom Reps, Professor, Computer Sciences
Susan Horwitz, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Timothy Tautges, Adjunct Professor, Engineering Physics

© Copyright by Tristan Ravitch 2013
All Rights Reserved

i

acknowledgments

I would like to thank Aditya Thakur, Tycho Andersen, Evan Driscoll, and Steve
Jackson for many productive technical discussions and valuable feedback for both
practice talks and paper submissions. I would also like to thank my advisor Ben
Liblit for consistent encouragement and support.

Most importantly, I thank Tycho Andersen, Polina Dudnik, James Doherty,
Aubrey Barnard, Erin Barnard, and Bess Berg for numerous bicycle rides and the
many other things that have made Madison enjoyable.

ii

contents

Contents ii

List of Tables iv

List of Figures v

Abstract viii

1 Introduction 1
1.1 Preliminaries 6

2 Related Work 8
2.1 Library Binding Generation 8
2.2 FFI Checking 10

3 Error Codes 12
3.1 Algorithm 14
3.2 Related Work 30
3.3 Evaluation 31

4 Semantics of Pointer Parameters 43
4.1 Symbolic Access Paths 48
4.2 Array Parameters 50
4.3 Output Parameters 51
4.4 Non-Nullable Parameters 57
4.5 Related Work 62
4.6 Evaluation 64

5 Memory Ownership 71
5.1 Allocators 72

iii

5.2 Finalizers 75
5.3 Symbolic Access Paths Revisited 77
5.4 Ownership Transfer 79
5.5 Escape Analysis and Lifetime 85
5.6 Shared Ownership and Reference Counting 89
5.7 Related Work 94
5.8 Evaluation 95

6 Conclusions107
6.1 Guidelines for Library Writers108
6.2 Closing Thoughts112

A Distributivity of Output Parameters113

B Future Work115
B.1 Inference through Structure Fields115
B.2 Targeted Runtime System Concerns115
B.3 API Usage Enforcement117
B.4 Interactivity and Inference Assistance118

References119

iv

list of tables

4.1 Functions with Inferred Parameter Annotations 65
4.2 Inferred Output Parameter Annotations 66
4.3 Inferred Array Parameter Annotations 68
4.4 Inferred Non-Nullable Parameter Annotations 69

5.1 Inferred Allocator and Finalizer Annotations 97
5.2 Number of inferred transfer and escape annotations 99
5.3 Number of inferred reference counting annotations. 104

v

list of figures

1.1 Relationships between analyses . 4

3.1 Types used in the error code analysis 14
3.2 A cleanup action whose error codes are ignored 17
3.3 A function with success and failure codes 18
3.4 Overview of Option types . 19
3.5 An ignored error code leading to a false-positive 23
3.6 A transitive error return . 28
3.7 Definition of FunctionDescriptor 29
3.8 A dangerous function in libarchive 32
3.9 A bug found in libarchive . 33
3.10 Internal invariant errors in bzip2 35
3.11 A function returning a boolean or error code from libusb 36
3.12 A complex error code from sqlite3 38
3.13 A masked error code from sqlite3 39

4.1 A C function signature with a pointer parameter 43
4.2 Possible implementations for figure 4.1 44
4.3 Definitions for figure 4.4 . 46
4.4 Example with access paths . 47
4.5 Conditional output parameters from GLPK 51
4.6 A generated wrapper for figure 4.5 51
4.7 The output parameter lattice . 52
4.8 An output parameter from libarchive 54
4.9 An aggregate output parameter from GLPK 56
4.10 A nullable pointer parameter with no check 59
4.11 A parameter guarded with a NULL check in exif 61
4.12 A NULL check with termination from GLPK 61

vi

5.1 C function signatures . 71
5.2 An allocation through an output parameter 73
5.3 A conventional derived allocator 74
5.4 Two finalizers from GLPK . 76
5.5 Manual annotations for GLPK . 76
5.6 A Python object wrapper . 81
5.7 A Python deterministic finalizer 82
5.8 Pinning Python objects with a context manager 83
5.9 Examples of escaping pointers from fontconfig library 87
5.10 Value flow escape graph for CaseWalkerInit in figure 5.9 88
5.11 Value flow escape graph for CmpIgnoreCase in figure 5.9 88
5.12 Reference counting in dbus-1 library 90
5.13 Managed types example from glib-2.0 library 93
5.14 Finalizer from exif library . 105

6.1 Defensive cleanup code . 110

vii

list of algorithms

1 Identifying transformed error codes 20
2 Computing the facts in scope for a basic block 21
3 Constructing transitive error descriptors 29

INFERRED INTERFACE GLUE: SUPPORTING LANGUAGE
INTEROPERABILITY WITH STATIC ANALYSIS

Tristan Ravitch

Under the supervision of Professor Ben Liblit
At the University of Wisconsin–Madison

Programs written in more than one programming language are polyglot programs. As high-level
programming languages are adopted more widely, polyglot programs become more common
because they must call code written in lower-level languages to interact with existing systems.
Manually calling low level code is tedious and error prone, in part due to semantic mismatches
between the languages in a polyglot program. Tools exist to automatically generate library
bindings (sets of wrapper functions that call low level code). However, existing tools require
extensive manual annotations provided by a programmer to yield useful results. We use static
analysis of C library source code to significantly reduce this manual annotation burden.

Our work infers descriptions of the interfaces that library developers intended to provide
for callers, but were unable to document due to limitations of the C type system. We infer
descriptions covering three important aspects of library interfaces: (1) numeric error codes
returned by functions, (2) more precise types for pointer parameters that expose deeper properties
about their uses, and (3) ownership semantics for objects constructed in C.

The results of these analyses can be used to generate idiomatic library bindings that make
polyglot programming easier and more natural. Furthermore, the inferred interface descriptions
serve as additional documentation and aid code understanding. Some of the analyses we describe
are unsound and incomplete; their results are intended to be informative and helpful to someone
familiar with the library being analyzed. Our evaluation shows that our results are helpful in
reducing this manual annotation burden and that the unsoundness and incompleteness in our
analyses are not significant problems in practice. Based on our experience, we suggest that
developers can make their libraries more amenable to inclusion in polyglot programs by keeping
their interfaces as abstract as possible.

Ben Liblit

viii

abstract

Programs written in more than one programming language are polyglot programs.
As high-level programming languages are adopted more widely, polyglot pro-
grams become more common because they must call code written in lower-level
languages to interact with existing systems. Manually calling low level code is te-
dious and error prone, in part due to semantic mismatches between the languages
in a polyglot program. Tools exist to automatically generate library bindings (sets
of wrapper functions that call low level code). However, existing tools require
extensive manual annotations provided by a programmer to yield useful results.
We use static analysis of C library source code to significantly reduce this manual
annotation burden.

Our work infers descriptions of the interfaces that library developers intended
to provide for callers, but were unable to document due to limitations of the C
type system. We infer descriptions covering three important aspects of library
interfaces: (1) numeric error codes returned by functions, (2) more precise types
for pointer parameters that expose deeper properties about their uses, and (3)
ownership semantics for objects constructed in C.

The results of these analyses can be used to generate idiomatic library bind-
ings that make polyglot programming easier and more natural. Furthermore, the
inferred interface descriptions serve as additional documentation and aid code
understanding. Some of the analyses we describe are unsound and incomplete;
their results are intended to be informative and helpful to someone familiar with
the library being analyzed. Our evaluation shows that our results are helpful in
reducing this manual annotation burden and that the unsoundness and incom-
pleteness in our analyses are not significant problems in practice. Based on our
experience, we suggest that developers can make their libraries more amenable to
inclusion in polyglot programs by keeping their interfaces as abstract as possible.

1

1 introduction

High-level programming languages are being adopted in many application do-
mains traditionally dominated by low-level languages such as C and C++. For
example, Python has gained acceptance in the scientific computing community.
Python, Javascript, Vala, and C# are significant contenders in the desktop ap-
plication space, as well as user-space system-level utilities. In certain rapidly
expanding application domains, such as web applications, low-level languages
never had a significant presence. There are many reasons for this linguistic shift,
including:

• high-level languages tend to be easier for beginners to learn;

• automatic memory management and more convenient default data struc-
tures make even experienced developers more productive; and

• high-level languages are memory-safe by default, offering advantages with
respect to security and reliability.

Unfortunately, no language exists in a vacuum. Many important system-level
services and functions are exposed only via libraries written in C (or similar
low-level languages). This functionality often cannot be duplicated in the desired
high-level language for a variety of reasons. One common reason is that high-level
languages, by their very nature, do not expose many low-level details of the
underlying hardware. This can render hardware-specific interactions impossible
and also make some types of performance-critical code difficult, if not impossible,
to implement. Code reuse is another important reason for high-level language
programs to call code written in a lower-level language. Well-tested code has
great value: its bugs are at least known, if not fixed. Rewriting code in another
language risks introducing new and unknown bugs. In many situations, there
may not be resources to port a body of code to a new language, even if such a
port is desirable. Additionally, sharing a single library among several languages

2

promotes interoperability. Even if the specification or documentation is incorrect,
if a library is self-consistent, all of the clients using it can still communicate.

As a result, high-level language programs must call functions written in
lower-level languages, making them polyglot programs. Function calls from
a high-level language to a low-level language are supported by the high-level
language through a foreign function interface (FFI), which creates a wrapper
function in the high-level language. A collection of these wrapper functions is a
library binding.

As an example, consider the scientific computing community. Scientists are
not generally trained systems programmers; furthermore, C is a dangerous and
unproductive language in which to conduct science due to its silently unforgiving
semantics. In this context, Python has gained a significant foothold in scientific
computing as a glue layer between high-performance low-level components.
Reusing high-performance libraries from a high-level language allows scientists to
focus on their work, rather than chasing dangling pointers and memory corruption.

When only a few functions from a guest library are required, it may be
convenient for a developer to use an FFI directly. However, building a complete
binding for a large library is tedious, expensive, and error-prone. This is especially
true when the interface of the library is evolving. Efforts to write and maintain
bindings to significant libraries are often backed by teams of developers. Some
examples include gtk2-perl, PyQt, PySide, gtkmm, and java-gnome: each of these
is a team of developers maintaining a high-level language binding to a low-level
library written by another team. These library binding developers represent
an under-served programming community whose work will only become more
important as polyglot development becomes more common. Additionally, if more
of their work can be automated, these developers can spend more effort improving
user-facing software rather than maintaining mechanical infrastructure.

It is impractical to hand-code library bindings with full function coverage for
large libraries. Tools such as SWIG (Beazley, 2002) and ctypeslib (Heller, 2008)
partially automate this process by parsing library headers and generating bindings

3

based on their contents. Several library binding teams, including PyGTK and
PyQt, have created and maintain their own code generators based on C and C++
header files. Unfortunately, the interfaces generated by header-scanning systems
do not take advantage of higher-level features offered by host languages without
extensive manual annotations provided by a programmer. Fundamentally, they
cannot do so because the only information available to them are the contents
of C header files, which usually only contain type declarations and function
type signatures. As a low-level programming language, C exposes few features
to programmers. Consequently, C programmers must encode any higher level
language features they wish to use with the limited features that C provides.

For example, while the C type system has an explicit representation of
statically-sized arrays, it does not have one for arrays whose size is determined at
run-time. C programmers represent these arrays as pointers to the first element
of the array. At the type level, this is indistinguishable from any other pointer
of the same type, such as one used to represent an output parameter. A binding-
generation system based on header scanning cannot differentiate between the
two cases. Without user provided manual annotations, a header scanning system
must generate a simple and unhelpful wrapper function that takes a pointer. This
simple wrapper foists the complexity of the interface onto the caller at every call
site. The resulting library bindings are unidiomatic and force high-level language
programmers to use their high-level language as if it were C.

While binding generators based on header scanning can produce idiomatic
bindings with extensive manual annotations, manually annotating a small library
is tedious and error-prone. It is often infeasible to fully manually annotate large
or complex libraries. In this work, we describe and evaluate analyses of C library
source code to recover the high-level features of library interfaces. While some
of these analyses are unsound and incomplete, they are nevertheless useful; their
results can be checked (and possibly corrected) by library developers and expert
library users with much less effort than fully manually annotating an entire library.
The checked and corrected results can be used to generate idiomatic library

4

C Library Source

Analysis

Error Codes

Pointers

Nullable

Output

Arrays

Memory

Inferred Annotations

AllocatorsFinalizers

RefCountsTransfer

Figure 1.1: Relationships between analyses

5

bindings in any desired high-level programming language. The information that
our analyses infer is also useful as additional API documentation, and can aid in
understanding the structure and use of a library. We will discuss three general
classes of analysis:

• The first analysis infers the numeric error codes that can be returned by
functions (chapter 3). This information is useful to ensure that all errors
have been handled by the caller. In many high-level languages, returned
error codes can be converted into more idiomatic exceptions.

• Next, we describe a suite of analyses to elucidate the semantics of pointer
parameters (chapter 4). Pointers are used to encode many complex con-
structs in C, none of which are apparent based on type signatures alone.
These analyses infer deeper properties about how they are used. This in-
formation can be used to generate safer and more idiomatic bindings that
automatically check invariants and handle simple but tedious conversions.

• Finally, we describe a set of analyses that infer ownership patterns for
objects allocated in C libraries (chapter 5). Together, these analyses let us
generate library bindings that delegate object lifetime management to the
garbage collector of a high-level language. In languages with a garbage
collector, this can significantly reduce the impedance mismatch between
C and the high-level language. Furthermore, this information is critical
even for C programmers, and it is often not documented explicitly. The
results of our analyses can thus aid C programmers, even in the absence of
a library binding.

The relationships between these analyses and their inputs are depicted visually
in figure 1.1. Edges between analysis components indicate the direction of infor-
mation flow. We conclude in chapter 6 by reviewing our results and suggesting
guidelines for library developers that wish to make their libraries more amenable
to polyglot programming and static analysis.

6

1.1 Preliminaries

This section outlines the conventions used in the rest of this document. Unless
otherwise stated, the analyses in this work operate on a single function at a time,
analyzing the entire call graph bottom-up. Cycles in the call graph are analyzed
repeatedly until a fixed-point is reached. Indirect function call targets are resolved
using Andersen’s points-to analysis (Andersen, 1994). We do not assume that
all call targets are visible because library clients can provide their own function
pointers in most cases.

We analyze library code represented in the LLVM (version 3.3) (Lattner and
Adve, 2004) IR, a three-address code in SSA form. Furthermore, the code we
analyze has been subject to global value numbering (Alpern et al., 1988). Together,
these transformations eliminate most local aliasing. Many of the analyses in this
work do not take further measures to deal with the effects of aliasing beyond
the aforementioned function pointer resolution. While our analysis has assumed
access to library source code, the work of Elwazeer et al. (2013) infers data types
and function signatures for binaries and produces an expressive LLVM IR output.
While this binary parser is unsound and incomplete, it would provide enough
information to support our analyses.

All of our analyses take as input summaries1 of the functions in the C standard
library and the functions defined by the POSIX standards. We automatically
generated the summaries for chapter 3 with an analysis of the GNU C Library
(GNU Project, 2013).

1.1.1 Witness Information

For each inference made by the analyses in this work, we collect witness informa-
tion that consists of line numbers and reasons for the deductions. These witnesses

1The summaries of the standard C library are largely hand-written, but some portions are
automatically generated.

7

are reported to the user through an annotated version of the library source. The
user can examine each deduction and see why it was made.

1.1.2 Dataflow Model

Several analyses in this work are based on dataflow analysis (Kildall, 1973). In
this section we briefly outline the formulation of dataflow analysis that we will
use. Each analysis has:

• a dataflow fact tracked for each program point;

• an initial state that holds at the unique entry or exit point of the function
being analyzed, depending on whether the analysis is forward or backward;

• a top element;

• a meet operator u; and

• a transfer function for each program point s (chosen based on the syntactic
form of statement s).

1.1.3 Experimental Setup

The experiments in this document were conducted on a dual quad core Intel Xeon
E5-2407 with each core clocked at 2.20 GHz and 32 gigabytes of RAM. We
analyze a suite of open source libraries ranging from hundreds of lines of code
to around half a million lines of code. We run all analyses on each library. The
full analysis completes in less than 5 minutes for most libraries. It takes about 30
minutes for the largest library, GTK+.

8

2 related work

There are two main bodies of research related to the work discussed in this docu-
ment: work on automatically generating library bindings and work on checking
manually-written library bindings for correctness. This section will discuss both,
and their relation to our work. More specific related work will be discussed
throughout the document as needed.

2.1 Library Binding Generation

The most prominent work on automatically generating foreign function interfaces
is SWIG (Beazley, 2002; Beazley and Lomdahl, 1997), which scans C and C++
header files to produce library bindings. Programmers are able to provide manual
annotations to improve the quality of the generated bindings. Unfortunately, the
generated bindings are direct transliterations to the target high-level language of
the C interface in the absence of manual annotations. Additionally, the SWIG
header scanner can only handle C and C++ inputs. SWIG annotations cover some
of the features and constructs discussed in this document; we could output SWIG
annotations to re-use some of SWIGs code generation facilities. However, the
results of some of our analyses have no SWIG analogue, and would benefit from
a custom code generator.

SWIG adopted work by Reppy and Song (2006), which focused on providing
data-level interoperability between host and guest languages. The work by Reppy
and Song accomplishes this with typemaps, which specify how automatic conver-
sions between high- and low-level data representations should be performed. The
typemaps must still be generated by hand, though, placing a significant annotation
burden on the user.

The work by Smolinski et al. (1999) on Babel is similar in many respects to
SWIG; however, the focus is slightly different. Babel is based on an intermediate
language derived from the interface description languages commonly employed

9

in RPC libraries: the Scientific Interface Description Language (SIDL). This
intermediate language adds features useful to scientific computing, especially
efficient sharing of dense numeric arrays. To fully exploit the benefits of this
sharing, all of the code in a polyglot Babel program must manipulate arrays
using a special array API provided by Babel. The primary focus of Babel is
to generate efficient bindings between languages given an interface description
encoded using SIDL. In contrast to SWIG, Babel supports more languages (C,
C++, Java, Fortran, and Python). Furthermore, bindings can be generated to
link any pair of languages without modifying the SIDL input. Unfortunately, the
generation of SIDL descriptions of interfaces is entirely manual. Thus, Babel
is also an interesting target output for our work. Using LLVM and gcc with the
dragonegg plugin, we could analyze Fortran and Java code and re-use some of
the code generation facilities of Babel.

More recently, the GNOME project introduced gobject-introspection (gob-
ject, 2011): a sub-project to generate bindings to libraries built on the GObject
framework. GObject is a C library implementing an object-oriented programming
system in C that is widely used in the GNOME project. Together, GObject and
gobject-introspection make a large body of code available to high-level language
developers. The code generation components of gobject-introspection take library
descriptions in an XML format as input. These input files describe libraries using
a set of features that overlap significantly with those in this document. Unfor-
tunately, direct comparisons between our results and the interface descriptions
from gobject-introspection are not as useful as one might hope. The GNOME
libraries follow a strict set of conventions that constrain C interfaces such that
the results of many of our analyses are implicit in the interface. Following such a
strict discipline is useful for polyglot programs that must use these libraries. In
general, however, most libraries benefit from our analyses because they do not
follow such strict conventions.

There are no provisions to automatically generate the interface descriptions
required by gobject-introspection and Babel. Either library authors or users must

10

provide them. The work discussed in this document can automatically generate
annotations for both projects by changing the output format from host-language
code to XML interface descriptions. This could allow us to re-use the code
generation facilities provided by projects like these, exploiting their specific
strengths that are targeting different groups of end-users. A developer in the
Babel project has expressed interest in this work, suggesting that it could have
broad appeal and utility.

2.2 FFI Checking

Several bodies of work focus on checking the correctness of manually-written
library bindings. Furr and Foster (2005) check the correctness of foreign calls
between O’Caml and Java, with a layer of C translation code in between. They
do this by implementing two type inference systems. One infers that the C code
uses the O’Caml FFI correctly, while the other ensures correct usage of the
Java Native Interface (JNI). Tan and Morrisett (2007) develop an inter-language
analysis for Java code that approximates the effects of foreign C code on the
state of the JVM. The approximated effects are presented to static analysis tools
as additional JVM bytecode instructions. They extract behavioral specifications
of the C code automatically using CIL. Both of these tools assume that foreign
language bindings for a given library already exist and seek to verify as much
as possible about their correctness statically. Not all FFI invariants are statically
checkable, however, so some dynamics checks are also required. Work on Jinn
by Lee et al. (2010) checks dynamic properties of foreign function calls. They
encode the invariants that must be maintained dynamically by the foreign function
interface in state machines, from which they synthesize dynamic checks.

While these techniques are effective at finding bugs in manually-written library
bindings, these bugs could be avoided entirely if the bindings were automatically
generated. Depending on the invariants expected by specific foreign function
interfaces, it may be able to generate bindings that are correct by construction.

11

At the very least, all of the code interacting with the foreign function interface is
consolidated in one place when bindings are automatically generated. Further,
checks for the dynamic properties enforced by Jinn can be automatically and
consistently inserted when bindings are automatically generated.

12

3 error codes

The C programming language lacks a standardized mechanism for reporting
run-time errors from callees to callers. Consequently, ad-hoc approaches to
reporting run-time errors to callers have proliferated. One common error reporting
mechanism requires libraries to define a set of numeric error codes, either with
an enumeration or as preprocessor definitions. These numeric error codes are
returned as int values. Idiomatic library bindings should transform returned
error codes into the native representation of the high-level language. The error
code identification analysis described in this chapter will facilitate generation of
library bindings that idiomatically handle returned error codes. While a seemingly
simple proposition, returning error codes can take many forms:

• Return values can always be int error codes with a single distinguished
code reserved to indicate success.

• Error codes could be values outside of the natural range of a function. For
example, a function returning a size could return negative error codes in
the case of an error, or a size otherwise.

• Functions could return a single value to signal an error, with additional
details of the error available from another locations. Many POSIX functions
return -1 to signal an error, and callers must inspect errno for the specific
error code.

This wide variety of error reporting styles can be difficult to manage correctly
from C because none of the details about reported errors are encoded in the
type system. Even the most well-intentioned programmer can forget to check a
returned error code. The problem is exacerbated in polyglot programs because
most high-level languages do not use returned int error codes to report errors.
Instead, most high-level languages report errors with option types or exceptions.

13

As a result, programmers in these high-level languages do not expect error codes
and thus do not check for them.

High-level language bindings to C libraries should transform returned int
error codes into an idiomatic form consistent with the error reporting mechanisms
of the host language. To do this, a binding generator must know 1) the set of
functions in the library that can return error codes and 2) the set of error codes
that the library uses. To facilitate this transformation, we propose an analysis
to infer descriptions of the error reporting mechanisms of C libraries. These
errors descriptions are suitable for generating library bindings. They also serve as
documentation for library interfaces that cannot be expressed in the C type system.
The results of this analysis are intended to aid library writers and knowledgeable
library users in fully documenting library interfaces. The analysis is unsound and
incomplete, but the results can dramatically reduce the manual annotation effort
required to document a library interface.

At a high level, the analysis iteratively bootstraps a description of the error
handling mechanism of a library that uses error codes to report errors. It starts
with a description of the errors reported by the dependencies for a given library
and determines how the library responds to those errors. It makes the assumption
that, when a library function handles a known error, it transforms it into a new
library-specific error that the function reports to its callers. Furthermore, we
assume that each library has only a single style of error reporting. The former
assumption is not always true. An error could be handled instead of being
propagated to the caller. To account for this, the analysis also builds a model of
successful computations to help refine the analysis results, eliminating the errors
that this assumption can introduce. Thus, the error model is constructed from
both negative and positive information. The analysis then attempts to generalize
these basic facts to learn more error codes and functions that report them.

14

data ErrorAction = CalledFunction Function
| StoreToGlobal Int Global
| StoreToParameter Int Parameter

data ErrorDescriptor =
ErrorDescriptor { errorCodes :: Set Int

, errorActions :: Set ErrorAction
}

EC :: Set Int
BD :: Map (BasicBlock, Instruction) ErrorDescriptor

Figure 3.1: Types used in the error code analysis

3.1 Algorithm

The analysis consists of 7 steps, which are repeated over the entire library until a
fixed-point is reached:

1. Build a model of the values returned when functions succeed.

2. Recognize returned error codes that are transformed into new error codes.

3. Remove success codes from known errors.

4. Classify functions as error-reporting functions or normal functions.

5. Generalize based on calls to error-reporting functions.

6. Generalize based on returned integers.

7. Identify transitive error returns.

The analysis maintains two values, whose types are shown in figure 3.1
persistently across iterations. The first is BD: a mapping of (basic block, control
predecessor) pairs to error descriptors. An instruction i is a control predecessor of
basic block b if b is control dependent on i. The control predecessor component

15

allows us to distinguish between multiple errors being checked on the same
branch. Each error descriptor is a record of the int error codes returned by
the block and a set of error actions taken by the basic block in response to an
acknowledged error. Each error action is one of:

• calling a function whose return value is not used as an argument to another
function,

• storing a constant to a global variable, or

• storing a constant through a pointer parameter.

The extra condition on the first type of error action attempts to focus the
analysis on functions that are called for their side effects. A function whose return
value is used as an argument to another function call was not called solely for
its side effects. We are interested in functions with side effects because they are
often used to report warnings through logging or other mechanisms.

The second value maintained across iterations is EC: a set of learned int error
codes used in the generalization steps. The error codes of each error descriptor
are added to the error code set as the error descriptors are associated with basic
blocks in the map. Each iteration allows the analysis to learn progressively more.
The error codes returned from a function f are:

ErrorCodes(f) =
⋃

(b,c)∈P

BD[b, c].errorCodes

where P is the set of pairs in which:
b ∈ BasicBlocks(f) and
c ∈ ControlPredecessors(b).

In our model, only functions of type int can return error codes. Unless
otherwise noted, this analysis ignores boolean functions and functions that always
return the same constant int. int is often used to represent boolean values in C,

16

which lacks a dedicated boolean type. We heuristically identify boolean functions
as those returning only the constant values zero and one.

3.1.1 Modeling Success

The analysis begins by learning models for how library functions report success.
Intuitively, we identify success by looking for functions that ignore possible error
codes to always return the same value on a branch. If the possibility of a call
failing is being ignored, that means the library author either forgot to handle it1 or
that the failure has no effect on the result of the function. Since the return value
is fixed for the branch, we assume that it must either be a success.

More precisely, we consider a branch of a function to report success if all of
the following hold:

• the branch returns a constant int (the success code),

• the branch calls a function f that returns error codes,

• the result of the call to f is never checked for errors, and

• the call to f is followed by instructions with side effects (such as function
calls or stores to memory).

The fourth condition is a heuristic intended to avoid identifying cleanup
code on failing branches as indicating success. More stringent restrictions are
possible. Figure 3.2 demonstrates why this fourth condition is necessary. The
call to cleanup_filters on line 30 can return error codes, which are ignored.
However, this code is actually an error branch that is simply cleaning up resources
before signaling failure on line 31. It would be incorrect to treat ARCHIVE_FATAL
as a success code here. The heuristic in condition four avoids this form of
incorrect deduction.

1Note that our manually constructed interface summaries for the C standard library do not
include the error returns for the printf family of functions because these are nearly never
checked.

17

1 static int
2 build_stream(struct archive_read *a) {
3 int number_bidders, i, bid, best_bid;
4 struct archive_read_filter_bidder *bidder, *best_bidder;
5 struct archive_read_filter *filter;
6 ssize_t avail;
7 int r;
8

9 for (;;) {
10 number_bidders =
11 sizeof(a->bidders) / sizeof(a->bidders[0]);
12

13 best_bid = 0;
14 best_bidder = NULL;
15

16 bidder = a->bidders;
17 for (i = 0; i < number_bidders; i++, bidder++) {
18 if (bidder->bid != NULL) {
19 bid = (bidder->bid)(bidder, a->filter);
20 if (bid > best_bid) {
21 best_bid = bid;
22 best_bidder = bidder;
23 }
24 }
25 }
26

27 if (best_bidder == NULL) {
28 __archive_read_filter_ahead(a->filter, 1, &avail);
29 if (avail < 0) {
30 cleanup_filters(a);
31 return (ARCHIVE_FATAL);
32 }
33 a->archive.compression_name = a->filter->name;
34 a->archive.compression_code = a->filter->code;
35 return (ARCHIVE_OK);
36 }
37

38 /* ... */
39 }
40 }

Figure 3.2: A cleanup action whose error codes are ignored

18

1 int
2 archive_read_support_compression_program_signature(
3 struct archive *_a, const char *cmd,
4 const void *signature, size_t signature_len)
5 {
6 struct archive_read *a = (struct archive_read *)_a;
7 struct archive_read_filter_bidder *bidder;
8 struct program_bidder *state;
9

10 /*
11 * Get a bidder object from the read core.
12 */
13 bidder = __archive_read_get_bidder(a);
14 if (bidder == NULL)
15 return (ARCHIVE_FATAL);
16

17 /*
18 * Allocate our private state.
19 */
20 state = (struct program_bidder*)calloc(sizeof(*state), 1);

21 if (state == NULL)
22 return (ARCHIVE_FATAL);
23 state->cmd = strdup(cmd);
24 if (signature != NULL && signature_len > 0) {
25 state->signature_len = signature_len;
26 state->signature = malloc(signature_len);
27 memcpy(state->signature, signature, signature_len);
28 }
29

30 /*
31 * Fill in the bidder object.
32 */
33 bidder->data = state;
34 bidder->bid = program_bidder_bid;
35 bidder->init = program_bidder_init;
36 bidder->options = NULL;
37 bidder->free = program_bidder_free;
38 return (ARCHIVE_OK);
39 }

Figure 3.3: A function with success and failure codes

19

While instances of returned success codes meeting these criteria are not
common, the instances we find, as in figure 3.3, provide useful information. In
this example, we see that the possible errors returned by the call to strdup on
line 23 are never checked. Furthermore, there are side-effecting actions (both
stores and calls) between the call and the return of a constant int on line 38.

While many libraries return an int code to indicate success, not all do. There
is a balance between trying to identify some success codes to refine the results of
the next step in the algorithm and accidentally identifying incorrect success codes,
which would hide real error codes. There is room to design more heuristics here,
or possibly to apply machine learning.

3.1.2 Recognizing Transformed Error Codes

1 Map :: (a ->b) ->[a] ->[b]
2

3 data Maybe a = Nothing | Just a
4

5 MapMaybe :: (a ->Maybe b) ->[a] ->[b]

Figure 3.4: Overview of Option types

Next, the analysis identifies basic blocks that handle a known error condition
and return a constant int. We refer to this as error transformation, since a known
error code from a callee is transformed into a new error code. The analysis records
an error descriptor for each basic block that transforms a known error code.

The algorithm to identify the error descriptors created by transformed error
codes, which uses the definition of an option type (Maybe) in figure 3.4, is
outlined in algorithm 1, which depends on algorithm 2. The algorithm analyzes
each basic block b that returns a constant int in a function separately. Each
control predecessor is a conditional branch predicated on a comparison. For
each block, the algorithm selects a control predecessor that compares the result
of a function, callee, that returns known error codes against a constant int on

20

line 4. Next, it computes the result of that call and an error condition, ψ, on
line 5. The error condition is a formula of the form

∨
i∈e vcallResult = i where e is

the set of int error codes that callee can return. vcallResult is a symbolic variable
representing the return value of the call to callee. ψ encodes all of the errors that
callee can return and is true on the branch where errors from callee are being
checked. The algorithm also computes the facts known about the result of the call
to callee that must hold for the scope of b.

Algorithm 1 Identifying transformed error codes

1: function FunctionErrorDescriptors(f)
2: for b← ConstantRetBasicBlocks(f) do
3: for cd← ControlPredecessors(b) do
4: if ChecksForErrors(cd) then
5: (callResult, ψ) ← CheckedError(cd)
6: case InducedFacts(b, callResult) do
7: Just facts :
8: φ← ψ ∧ facts
9: if IsSatisfiable(φ) then

10: d ← BlockDescriptor(b)
11: BD[b, cd] := d

The formula φ, defined on line 8, is the key insight of the analysis. If φ
is satisfiable, b is handling a known error code and transforming it into a new
error code: the constant int returned by b. φ is satisfiable if the possible values
returned by callee in the scope of basic block b intersect the values that callee
returns on error. The satisfiability check on line 9 is a call to an SMT solver. If b

does transform an error code, the algorithm associates the block descriptor with b

in BD on line 11.
Algorithm 2 shows how induced facts are computed. Induced facts are the

facts known about a value at the entry point of a particular basic block. The
call on line 3 returns true if the control predecessor compares the call result
against a constant int. The fact on line 4 is constructed directly from the
control predecessor dep. The comparison has two operands (lhs and rhs) and an

21

Algorithm 2 Computing the facts in scope for a basic block

1: function InducedFacts(b, callResult)
2: function BuildFact(dep)
3: if ComparesAgainstConstant(callResult, dep) then
4: thisFact← BasicFact(dep, callResult)
5: case InducedFacts(dep, callResult) do
6: Nothing :
7: return (Just thisFact)
8: Just enclosingFacts :
9: return (Just (thisFact ∧ enclosingFacts))

10: else
11: return InducedFacts(dep, callResult)

12: deps← DirectControlPredecessors(b)
13: case MapMaybe(BuildFact, deps) do
14: [] :
15: return Nothing
16: fs :
17: return (Just(

∨
fs))

equality or inequality relation (R). Without loss of generality, assume that lhs is
callResult. If rhs is a constant int, we construct a formula fragment of the form
vcallResult R rhs for the control predecessor. If dep is on the false branch of the
control predecessor branch, the formula fragment is negated.

The MapMaybe function is a variant of the standard Map function that oper-
ates over functions returning Option types. The type signatures for MapMaybe

and Maybe are shown in figure 3.4, along with the definition of Maybe, an instance
of an Option type. Intuitively, MapMaybe applies a function to each element of
a list, collecting the returned values and discarding the Nothing values.

Note that this algorithm as stated only considers results that could contain
errors and are compared against literals. It would be valid to check for errors
against some variable. This has not been observed in practice, so we have kept
this simpler formulation.

22

Example

The call to calloc in figure 3.3 on line 20 returns NULL if an error occurs. We
apply algorithm 1 to find the error descriptors for this function. Line 22 is a basic
block returning a constant. This block has two control predecessors: the first
on line 14 and the second on line 21. Consider the nearest control predecessor
(on line 21) first. It compares the return value of the call to calloc against a
constant; the callResult is state, and ψ is vstate = 0 because calloc returns
NULL on failure.

Next, we compute the induced facts using algorithm 2. There is one direct
control predecessor of the block on line 22. This dependency compares the call-

Result state against the constant 0. The basic fact generated by this comparison
is vstate = 0. The recursive call to InducedFacts returns Nothing because the
control predecessor on line 14 does not reference state. Thus, InducedFacts

returns the formula vstate = 0.
Returning to algorithm 1, φ is vstate = 0 ∧ vstate = 0, which is satisfiable.

The error descriptor for this block contains no error actions and records the return
value ARCHIVE_FATAL.

The reasoning is similar for the other control predecessor of this block.
Starting from the control predecessor on line 14 yields a φ where vbidder =

0 ∧ vbidder , 0, which is unsatisfiable. This control predecessor does not con-
tribute any error descriptors for this basic block.

3.1.3 Refining Error Descriptors

With models of both success and failure established, the analysis refines the set of
inferred error descriptors from the error transformation analysis in section 3.1.2
with the success model from section 3.1.1. The error transformation analysis
assumes that any constant returned while an error is being handled is a transformed
error code. This is not always this case. This phase of the analysis considers the
most frequently-occurring value among the observed success models to be the

23

1 static int
2 op_set_configuration(struct libusb_device_handle *handle,
3 int config)
4 {
5 struct linux_device_priv *priv =
6 __device_priv(handle->dev);
7 int fd = __device_handle_priv(handle)->fd;
8 int r = ioctl(fd, IOCTL_USBFS_SETCONFIG, &config);
9 if (r) {

10 if (errno == EINVAL)
11 return LIBUSB_ERROR_NOT_FOUND;
12 else if (errno == EBUSY)
13 return LIBUSB_ERROR_BUSY;
14 else if (errno == ENODEV)
15 return LIBUSB_ERROR_NO_DEVICE;
16

17 usbi_err(HANDLE_CTX(handle),
18 "failed, error %d errno %d",
19 r, errno);
20 return LIBUSB_ERROR_OTHER;
21 }
22

23 if (!sysfs_has_descriptors) {
24 /* update our cached active config descriptor */
25 if (config == -1) {
26 if (priv->config_descriptor) {
27 free(priv->config_descriptor);
28 priv->config_descriptor = NULL;
29 }
30 } else {
31 r = cache_active_config(handle->dev, fd, config);
32 if (r < 0)
33 usbi_warn(HANDLE_CTX(handle),
34 "failed to update descriptor: %d", r);
35 }
36 }
37

38 return 0;
39 }

Figure 3.5: An ignored error code leading to a false-positive

24

success code used throughout the library. Any error descriptors identified by the
error transformation analysis that return the success code are discarded and the
success code is removed from EC.

For example, the error code returned by cache_active_config on line 31
in figure 3.5 is handled by simply emitting a warning and then ignoring the error.
However, a constant 0 is returned after this error is handled. The error transfor-
mation analysis concludes that the error code from cache_active_config is
transformed into a constant 0, which is true, but not indicative of error handling
code. However, the success model for this library indicates that 0 is returned
when functions succeed. Thus, this erroneous error descriptor can be discarded.

The analysis discovers extraneous error descriptors any time an error from a
callee is handled without being propagated to the caller, or is ignored.

3.1.4 Classifying Functions to Find Error Reporters

A key component of the error descriptors collected in and refined by the previous
analysis steps is the set of error actions taken while an error code is being
transformed. In many libraries, these sets often include functions used to report
errors by logging or by recording more detailed information about errors than is
possible through returned error codes alone. Ideally, these error actions could
be used to identify error handling code guarded by conditional branches that we
cannot associate with known errors.

Unfortunately, these error actions contain calls to more that just error reporting
functions. Code handling errors frequently calls functions to clean up resources
that are no longer needed before returning an error code. Pattern matching on all
of the error actions we observe in section 3.1.2 would identify any cleanup code
as error reporting code. This is clearly not correct, as cleanup code occurs even
more frequently outside of error handling contexts.

This step in the analysis classifies the functions appearing in sets of error
actions as either error-reporting functions or other functions. Those functions

25

classified as error-reporting functions will be used to identify additional error
codes in the next phase of the analysis. We have three classification strategies:

Null Classification
No error actions are classified as error-reporting functions. This implies
that no new error codes will be learned based on error actions. This simple
strategy is sufficient for some libraries.

Simple Classification
The function that is called in more than half of all error descriptors is
classified as the error-reporting function for the library. This strategy is
limited in that it only chooses a single function; if more than one function
is used, all but one (or even all) will be missed. Furthermore, if no single
function is used in more than half of the error descriptors for a library, no
error-reporting function will be chosen and no new error codes will be
discovered.

In the libraries we have observed that return error codes to report errors,
only a single error-reporting function is used. This indicates that this simple
classification heuristic may be sufficient in practice.

Machine Learning
We have also experimented with applying machine learning techniques
to this classification problem. Machine learning provides many binary
classification techniques that could be applied to this problem. We trained
a Support Vector Machine (SVM) with LIBSVM (Chang and Lin, 2011),
using the following features for each function in a set of error actions:

• the number of times the function appears in an error descriptor divided
by the number of error descriptors,

• a binary feature that is 1 if the result of the function is used as the
argument to another function and 0 otherwise,

26

• the number of times the function is called in a basic block reporting
success divided by the number of basic blocks reporting success, and

• the number of times the function is called in a basic block reporting
success divided by the number of times the function appears in an
error descriptor.

This classifier performed poorly. It exhibited 0 percent recall, even on
the training data. The culprit seems to be the skew in our training data.
We have very few examples of error-reporting functions (at most one per
library) and up to hundreds of other functions. Despite a clear separation
in the data, there are not enough examples for the SVM algorithm to train a
useful model.

The suitability of machine learning techniques to this problem is still an
open question. The clear separation in the feature space between the true
error-reporting functions suggests that a more nuanced training procedure
may be able to overcome the skew in our label distributions. Specifically,
weighting or replicating our positive examples may help.

The simple classification function only works for libraries that always use
the same function to report errors. Some libraries use more than one; however,
in the cases we have observed, those libraries do not return int error codes and
are beyond the scope of this analysis. Approaches based on machine learning
techniques should help with this more general problem. Manual examination of
the feature vectors we compute indicate that machine learning may be plausible.

3.1.5 Generalizing from Calls

Using the function(s) classified as error reporters in section 3.1.4, the analysis
next learns new error codes, or generalizes. If any basic block (1) does not have
an error descriptor associated with it, (2) returns a constant int, and (3) calls
an error-reporting function, the basic block is inferred to be error handling code.

27

The analysis associates an error descriptor d with the basic block and the error
code is added to the set of error codes (EC):

∀cd ∈ ControlPredecessors(b) : BD[b, cd] := d

The error descriptors discovered in this step allow the analysis to refine its
model of the error reporting function(s) for the library.

3.1.6 Generalizing from Returns

Next, the analysis uses the set of learned int error codes, EC, to find new error
handling blocks. Basic blocks returning a constant int i ∈ EC are considered
to be handling errors. For each basic block b generalized in this way, the block
descriptor map is updated with a new error descriptor d:

∀cd ∈ ControlPredecessors(b) : BD[b, cd] := d

These new error descriptors allow further generalization in later iterations.

3.1.7 Identifying Transitive Errors

The previous analysis phases identify returned error codes returned as constants
by functions. While many error codes are returned this way, many others are
returned transitively, as in figure 3.6 on lines 11 and 15. While we could handle
transitive error returns trivially by merging the error descriptors from the callee
and associating the result to the basic block issuing the function call, we can be
more precise and filter out error codes that cannot possibly be returned. Note that
this analysis differs from the others in that it operates over all functions with an
int return type.

We can use ErrorCodes to define the error descriptor for a function (shown
in figure 3.7). This definition is used in algorithm 3. Note that the function
descriptor discards the error actions of its constituent error descriptors. In a

28

1 static int
2 header_pax_extensions(struct archive_read *a,
3 struct tar *tar,
4 struct archive_entry *entry,
5 const void *h)
6 {
7 int err, err2;
8

9 err = read_body_to_string(a, tar, &(tar->pax_header), h);
10 if (err != ARCHIVE_OK)
11 return (err);
12

13 err = tar_read_header(a, tar, entry);
14 if ((err != ARCHIVE_OK) && (err != ARCHIVE_WARN))
15 return (err);
16

17 err2 = pax_header(a, tar, entry, tar->pax_header.s);
18 err = err_combine(err, err2);
19 tar->entry_padding = 0x1ff & (-tar->entry_bytes_remaining);
20 return (err);
21 }

Figure 3.6: A transitive error return

transitive error return, those discarded actions are performed by the transitive
callee; the caller does not perform those actions, so they are discarded.

Algorithm 3 operates on each basic block b that transitively returns error
codes. For each such block, retVal is the value transitively returned by f . As
in algorithm 1, we let ψ be a formula representing the facts we know about the
program value retVal in basic block b. The TransitiveReturnCallees function
returns all known callees for the call site. Each callee can return one or more
return codes. Each return code rc is considered individually. If formula φ is
satisfiable, then there is an assignment of values to vretVal such that rc has not
been filtered out by the conditions in scope for basic block b. This means that rc

is a transitive return value of f and it is added to the block descriptor map BD.

29

FunctionDescriptor(f) =
ErrorDescriptor{errorActions = ∅

, errorCodes = ErrorCodes(f)
}

Figure 3.7: Definition of FunctionDescriptor

Algorithm 3 Constructing transitive error descriptors

1: function RecordTransitiveErrors(f)
2: for b← TransitiveReturnBlocks(f) do
3: retVal← TransitiveReturnValue(b)
4: ψ ← InducedFacts(b, retVal)
5: for callee← TransitiveReturnCallees(b) do
6: for rc← ReturnCodesFor(callee) do
7: φ← vretVal = rc ∧ ψ
8: if IsSatisfiable(φ) then
9: for cd← ControlPredecessors(b) do

10: d ← FunctionDescriptor(callee)
11: BD[b, cd] = d

As a concrete example, consider the transitive return on line 15. The transitively-
returned value is err, which is the return value of callee tar_read_header. At
this basic block, ψ is

verr , ARCHIVE_OK ∧ verr , ARCHIVE_WARN

For simplicity, assume that tar_read_header can only return two error
codes: ARCHIVE_WARN and ARCHIVE_FATAL. Letting rc be ARCHIVE_WARN first,
we let φ be

verr = ARCHIVE_WARN ∧ (verr , ARCHIVE_OK ∧ verr , ARCHIVE_WARN)

30

This formula is clearly unsatisfiable, so ARCHIVE_WARN is not transitively
returned from tar_read_header. Letting rc be ARCHIVE_FATAL, φ is

verr = ARCHIVE_FATAL ∧ (verr , ARCHIVE_OK ∧ verr , ARCHIVE_WARN)

This formula is satisfiable, so we conclude that ARCHIVE_FATAL is transitively
returned by header_pax_extensions from tar_read_header.

3.2 Related Work

Sidiroglou et al. (2009) use fuzzing to identify error handling code, which they
use to implement error virtualization. Their fuzzing uncovers error handling code
written by programmers. They then instrument programs to trap unhandled errors.
The instrumentation modifies the program state to route the trapped unhandled
errors to known error handling code, thus “virtualizing” the error handling code.
Our work could complement their fuzzing-based approach, as a static approach
may reveal more code that is difficult to reach with fuzzing tools.

The error propagation analysis of Rubio-González et al. (2009) tracks errors
from the point they are generated in a program to the location at which they are
handled. This flow and context sensitive interprocedural analysis for C and C++
reports dropped or otherwise unhandled errors. Their analysis requires the set of
error codes to be manually specified, and they use a set of hard-coded heuristics to
mark code as an error handler. Our analysis is not context sensitive, but could be
complementary to the work of Rubio-González et al. in that we can automatically
identify error codes.

Work on automating error recovery through compensating actions by Weimer
and Necula (2004) also looks closely at error reporting and handling code. Their
work, like ours, is unsound and incomplete. Unlike ours, they analyze Java and
only consider checked exceptions in their analysis. Furthermore, their analysis is
specialized to intraprocedural resource management errors.

31

Weimer and Necula (2005) mine implicit specifications for use in program
verification from error handling code. Their intuition is that programs are more
likely to violate specifications on infrequently executed error paths. They also
expect programmers to mishandle some run-time errors, which will manifest as
violations of the mined implicit specifications. Their work targets Java, and they
need only identify catch blocks to find error handling code. Our work finds
more general classes of error handling code that are not explicitly bracketed with
a language construct.

Work by Engler et al. (2001) examines systems code written in C and is based
on inferring intended library invariants based on apparent programmer beliefs.
They give an example where calling unlock(l) implies that the programmer
believed that l was locked. They use these beliefs to probabilistically infer
correctness rules for systems. Their analysis is implemented as a set of code
templates that they look for in code. We use a similar approach to infer error
reporting functions; we treat the co-occurrence of called functions with error
transforming code as significant and make further deductions based on it.

Given that error handling code is not as well tested or understood as the rest
of a codebase, focusing automated testing tools (Godefroid et al., 2005) on error
paths could be especially beneficial. The directed testing procedure could be
directed toward the error handling paths that our analysis identifies, thus enabling
more scrutiny of these poorly understood and tested portions of code.

3.3 Evaluation

To evaluate the effectiveness of the analysis presented in this chapter, we discuss
several case studies of the analysis results. We have evaluated only libraries
that return numeric error codes. The analysis was developed primarily around
libarchive, which could be viewed as our training data. The other libraries act as
test data.

32

1 /*
2 * Obsolete function provided for compatibility only.
3 * Note that the API of this function doesn’t allow
4 * the caller to detect if the remaining data from the
5 * archive entry is shorter than the buffer provided,
6 * or even if an error occurred while reading data.
7 */
8 int
9 archive_read_data_into_buffer(struct archive *a,

10 void *d, ssize_t len)
11 {
12 archive_read_data(a, d, len);
13 return (ARCHIVE_OK);
14 }

Figure 3.8: A dangerous function in libarchive

3.3.1 Case Studies

libarchive

libarchive is a medium-sized library (about 35,000 lines of code with 267 public
functions) for reading, manipulating, and writing compressed archive files in a
variety of common formats. The library returns int error codes with #defined
mnemonics. 0 is returned to indicate success, while error codes are mostly
negative numbers. One error constant is positive and is returned to indicate that
an operation reached the end of a file. Only some of the 152 functions with an
int return type actually report errors; 72 of the int-typed functions cannot fail.

Our error code analysis correctly identifies the success code and recognizes
76 of the 77 functions that can return error codes. Four of the functions that return
error codes call the missed function. These four functions are recognized as
returning error codes, but some of the error codes that they can return are missed.
As a consequence of the restrictions stated in section 3.1, the analysis misses
three functions that always fail (i.e., return the same error code, and no other

33

1 static ssize_t
2 file_read(struct archive *a, void *client_data,
3 const void **buff)
4 {
5 struct read_FILE_data *mine =
6 (struct read_FILE_data *)client_data;
7 ssize_t bytes_read;
8

9 *buff = mine->buffer;
10 bytes_read = fread(mine->buffer, 1,
11 mine->block_size, mine->f);
12 if (bytes_read < 0) {
13 archive_set_error(a, errno, "Error reading file");
14 }
15 return (bytes_read);
16 }

Figure 3.9: A bug found in libarchive

values, on all paths) because the compile-time options disabled some features in
the library:

• archive_write_set_compression_bzip2,

• archive_write_set_compression_xz, and

• archive_write_set_compression_lzma.

The reports generated by this analysis can help identify dangerous APIs.
For example, our analysis reports that the function in figure 3.8 does not report
any errors. The name suggests it should, since most read operations can fail.
Indeed, the function that it wraps, archive_read_data, is known to return error
codes. An analysis to find dropped error codes (Rubio-González et al., 2009)
would report this function as suspicious. This function is actually regarded as
obsolete according to the comment accompanying it in the source (included here).

34

However, this warning is not included in the header file that exposes this function
to users.

Furthermore, this analysis revealed a bug in an internal function of libarchive.
The buggy code is shown in figure 3.9. The analysis reported that file_read
does not return any error codes. Again, as a function that reads from disk, it
should be able to fail. The author of the function copied code from a similar
function that called read and changed the low-level call to fread. Unfortunately,
while read returns -1 on error, fread does not. Instead, it returns a short byte
count and the caller must call ferror on the file handle to check for an error. We
reported the bug and it has since been fixed (Ravitch, 2012).

bzip2

The bzip2 library provides two APIs, one high-level and one low-level, for data
compression. It is a small library with only 15 public functions. Of the public
functions, 9 return ints. The analysis is unable to infer that 0 is a success code
because our success code heuristic does not apply to any functions in the library.
As a result, the analysis is unable to use a success model to refine the set of
inferred error descriptors. The function BZ2_bzRead transforms all errors to 0
and reports error information to callers through an output parameter, generating
error descriptors recording 0 as an error code. The analysis then incorrectly
concludes that all 9 int-returning functions in bzip2 can fail with error code 0.

Furthermore, the analysis misses error codes that are returned only in re-
sponse to violated invariants, rather than lower-level system events. All 9 of the
int-returning functions in bzip2 are able to return these internal-only error codes.
Examples of this can be found in the function BZ2_bzCompress in figure 3.10.
The preconditions checked on lines 4 to 7 are checking invariants that the function
expects to hold for values of type bz_stream. Later, the function executes a
state machine and returns errors if unexpected states arise, as in lines 12 and 26.
More stream invariants are checked on lines 28 and 32. Since these error codes
are never returned in response to system events, or even in the same functions as

35

1 int BZ_API(BZ2_bzCompress) (bz_stream *strm, int action)
2 {
3 EState* s;
4 if (strm == NULL) return BZ_PARAM_ERROR;
5 s = strm->state;
6 if (s == NULL) return BZ_PARAM_ERROR;
7 if (s->strm != strm) return BZ_PARAM_ERROR;
8

9 preswitch:
10 switch (s->mode) {
11 case BZ_M_IDLE:
12 return BZ_SEQUENCE_ERROR;
13

14 case BZ_M_RUNNING:
15 if (action == BZ_RUN) {
16 return progress ? BZ_RUN_OK : BZ_PARAM_ERROR;
17 }
18 else if (action == BZ_FINISH) {
19 s->mode = BZ_M_FINISHING;
20 goto preswitch;
21 }
22 else
23 return BZ_PARAM_ERROR;
24

25 case BZ_M_FINISHING:
26 if (action != BZ_FINISH) return BZ_SEQUENCE_ERROR;
27 if (s->avail_in_expect != s->strm->avail_in)
28 return BZ_SEQUENCE_ERROR;
29 if (s->avail_in_expect > 0 || !isempty_RL(s) ||
30 s->state_out_pos < s->numZ) return BZ_FINISH_OK;
31 s->mode = BZ_M_IDLE;
32 return BZ_STREAM_END;
33 }
34 return BZ_OK; /*--not reached--*/
35 }

Figure 3.10: Internal invariant errors in bzip2

36

1 static int
2 op_kernel_driver_active(struct libusb_device_handle *handle,
3 int interface)
4 {
5 int fd = __device_handle_priv(handle)->fd;
6 struct usbfs_getdriver getdrv;
7 int r;
8

9 getdrv.interface = interface;
10 r = ioctl(fd, IOCTL_USBFS_GETDRIVER, &getdrv);
11 if (r) {
12 if (errno == ENODATA)
13 return 0;
14 else if (errno == ENODEV)
15 return LIBUSB_ERROR_NO_DEVICE;
16

17 usbi_err(HANDLE_CTX(handle),
18 "get driver failed error %d errno %d", r, errno);
19 return LIBUSB_ERROR_OTHER;
20 }
21

22 return 1;
23 }

Figure 3.11: A function returning a boolean or error code from libusb

system errors, the analysis is unable to learn that they are error codes.

libusb

This relatively small library (approximately 7,000 lines of code) allows user-level
applications to interact with USB devices. libusb has 30 functions that return error
codes. Our error code analysis correctly infers that libusb returns 0 to indicate
success. The analysis correctly identifies that all 30 error reporting functions do
indeed return error codes. For seven of the error reporting functions, the analysis
is unable to report all possible returned error codes because four error codes are

37

only returned in response to purely internal errors. The analysis incorrectly infers
that 1 is an error code, affecting the error descriptors of two user-facing functions.

The root cause of this incorrect inference is the op_kernel_driver_active
function, shown in figure 3.11. This function is only used internally in the library
and is not user facing, but its results propagate to users through returned values. It
is a boolean function that returns true if the USB kernel driver is active. However,
it can also return error codes on top of the standard true and false values. This
mixing of data types (boolean values and error codes) causes the analysis to
incorrectly conclude that 1 is an error code.

The analysis fails to find some error codes that are only returned in response
to violated internal invariants. However, the impact on this library is less severe
than it was for bzip2. All of the functions that can return error codes have a set
of inferred error codes associated with them: in some cases the set is simply
incomplete. Both of these errors, the extra error code and the missing error codes,
would be apparent to a user familiar with the library.

sqlite3

The sqlite3 library implements a relational database in about 130,000 lines of
code. This library must be robust to errors since it is trusted with a great deal of
data and has many high-profile users. It uses more error codes, and more complex
error codes, than the other libraries we have analyzed. While our error code
analysis recognizes that sqlite3 returns 0 to indicate success and identifies many
of the error codes in use in the library, it misses a significant number of error
codes and functions that can return error codes. sqlite3 exports 104 functions
that return int types, of which 50 cannot fail. Of the remaining 54 functions, the
analysis identifies 14 functions that can return error codes, though it misses many
possible error codes for each of the 14. The analysis fails to identify 30 functions
that can possibly return error codes.

The problem lies in the complex error codes returned by sqlite3. An example
is shown on line 25 in figure 3.12. This assignment causes the function to return

38

1 static int findCreateFileMode(const char *zPath,
2 int flags, mode_t *pMode)
3 {
4 int rc = SQLITE_OK;
5 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
6 if (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))
7 {
8 char zDb[MAX_PATHNAME+1];
9 int nDb;

10 struct stat sStat;
11

12 nDb = sqlite3Strlen30(zPath) - 1;
13 while (zPath[nDb]!=’-’){
14 assert(nDb>0);
15 assert(zPath[nDb]!=’\n’);
16 nDb--;
17 }
18

19 memcpy(zDb, zPath, nDb);
20 zDb[nDb] = ’\0’;
21

22 if (0==osStat(zDb, &sStat))
23 *pMode = sStat.st_mode & 0777;
24 else
25 rc = SQLITE_IOERR_FSTAT; // SQLITE_IOERR | (7<<8)
26

27 } else if (flags & SQLITE_OPEN_DELETEONCLOSE){
28 *pMode = 0600;
29 }
30 return rc;
31 }

Figure 3.12: A complex error code from sqlite3

39

1 int sqlite3Step(Vdbe *p)
2 {
3 /* ... */
4 end_of_step:
5 if (p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE)
6 {
7 rc = sqlite3VdbeTransferError(p);
8 }
9 return (rc&db->errMask);

10 }

Figure 3.13: A masked error code from sqlite3

SQLITE_IOERR_FSTAT when the call to osStat fails. This is actually a complex
error code that is defined as SQLITE_IOERR | (7 << 8): it is a refinement of
an IO error that includes extra information about the IO operation that failed.

This approach to error codes is not fundamentally a problem for our analysis.
However, the additional information about errors was added late in the evolu-
tion of sqlite3 and would have broken backwards compatibility. To maintain
backwards compatibility, programs calling into sqlite3 must explicitly request
the more precise error codes by invoking a function provided for that purpose:
sqlite3_extended_result_codes. Calling this function on a database con-
nection sets a bitmask in the connection structure, which otherwise defaults to
zero. All public API calls that are able to return these extended error codes
actually return a masked error code, as seen in the code fragment in figure 3.13. If
the caller has not opted-in to the extended error codes, the additional information
is masked out.

Our analysis does not have a model for this bitmasking operation and does
not recognize these masked returns as possibly returning error codes. Thus, the
analysis misses all functions that can possibly return extended error codes. Fur-
thermore, some error codes that can contain extended error codes are masked with
a function call, rather than directly with a bitwise operation. Any modifications

40

to the analysis to handle similar constructs would need to maintain an interpro-
cedural model of structured error codes. The sqlite3 library poses additional
challenges to automated error code detection: in many functions, it temporarily
stores error codes in heap-allocated structures and retrieves them farther up or
down the call stack.

gsl

The GNU Scientific Library (GSL) is a numeric library providing many functions
useful in scientific computing and statistics. It has nearly 4,000 functions and
over 200,000 lines of code. We have not performed an exhaustive evaluation of
gsl due to its size. Instead, we make a few high level observations. First, our error
code analysis correctly infers that the library returns 0 (GSL_SUCCESS) when
operations are successful. As is the case with bzip2, a number of error codes are
only returned in response to violations of purely internal invariants. The error
code GSL_EDOM is one such error code. It is returned if a function parameter is
outside of the domain of the function. Our analysis never identifies it as an error
code.

The results for gsl are somewhat surprising because it is primarily a math
library with limited interactions with the underlying operating system. Despite
this, it is able to bootstrap itself from a few error codes learned from failing IO
operations and learn many new error codes throughout the rest of the library.

3.3.2 Discussion

Our error code analysis performed well on libarchive, libusb, and gsl; the results
for bzip2 and sqlite3 were more mixed. The analysis had difficulty with bzip2
because that library did not have enough functions from which the analysis could
generalize and recover from incorrect inferences. In particular, the inference of
the library success code in section 3.1.3 is based on the relative frequencies of
different success codes. With a small sample size, this can be especially imprecise.

41

The complex structure of the error codes in sqlite3 also cause problems. One
takeaway is that the analysis is less useful for small libraries, though it did well on
libusb. On the other hand, the analysis performed much better on larger libraries,
which is where its results are of the most benefit to developers. While sqlite3 is a
large library by line count, its user-facing API is small (as is that of bzip2). The
effort required to manually annotate the error reporting semantics of these two
libraries is significantly less than that of the others presented.

Error codes that are only returned in response to violations of internal invari-
ants, and never in response to system interactions, are also a problem for this
analysis. Some can be identified by the generalization steps in the algorithm, but
it is clear that not all can be in real code. Identifying these error codes would be
the focus of any improvements to this analysis. One approach that could work
would be to generalize based on the range of error codes. If all of the error codes
identified by the analysis are negative ints, generalizing and assuming that all
negative int constants are error codes may be sensible. In a production tool, this
form of generalization could be enabled by a command-line flag to the analysis
tool.

A major problem in bzip2 and other libraries is that the success code is
defined to be 0: this value is useful as a success code, but is also a value that
needs to be legitimately returned in contexts besides error codes. This overlap
with valid return values is unfortunate and the cause of incorrect inferences in a
number of libraries. It is also unnecessary, and re-defining the success constant
to have no overlap with any other constants returned in the library would help
the analysis avoid these errors. Doing so could also remove the need for the
analysis to ignore functions heuristically identified as returning booleans. This
restriction is important for our results, however, and often prevents the constant
1 as being mis-identified as an error code. The analysis reports odd resuts for
boolean functions that also return error codes, as in libusb.

Finally, this analysis could be more precise if performed on an intermediate
representation that preserved the lexical representation of expressions. This would

42

allow the analysis to more precisely distinguish between integer literals and error
constants (e.g., distinguishing between the int 11 and the error code EAGAIN).
Our analysis reports integer literals rather than the symbolic constants used in
the source. Presenting reports to users in terms of the original error constant
preprocessor definitions would enhance the value of the diagnostics.

43

4 semantics of pointer parameters

Pointer parameters are used for many purposes in C and C++. The notion of a
pointer is very general, however, and knowing that a parameter is a pointer reveals
little about how the pointer will be used. Pointers in C and C++ are used to encode
many important idioms that lack explicit syntactic support in either language. For
example, the function signature in figure 4.1 takes a pointer parameter. While s
is clearly a pointer to memory, it really carries a deeper semantic meaning that
is absent in the type system. Figure 4.2 shows three possible implementations
with the same function signature in C. In the first, the pointer parameter s is used
to pass an object by reference, rather than making a copy on the stack. While
C++ has an explicit syntax and type for references, C does not and this idiom is
common. In the second example, the pointer parameter s is actually an array of
structs, and the function indexes into the array. In the third example, s points
to memory that f will fill in for the caller: it is an output parameter.

These type signatures admit multiple interpretations because the type systems
of C and C++ are not expressive enough to encode the full semantics of pointer
parameters. As a consequence, C and C++ programmers cannot determine the se-
mantics of functions by simply examining type signatures. The problem is worse
for automatic binding generation tools like SWIG and gobject-introspection,
which lack the intuition that a human programmer would apply to the problem.
In general, the best these tools can do without manual annotations is to create

1 struct S {
2 int i;
3 struct S *next;
4 };
5

6 int f(struct S *s, int val);

Figure 4.1: A C function signature with a pointer parameter

44

1 int f(struct S *s, int val) {
2 return s->i + val;
3 }
4

5 int f(struct S *s, int val) {
6 return s[val].i;
7 }
8

9 int f(struct S *s, int val) {
10 if (val < 0)
11 return -1;
12

13 s->i = val;
14 s->next = NULL;
15 return 0;
16 }

Figure 4.2: Possible implementations for figure 4.1

wrapper functions that accept pointers. It becomes the responsibility of high-
level language programmers using the generated bindings to keep track of these
semantic details.

We propose static program analyses to recover this deeper semantic informa-
tion. The results of these analyses are inferred interface descriptions describing
the uses of pointer parameters. We describe analyses to identify pointer parame-
ters that are really:

• arrays,

• output parameters, and

• not allowed to be NULL (i.e., not nullable).

The annotations inferred by the analyses in this chapter allow library binding
generators to produce safer and more idiomatic bindings. The array parameter

45

dimensions inferred in section 4.2 allow bindings to check to ensure that values
being passed in are actually arrays. Furthermore, wrapper functions that expect
array parameters can automatically convert between high-level language array
representations and their C counterparts, making the bindings more idiomatic.
Examples include automatically unwrapping numpy (NumPy, 2013) arrays in
Python. These arrays are often used in scientific code and offer functions for C
and C++ interoperability, which library bindings could invoke automatically as
necessary. Similar transformations could be applied to mutable vectors in Haskell
(Leshchinskiy, 2013).

Library bindings can also make output parameters more idiomatic in most
languages by converting them into multiple return values (in Scheme or Common
Lisp) or tuple returns (in most other languages). Programmers in these languages
are accustomed to multiple return values, so the idiom would be expected. Man-
aging the storage for output parameters automatically is also safer because it
removes the possibility that a programmer misunderstands the interface and acci-
dentally passes an invalid pointer. Since the input value of an output parameter is
never used, no functionality is lost.

Identifying pointer parameters that are not nullable offers an opportunity to
improve the safety of library bindings. In most languages, generated wrapper
functions could add additional dynamic checks to ensure that passed pointer
values are not NULL. These checks could throw high-level language exceptions
explaining the problem, improving diagnostic power and preventing a segmen-
tation fault in low-level code. This can stop undefined behavior before it starts.
In some other languages, such as Haskell or the ML family, the story could be
improved further to encode not nullable constraints in the type system through
option types. With careful binding generator design, this could statically prevent
a large class of errors (NULL pointer dereferences).

46

1 typedef struct pvl_elem_t {
2 void *data;
3 struct pvl_elem_t *next;
4 } pvl_elem;
5

6 typedef struct pvl_list_t {
7 pvl_elem *head;
8 } pvl_list;
9

10 typedef struct icalcomponent {
11 pvl_list *components;
12 struct icalcomponent* parent;
13 } icalcomponent;
14

15 void pvl_push(pvl_list *lst, void *d) {
16 pvl_elem *e = calloc(1, sizeof(pvl_elem));
17 e->next = lst->head;
18 lst->head = e;
19 e->data = d;
20 }
21

22 void* pvl_pop(pvl_list *lst) {
23 if (lst->head == NULL) return NULL;
24 list_elem *e = lst->head;
25 void *ret = e->data;
26 lst->head = e->next;
27 free(e);
28 return ret;
29 }

Figure 4.3: Definitions for figure 4.4

47

1 struct icalcomponent* icalcomponent_new() {
2 icalcomponent* comp = malloc(sizeof(icalcomponent));
3

4 if (!comp) return NULL;
5

6 comp->components = newlist();
7 comp->parent = NULL;
8

9 return comp;
10 }
11

12 void icalcomponent_free(icalcomponent* c) {
13 icalcomponent* comp;
14

15 if (!c) return;
16

17 while ((comp=pvl_pop(c->components)) != NULL) {
18 icalcomponent_remove_component(c,comp);
19 icalcomponent_free(comp);
20 }
21

22 pvl_free(c->components);
23 free(c);
24 }
25

26 void icalcomponent_remove_component(
27 icalcomponent *component, icalcomponent *child);
28

29 void icalcomponent_add_component(icalcomponent *c,
30 icalcomponent *child) {
31 pvl_push(c->components, child);
32 }
33

34 void icalcomponent_set_parent(icalcomponnent *c,
35 icalcomponent* parent) {
36 c->parent = parent;
37 }

Figure 4.4: Example with access paths

48

4.1 Symbolic Access Paths

Our array analysis is built on symbolic access paths (Cheng and Hwu, 2000;
Khedker et al., 2007), which we describe in this section. We follow the formula-
tion of Matosevic and Abdelrahman (2012). An access path describes a memory
location accessible from a base value by a (possibly empty) sequence of path com-
ponents. Path components are field accesses, pointer dereferences, array accesses,
and union accesses. We treat all array elements in a single array as identical; a
more precise analysis could differentiate between them. This treatment of field
accesses is unsound when pointers to struct types are cast to unrelated types
(Pearce et al., 2007), which could cause the analysis to identify invalid ownership
transfers. This has not been observed in practice.

Let ap(v) represent the access path for a source expression v. For ex-
ample, the assignment on line 18 of figure 4.3 (taken from libical) assigns a
value to lst->head. The corresponding access path ap(lst->head) is the pair
(lst, 〈head〉). In this pair, lst is the base value and 〈head〉 is a sequence of one
field access to reach the affected memory location. We sometimes refer to loca-
tions abstractly in terms of a base type rather than a base value. Here, lst has type
pvl_list, so the abstract access path for this field access is (pvl_list, 〈head〉).

Following Matosevic and Abdelrahman, we construct symbolic access paths
by traversing the call graph bottom-up, with strongly-connected components
being iteratively re-analyzed until a fixed-point is reached. For the purposes of
exposition, we will assume that functions are normalized such that the return
value is the first parameter in the list of formal parameters (always indexed as
zero). Functions return values by writing to their return parameter. Void functions
have a placeholder in argument zero. For each library analyzed, we construct two
maps keyed by a function and a formal parameter number.

• Let f be a function and i be the zero-based index of a formal parameter to
f . Then readPaths[f , i] is a set of access paths that function f reads from
in its ith formal parameter.

49

• Let f be a function and i be the zero-based index of a formal parameter to
f . Then writePaths[f , i] is a set of access paths that function f writes to in
its ith formal parameter.

Let argno(v) return the index of formal parameter v in the formal parameter
list of the enclosing function. Let base(p) return the base of access path p

and components(p) return the path components of p. The access path extend
operation p1 ⊕ p2 extends p1 by p2 in the natural way; the resulting path has the
same base value as p1 and the path components of p2 appended to those of p1.
The set-valued operation nr(p) returns the singleton set containing p if each path
component in components(p) is unique within p; otherwise, it returns the empty
set. This condition excludes cyclic paths that could grow indefinitely; such paths
are common in the presence of inductive data structures.

Our handling and representation of cyclic access paths differs from Matosevic
and Abdelrahman (2012). They represent paths using a regular expression-like
language with repetition operators. Our analysis does not require information
about cycles in paths, so we use the simpler representation discussed above;
this requires the no-repetition condition (enforced through the nr() operator) to
prevent cyclic paths from growing without bound. This less expressive treatment
of paths is a potential source of unsoundness, though it has not been a problem in
practice.

Three types of statements add elements to readPaths or writePaths: function
calls, read instructions, and store instructions. This analysis is flow-insensitive and
paths are created or extended for any relevant store or function call that may be ex-
ecuted. We first consider readPaths and reads of the form value = *location
in a function f. Recall that we analyze programs represented in an SSA-based
load/store IR; the left-hand sides of store statements are analyzed before the field
accesses on the right-hand side. Let lp = ap(location) and p = ap(value). If
both base(lp) and base(p) are among the formal parameters of f , then:

readPaths[f , argno(base(lp))] ∪= nr(lp)

50

For each call callee(..., a, ...) in function f where a is the ith argu-
ment to callee and p ∈ readPaths[callee, i], let pext = ap(a) ⊕ p. If base(pext)
is a formal parameter of f , then:

readPaths[f , argno(base(pext))] ∪= nr(pext)

Now consider a store of the form *location = value in function f. Let
lp = ap(location). If both base(lp) and base(p) are among the formal parameters
of f , then:

writePaths[f , argno(base(lp))] ∪= nr(lp)

For each call callee(..., a, ...) in function f where a is the ith argu-
ment to callee, and p ∈ writePaths[callee, i], let pext = ap(a) ⊕ p. If base(pext)
is a formal parameter of f , then:

writePaths[f , argno(base(pext))] ∪= nr(pext)

4.2 Array Parameters

This analysis identifies pointer parameters that are used as arrays. This informa-
tion allows library binding generators to convert from native high-level language
sequence types to C arrays. For example, where a C array is expected, generated
Python bindings could accept both C arrays and numpy arrays. numpy is a popu-
lar numeric processing library for Python with support for C interoperability, and
is idiomatic in many application domains. Analogous libraries in other high-level
languages include the Haskell vector library, C++ vectors, and some primitive
Java arrays.

Suppose a function f has a formal parameter p at zero-based index i. If
p ∈ readPaths[f , i] and every component of p is an array access, let depthr =

length (components(p)). Otherwise, depthr = 0. Likewise, if q ∈ writePaths[f , i]
and every component of q is an array access, let depthw = length (components(p)).

51

1 void glp_ios_tree_size(glp_tree *tree, int *a_cnt,
2 int *n_cnt, int *t_cnt)
3 {
4 if (a_cnt != NULL) *a_cnt = tree->a_cnt;
5 if (n_cnt != NULL) *n_cnt = tree->n_cnt;
6 if (t_cnt != NULL) *t_cnt = tree->t_cnt;
7 }

Figure 4.5: Conditional output parameters from GLPK

1 def glp_ios_tree_size(tree):
2 a_cnt = ctypes.c_int()
3 n_cnt = ctypes.c_int()
4 t_cnt = ctypes.c_int()
5 clib.glp_ios_tree_size(tree, ctypes.byref(a_cnt),
6 ctypes.byref(n_cnt), ctypes.byref(t_cnt))
7 return (a_cnt, n_cnt, t_cnt)

Figure 4.6: A generated wrapper for figure 4.5

Otherwise depthw = 0. If either depthr > 0 or depthw > 0, then p is an array
parameter with dimension max

(
depthr , depthw

)
.

4.3 Output Parameters

Output parameters are pointer parameters that are never read from before they are
written through. They are used to return extra values (beyond the normal return
value) by C and C++ functions. Note that this definition does not guarantee that
output parameters are initialized on all paths. We identify output parameters so
that library binding generators can create wrapper functions that convert output
parameters to multiple return values in languages that support them. In most
high-level programming languages, multiple return values are more idiomatic.
Furthermore, allowing generated bindings to automatically manage the storage
required for output parameters is less error prone than forcing the tedious details

52

IN/OUT

IN OUT

Unused

Figure 4.7: The output parameter lattice

on high-level language programmers. As an example, a library binding generator
for Python might generate the function shown in figure 4.6 for the C function
shown in figure 4.5. Note that this wrapper function allocates storage for three
output parameters on lines 2 to 4 and then passes the addresses to the underlying
C function. After the call, the wrapper returns the values returned via output
parameters as a tuple to the caller in Python.

We use backward dataflow analysis to classify formal pointer parameters as
elements of the bounded lattice depicted in figure 4.7. Formal parameters that
are pointers to primitive types1 are output parameters if they are classified as
OUT at the entry node of their enclosing function. We analyze aggregate types
(i.e., struct types) fieldwise. Pointer parameters of aggregate types are output
parameters if all of their fields are classified as OUT at the entry node of their
enclosing function. Both formal parameters that are pointers to primitive types
and fields of formal parameters of pointer-to-aggregate type will be referred to as
input pointers. We analyze programs represented in SSA form, so pointers can
never be re-assigned.

In figure 4.7, an edge a → b means that a A b in the lattice partial order.
The dataflow fact at each statement is a mapping from each input pointer to its
current position in the lattice: unused (Unused), input pointer (IN), output pointer
(OUT), or both (IN/OUT). The top element and initial fact map all input pointers
to Unused. The meet operator for this analysis is pointwise greatest lower bound

1Primitive types are one of: char, short, int, long, float, double, and T* for any T .

53

(u). The transfer function for statement s referencing input pointer p is defined
by the following cases:

1. If s is of the form *p = v, the transfer function for s is:

λoutState.outState[p 7→ OUT]

2. If s is of the form v = *p, the transfer for s is:

λoutState.outState[p 7→ outState[p] u IN]

3. If s is a direct function call of the form g(..., p, ...) where p is an
argument in positions i0 to in, let d j be the outState for the j th formal
parameter of g at g’s unique entry point. Let paramDir =

�
k=0···n dk . For

each distinct argument p to g, s is analyzed as if it were a statement s′

whose form is determined by the value of paramDir.

• If paramDir == IN, s′ is *p;

• If paramDir == OUT, s′ is *p = arbitrary();

• If paramDir == IN/OUT, s′ is *p = *p;

• Otherwise, s′ is an empty statement.

4. If s is of the form (*fp)(..., p, ...) where fp is a function pointer
with no known targets, the transfer function for s is:

λoutState.outState[p 7→ IN/OUT]

5. Otherwise the transfer function is the identity.

Intuitively, the analysis pushes reads through each pointer parameter p towards
the function entry point, stopping at writes through p. If any reads through p can

54

1 int archive_entry_xattr_next(struct archive_entry * entry,
2 const char **name, const void **value, size_t *size)
3 {
4 if (entry->xattr_p) {
5 *name = entry->xattr_p->name;
6 *value = entry->xattr_p->value;
7 *size = entry->xattr_p->size;
8

9 entry->xattr_p = entry->xattr_p->next;
10

11 return (ARCHIVE_OK);
12 } else {
13 *name = NULL;
14 *value = NULL;
15 *size = (size_t)0;
16 return (ARCHIVE_WARN);
17 }
18 }

Figure 4.8: An output parameter from libarchive

reach the function entry point, p can be read from before it is written through,
making it either an IN or IN/OUT parameter. Only those pointer parameters
that are classified as OUT at the function entry point are output parameters. The
transfer function for pointer writes (case 1) encodes the notion that reading from
an OUT parameter after it has been written cannot make it into an IN/OUT
parameter. We treat calls to memcpy as an equivalent sequence of assignment
statements if the source and destination of the copy are pointers to aggregates and
the memcpy completely overwrites the destination. The transfer functions are all
distributive (see appendix A); therefore, the analysis provides the meet over all
paths solution (Kildall, 1973).

The example in figure 4.8 demonstrates a common case. This function uses
its int return value to report error codes, but it still needs to return three other
values: name, value, and size. On the first path through the function (when

55

entry->xattr_p is not NULL on line 4), each of these three formal parameters
are written through, making them output parameters on this branch. On the other
branch, they are also written through. Since OUT u OUT is OUT at the function
entry, all three are output parameters of archive_entry_xattr_next.

Figure 4.9 shows an example of an aggregate output parameter. On the path
where bfcp is NULL, 11 fields of the structure pointed to by parm are initialized.
However, note that glp_bfcp structures have 13 fields. On this path, not all
of the fields of parm are initialized. On the other hand, the path where bfcp is
not NULL does initialize all of the fields of parm because the call to memcpy is
treated as a sequence of field assignments (one for each field of parm). Since
Unused u OUT and OUT u OUT are both OUT, all of the fields of parm are
classified as OUT in the meet over all paths solution; therefore, parm is an output
parameter.

This example demonstrates an important limitation of this analysis: aggregate
output parameters can only be identified if all of their fields are initialized on
some path, and none are read from before they are initialized. In the presence
of reserved or unused fields, the analysis may pessimistically mis-identify them.
The result in generated bindings is that callers may need to allocate storage for the
aggregate manually. One strategy for handling this case would be to offer an ad-
ditional manual annotation to indicate that certain fields are unused. This manual
annotation would allow the analysis to handle this case more easily. Alternatively,
the parameter itself may be manually annotated as an output parameter.

Another common form of output parameter is demonstrated in figure 4.5.
Here, each write through a parameter is guarded by a NULL check. Since Unusedu
OUT = OUT, all three are output parameters. These output parameters are, in
effect, optional. This example highlights another interesting aspect of the output
parameter analysis: automatically allocating storage for output parameters in
generated library bindings prevents users from choosing the output parameters
that are actually used. In an automatically generated library binding (like that
shown in figure 4.6), all three output parameters (a_cnt, n_cnt, and t_cnt) are

56

1 typedef struct
2 { /* basis factorization control parameters */
3 int msg_lev; /* (reserved) */
4 int type; /* factorization type: */
5 int lu_size; /* luf.sv_size */
6 double piv_tol; /* luf.piv_tol */
7 int piv_lim; /* luf.piv_lim */
8 int suhl; /* luf.suhl */
9 double eps_tol; /* luf.eps_tol */

10 double max_gro; /* luf.max_gro */
11 int nfs_max; /* fhv.hh_max */
12 double upd_tol; /* fhv.upd_tol */
13 int nrs_max; /* lpf.n_max */
14 int rs_size; /* lpf.v_size */
15 double foo_bar[38]; /* (reserved) */
16 } glp_bfcp;
17

18 void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm)
19 {
20 glp_bfcp *bfcp = lp->bfcp;
21 if (bfcp == NULL)
22 {
23 parm->type = GLP_BF_FT;
24 parm->lu_size = 0;
25 parm->piv_tol = 0.10;
26 parm->piv_lim = 4;
27 parm->suhl = GLP_ON;
28 parm->eps_tol = 1e-15;
29 parm->max_gro = 1e+10;
30 parm->nfs_max = 50;
31 parm->upd_tol = 1e-6;
32 parm->nrs_max = 50;
33 parm->rs_size = 0;
34 }
35 else
36 memcpy(parm, bfcp, sizeof(glp_bfcp));
37 }

Figure 4.9: An aggregate output parameter from GLPK

57

always allocated. Since the generated wrapper function always passes non-NULL
addresses to the underlying C function, the C function always initializes all three.
A caller would not be able to, for example, pass NULL for two of the output
parameters and only receive a value for the third. In figure 4.5, this is not a
significant problem because the cost of allocating and initializing three ints is
small. If an output parameter is expensive to initialize (e.g., it requires IO), not
providing the user with a mechanism to not use these optional output parameters
could be problematic.

4.3.1 Function Pointers with Known Targets

We do not currently make any inferences based on known targets of function
pointers. However, they could provide some extra information. Instead of marking
every parameter passed to a function pointer as IN/OUT, we could assume that
known function pointers introduce a contract and take the meet over each formal
parameter position of each known target as the paramDir for that position.

4.4 Non-Nullable Parameters

We adopt the convention that a pointer parameter p is non-nullable if passing
NULL for p is guaranteed to cause an undesirable event. We consider the following
events to be undesirable from the perspective of a caller of a library function:

• dereferencing a NULL pointer parameter,

• transitively calling a termination function (e.g., exit, _exit, or abort),
or

• returning an error code (chapter 3).

A library binding generator could add dynamic checks in generated wrapper
functions to prevent callers from passing NULL values for non-nullable pointer

58

parameters. This transformation would stop a class of errors in safe high-level
language code before causing unpredictable and unrecoverable behavior in low-
level C code. Library binding generators for languages with more expressive
type systems could statically prevent some of the same errors, possibly using
option types in Haskell and ML-derived languages2. A pointer parameter that
the analysis fails to classify as non-nullable will be referred to as a nullable

parameter.
Note that this definition will only consider a pointer parameter to be non-

nullable if passing NULL for that parameter must cause an undesirable event. If
a caller of f with nullable pointer parameter p passes NULL for p, f may still
dereference a NULL pointer. We assume that a single path through f where p
is not dereferenced implies that there is some combination of parameters and
environment for which p is allowed to be NULL. We make this assumption be-
cause a definition of non-nullability preventing all NULL pointer dereferences
could prevent callers from accessing the complete functionality of a callee. For
example, the string parameter of function utf8_check_string in figure 4.10
is nullable according to our definition because the path that is followed for the call
utf8_check_string(NULL, 0) does not include an undesirable event. This
call is safe and useful. If we used a stronger definition of non-nullability, callers
might be prevented from passing NULL for the string parameter; a generated
library binding should not prevent this.

To analyze a function f, we rewrite calls to termination functions and state-
ments returning error codes into a sequence of statements that dereference all
of the pointer parameters of f. Furthermore, we rewrite calls to any function
g with non-nullable parameters into dereferences of the corresponding actual
arguments. Recall that we analyze the call graph bottom-up and re-analyze
strongly-connected components until reaching a fixed point.

We classify pointer parameters as non-nullable with a forward dataflow anal-
ysis. Recall that we analyze programs represented in an SSA-based IR, so formal

2A non-nullable pointer could be represented as a type τ. Other pointers would then be type
option τ.

59

1 int utf8_check_string(const char *string, int length)
2 {
3 int i;
4

5 if(length == -1)
6 length = strlen(string);
7

8 for(i = 0; i < length; i++) {
9 int count = utf8_check_first(string[i]);

10 if(count == 0)
11 return 0;
12 else if(count > 1) {
13 if(i + count > length)
14 return 0;
15

16 if(!utf8_check_full(&string[i], count, NULL))
17 return 0;
18

19 i += count - 1;
20 }
21 }
22

23 return 1;
24 }

Figure 4.10: A nullable pointer parameter with no check

parameters cannot be re-assigned. The dataflow fact at each program point n is
the set of pointer parameters for which an undesirable event occurs on every path
from the function entry to n. A pointer parameter is non-nullable if it is in the
dataflow fact at the unique exit node of the function. The initial dataflow fact for
the analysis is the empty set. The top element is the set of all pointer parameters
in the function. The meet operation is set intersection. The transfer function for
statement s is defined in two cases:

60

• If s dereferences pointer parameter p, the transfer function for s is:

λinState.inState ∪ {p}

• Otherwise, the transfer function is the identity.

Both figures 4.8 and 4.9 have formal parameters that are non-nullable. In
figure 4.8, the entry parameter is dereferenced on line 4, which causes it to
be added to the dataflow fact. The other three parameters are dereferenced on
both branches of the conditional, which causes them to be added to the dataflow
fact of each branch. When control flow merges the two branches, the sets from
each branch are merged with set intersection, yielding the set containing all four
formal parameters at the unique exit node. Thus, all four formal parameters are
non-nullable.

Likewise, both of the formal parameters on line 18 of figure 4.9 are non-

nullable. The lp parameter is dereferenced on line 20, which causes it to be
added to the dataflow fact. On the true branch of the conditional, parm is also
dereferenced. On the false branch of the conditional, the call to memcpy also
makes parm non-nullable3. When the paths merge, the dataflow fact contains
both parameters.

Of course, some pointer parameters can be nullable, as in figure 4.10 (already
discussed) and figure 4.11. There is a path through exif_content_get_entry
where no undesirable events occur for the content parameter: when content is
NULL, the function simply returns NULL.
NULL pointer dereferences are not the only undesirable outcomes that can

result from a pointer parameter being unexpectedly NULL. Figure 4.12 is an
example of a library terminating the caller if a not-NULL invariant is violated.
Passing NULL for P causes glp_ninisat1 to terminate the program, so we want
to consider it non-nullable. The call to xerror on line 5, which is transformed

3Annotations we provide as input to the analysis for functions from the standard C library
mark the first parameter of memcpy as non-nullable.

61

1 ExifEntry *
2 exif_content_get_entry(ExifContent *content, ExifTag tag)
3 {
4 unsigned int i;
5

6 if (!content)
7 return (NULL);
8

9 for (i = 0; i < content->count; i++)
10 if (content->entries[i]->tag == tag)
11 return (content->entries[i]);
12 return (NULL);
13 }

Figure 4.11: A parameter guarded with a NULL check in exif

1 int glp_minisat1(glp_prob *P)
2 {
3 /* check problem object */
4 if (P == NULL)
5 xerror("glp_minisat1: P = %p; invalid object\n", P);
6

7 /* integer solution is currently undefined */
8 P->mip_stat = GLP_UNDEF;
9 P->mip_obj = 0.0;

10

11 /* ... */
12 }

Figure 4.12: A NULL check with termination from GLPK

62

into a dereference of P (as described above), is an undesirable event occurring
on one path through glp_minisat1. On the other path through glp_minisat1,
P is dereferenced. Since there are undesirable events for P on all paths through
glp_minisat1, P is non-nullable.

4.4.1 Terminating Functions

This analysis considers terminating functions to be undesirable behavior. The
standard C library and POSIX standard provide several functions that terminate
the caller: exit, _exit, and abort. We transitively identify functions as ter-
minating functions if they must call a terminating function. Furthermore, we
consider a function to be a terminating function if it cannot return because it
always enters an infinite loop with no body (e.g., while(1);). We recognize
this limited class of infinite loops to support some libraries that use the idiom to
implement their own exit-like functions.

4.5 Related Work

Our output parameter analysis is primarily motivated by the multiple return value
constructs present in many languages and the approximations afforded in many
others by tuples. Common Lisp (Steele, 1990, chap. 7.10.1) and Scheme (Ashley
and Dybvig, 1994) define true multiple return value constructs in their language
standards. Concatenative programming languages like PostScript (Horspool and
Vitek, 1992) and Forth inherently support multiple return values by virtue of
being able to leave as many items on the data stack as desired by the programmer.
Stack effect annotations in concatenative programs formalize these multiple
return values and make them apparent to programmers. Languages lacking a
dedicated mechanism to return multiple values often achieve a similar effect
(albeit with more memory allocation overhead) with tuples; examples of this type
of language are the statically-typed functional languages (Haskell and the ML

63

family) and Python. C++11 provides a tuple type, but its use is not yet ubiquitous
or idiomatic.

The C# language does not support multiple return values as a language con-
struct. However, it has two parameter annotations to support output parameters:
out and ref (ISO, 2006, p. 23-24). Method parameters marked with either
annotation are passed by-reference. The out annotation is similar to our notion
of OUT parameters. The exact definition is different because C# defines out
in terms of definite assignment, which requires that any out parameter must
be assigned a value along all paths by the end of the enclosing method. The
ref annotation is likewise similar to our notion of IN/OUT parameters. The
semantics of the C# out annotation are simpler than ours, but many uses of output
parameters in C require our more liberal treatment.

Non-standard type qualifier inference (Foster et al., 1999) could be used to rep-
resent non-nullable types. That approach was adopted as a standard in C# through
nullable types, which must be explicitly annotated by developers. Our notion of
nullable parameters is slightly different in that we infer non-nullability based on
much more broad criteria. Furthermore, our formulation is flow-sensitive.

Our work shares some ideas with the annotation language of Hackett et al.
(2006), for which they also describe an inference engine. Their inferred annota-
tions are intended for buffer overflow detection and are much more expressive
in that domain. They encode NUL termination, read, write, preconditions, and
postconditions on the states of array parameters for each function. Some of
this additional information could be useful for generating library bindings. For
example, buffers that are only read do not require their contents to be copied back
into the high-level language caller if a sequence transformation has been applied.
Our work on not-nullable pointers is also related to their notnull annotation. We
infer notnull based on more broad criteria that seek to catch more than simply
NULL pointer dereferences. In particular, we address nontermination (infinite
loops), calls to termination functions, and code that reaches error paths.

64

4.6 Evaluation

We ran the analyses described in this chapter over a selection of open source
libraries. We report only the annotations inferred for non-static functions defined
in each library; the analyses infer results for more functions that are not directly
callable by users. The results are shown in tables 4.1 to 4.4. Table 4.1 reports the
number of functions in each library and the percent of functions in each library
for which at least one annotation was inferred. The total of the “% annotated”
column is the harmonic mean of the percents listed in that column. This number
says that approximately 38% of functions have at least one pointer parameter
whose semantics are not completely described by its type. For large libraries, this
can translate to a significant number of functions and a commensurately large
savings in manual annotation effort required to build idiomatic library bindings.
For example, libcrypto and libgsl both expose over 3,000 functions. Our analysis
infers annotations for 1,243 functions in libcrypto and 1,525 functions for libgsl.
Manually providing annotations, much less manually constructing wrappers, for
this many functions is impractical (as evidenced by the scarcity of complete
bindings for either library). While these analyses do not save such enormous
amounts of manual annotation effort on all libraries, even a few dozen automati-
cally inferred annotations can dramatically improve the polyglot programming
experience.

4.6.1 Output Parameters

The output parameter analysis described in section 4.3 infers the annotations
in the “Out” and “In/Out” columns of table 4.2. Recall from the discussion of
the analysis that these two pointer classifications are disjoint. A parameter can
be an “Out” parameter, an “In/Out” parameter, or neither (but not both). A few
trends are worth noting. First, “In/Out” parameters are not as common as “Out”
parameters. Second, most libraries use “Out” parameters, which indicates that
the desire to return more than one value is common. Automating the handling of

65

Table 4.1: Functions with Inferred Parameter Annotations

Library # Funcs % annotated

libacl 61 41
libarchive 267 92
libatk-1 254 6
libattr 26 31
libbz2 33 67
libcairo 379 76
libcrypto 3552 62
libcurl 334 68
libdbus-1 804 68
libexif 142 22
libexpat 80 84
libffi 23 83
libfontconfig 196 58
libfreenect 61 92
libfreetype 289 53
libfuse 188 78
libgdk-3 758 36
libgdk_pixbuf-2 121 30
libgio-2 1772 40
libglib-2 1529 72
libglpk 1072 82
libgobject-2 394 23
libgsl 3910 78
libgtk-3 4784 25
libical 1045 49
libjansson 96 45
libpango-1 406 30
libpcre 31 61
libpixman-1 128 70
libpng15 391 50
libsoup-2 530 42
libsqlite3 185 70
libssl 475 68
libusb-1 53 38
libX11 1179 75
libXau 8 62
libXdmcp 42 88
libxml2 1652 29
libXrender 45 16
libz 71 20

Total 27366 38

66

Table 4.2: Inferred Output Parameter Annotations

Out In/Out

Library # Funcs funcs params funcs params

libacl 61 8 8 3 4
libarchive 267 8 16 1 1
libatk-1 254 0 0 0 0
libattr 26 0 0 2 2
libbz2 33 9 17 2 2
libcairo 379 36 67 16 32
libcrypto 3552 564 663 506 539
libcurl 334 57 70 9 10
libdbus-1 804 88 115 46 47
libexif 142 8 10 0 0
libexpat 80 8 19 0 0
libffi 23 1 1 0 0
libfontconfig 196 27 31 4 4
libfreenect 61 15 20 0 0
libfreetype 289 67 86 14 17
libfuse 188 8 19 16 16
libgdk-3 758 63 115 11 17
libgdk_pixbuf-2 121 5 8 25 25
libgio-2 1772 76 94 262 264
libglib-2 1529 156 205 140 147
libglpk 1072 44 83 26 28
libgobject-2 394 12 13 3 3
libgsl 3910 1007 1261 44 55
libgtk-3 4784 299 463 129 149
libical 1045 72 75 8 12
libjansson 96 6 7 0 0
libpango-1 406 52 81 17 25
libpcre 31 13 19 1 2
libpixman-1 128 8 8 9 15
libpng15 391 36 96 7 12
libsoup-2 530 22 40 10 10
libsqlite3 185 42 52 9 10
libssl 475 21 27 16 18
libusb-1 53 11 11 0 0
libX11 1179 184 323 37 45
libXau 8 0 0 0 0
libXdmcp 42 9 9 0 0
libxml2 1652 51 72 16 21
libXrender 45 4 6 0 0
libz 71 3 3 3 3

Total 27366 3100 4213 1392 1535

67

these parameters, then, can be a significant boon to users.
We compared the results of our output parameter analysis to a hand-written

binding to a subset of gsl (Jaroszewicz, 2008). Like most bindings to gsl, this
binding is not complete because of its massive scope and the needs of the author.
Nonetheless, our inferred annotations match the hand-coded binding very closely.
We differ on only one function where the hand-written binding can return either a
0-tuple, a 1-tuple, or a 2-tuple, depending on the inputs. Our analysis considers
the function to always return two values.

4.6.2 Array Parameters

Comparing the results of table 4.2 and table 4.3, many libraries have more array
parameters than output parameters. This is not entirely surprising as arrays are the
only collection type built in to the C language. Since C strings are actually NUL

terminated arrays of char, the array analysis is unable to distinguish between
them and other arrays of char. This is not a significant problem for many library
bindings, where strings are much more common than raw byte arrays. Most
binding generators could default to treating all char array parameters as strings
and relying on manual annotations from a programmer to identify raw byte arrays.
Our analysis is an improvement on other binding generators in this regard because
we can distinguish between the case of a char used as an output parameter from
char arrays.

Future work could distinguish between strings and raw byte arrays by recog-
nizing NUL terminator checks, as well as seeing which pointer parameters are
passed to string manipulation functions in the C standard library.

4.6.3 Non-Nullable Parameters

Table 4.4 shows that non-nullable pointers are very common in many libraries,
more common than output parameters or array parameters. In total, more than
one in three functions we analyze has a pointer parameter that is non-nullable.

68

Table 4.3: Inferred Array Parameter Annotations

Array

Library # Funcs funcs params

libacl 61 8 10
libarchive 267 48 50
libatk-1 254 12 12
libattr 26 8 8
libbz2 33 5 10
libcairo 379 18 18
libcrypto 3552 482 692
libcurl 334 56 69
libdbus-1 804 92 111
libexif 142 23 23
libexpat 80 4 6
libffi 23 1 1
libfontconfig 196 60 68
libfreenect 61 4 4
libfreetype 289 10 11
libfuse 188 29 29
libgdk-3 758 28 29
libgdk_pixbuf-2 121 22 26
libgio-2 1772 317 403
libglib-2 1529 377 487
libglpk 1072 211 412
libgobject-2 394 75 127
libgsl 3910 669 890
libgtk-3 4784 335 353
libical 1045 317 324
libjansson 96 26 26
libpango-1 406 35 36
libpcre 31 15 20
libpixman-1 128 0 0
libpng15 391 64 81
libsoup-2 530 81 111
libsqlite3 185 33 34
libssl 475 27 27
libusb-1 53 2 2
libX11 1179 125 159
libXau 8 3 4
libXdmcp 42 5 13
libxml2 1652 393 536
libXrender 45 2 2
libz 71 8 8

Total 27366 4030 5232

69

Table 4.4: Inferred Non-Nullable Parameter Annotations

Non-Nullable

Library # Funcs funcs params

libacl 61 10 12
libarchive 267 241 263
libatk-1 254 2 2
libattr 26 0 0
libbz2 33 8 9
libcairo 379 273 293
libcrypto 3552 1288 1479
libcurl 334 190 236
libdbus-1 804 446 523
libexif 142 8 8
libexpat 80 61 62
libffi 23 18 20
libfontconfig 196 82 94
libfreenect 61 54 66
libfreetype 289 95 118
libfuse 188 118 140
libgdk-3 758 203 225
libgdk_pixbuf-2 121 5 6
libgio-2 1772 227 238
libglib-2 1529 903 1026
libglpk 1072 813 956
libgobject-2 394 9 10
libgsl 3910 2417 3370
libgtk-3 4784 582 645
libical 1045 225 266
libjansson 96 26 30
libpango-1 406 60 69
libpcre 31 7 7
libpixman-1 128 80 96
libpng15 391 139 152
libsoup-2 530 174 200
libsqlite3 185 87 92
libssl 475 302 314
libusb-1 53 10 10
libX11 1179 779 976
libXau 8 4 5
libXdmcp 42 33 46
libxml2 1652 56 60
libXrender 45 4 4
libz 71 3 3

Total 27366 10042 12131

70

This is an important semantic feature of APIs that is not apparent from C function
signatures. While we do not report specific statistics of inferred annotations on
private functions in libraries, we note that non-nullable parameters are more
common in private interfaces than in user facing interfaces. This seems to suggest
that defensive programming is more common in public interfaces, while implicit
invariants (such as non-nullability) are maintained internally.

We note an interesting interplay between the results of the output parameter
analysis and the non-nullable pointer analysis. Non-nullable output parameters
are required and imply that the function will always produce an extra return value.
Nullable output parameters represent optional additional information that callers
can request by providing storage for an output parameter. Alternatively, nullable
output parameters may represent information that the function might or might
not return, depending on other parameters. As noted previously, our current
binding generation tools do not allow users to decide to not accept optional output
parameters: we always allocate storage for them and provide no means by which
to pass NULL. This limitation is not an inherent limitation to binding automation
and merely reflects the state of our tools.

71

5 memory ownership

Understanding the ownership semantics and lifetimes of C objects is a fundamen-
tal prerequisite to correctly use any C library. One of our goals is to generate
bindings to C libraries that automatically manage resource lifetimes; thus, these
ownership semantics, which characterize correct resource flows across library
boundaries, are of special interest. Programs lacking a precise cross-language
ownership semantics are vulnerable to resource leaks, threatening reliability.
Unclear ownership semantics can also lead to crashes induced by use-after-free
or double-free errors. Both of these types of errors are more difficult to debug
in polyglot programs, as common debugging tools target programs written in a
single language.

Most low-level languages like C do not provide any means for describing,
much less checking, object ownership semantics. Instead, this critical information
must be conveyed through documentation or recovered through static analysis.
Library interfaces defined in C typically refer to dynamically-allocated resources
by their address (a pointer). Unfortunately one cannot simply call free on all
pointers obtained from a low-level language to release the associated resources.
This approach fails because, while C functions expose most resources through
pointers, they use pointers for many other purposes as well.

Consider the two C function declarations in figure 5.1. Each returns a char*.
The value returned by strdup must be freed to prevent memory leaks, but
freeing the value returned by asctime will cause a crash. The caller owns the
result of strdup but not the result of asctime. Furthermore, some dynamically-
allocated resources may require more sophisticated disposal than is afforded by

1 char *strdup(const char *s);
2 char *asctime(const struct tm *tm);

Figure 5.1: C function signatures

72

the generic free function. Consider fopen and fclose: calling free on the
result of fopen is a partial resource leak. The fclose function is the finalizer

for fopen, and is the only way to safely dispose of the result of fopen. Thus,
functions returning managed resources must be identified along with their associ-
ated resource finalizer functions. Resource management semantics are unclear in
C even without the additional complexities of polyglot programming.

We describe our ownership model for C resources and present algorithms to
infer the ownership semantics of C libraries. These semantics are presented to
users and tools through inferred annotations on library functions. While these
analyses are unsound and incomplete, they are nonetheless useful. As discussed
in section 5.8, our algorithms significantly reduce the manual annotation burden
required to create library bindings. With review by a programmer familiar with
the library being analyzed, these inferred annotations are sufficient to generate
idiomatic FFI library bindings for high-level languages. The resulting bindings
will be idiomatic in that they automatically manage the flow of resources between
languages and clean them up when they become garbage. They also serve as an
aid in program understanding and can augment documentation.

5.1 Allocators

This analysis identifies allocators, functions that allocate and return new resources
to callers. While most allocators return resources to callers through their return
values, others return resources through output parameters, as demonstrated in
figure 5.2. We treat output parameters as additional return values and use dataflow
analysis to identify the return values that hold newly-allocated values when a
function returns. This analysis relies on the analysis described in section 4.3 to
recognize output parameters that may be used to return allocated values. We
refer to the real return value and all output parameters of a function as return
slots. The return slot of the real return value is indexed by RET. The dataflow
fact for this analysis is a mapping from return slots to sets of values returned

73

1 FT_Error
2 FT_GlyphLoader_New(FT_Memory memory,
3 FT_GlyphLoader *aloader)
4 {
5 FT_GlyphLoader loader = NULL;
6 FT_Error error;
7

8

9 if (!FT_NEW(loader))
10 {
11 loader->memory = memory;
12 *aloader = loader;
13 }
14 return error;
15 }

Figure 5.2: An allocation through an output parameter

through them. Here, values can be literals or function call results. Both top and
the initial analysis fact are a mapping from each return slot to the empty set. The
meet operator performs a pointwise union on each pair of return value sets. The
transfer function is defined by the following cases, where s is a statement with
unique successor e:

1. If s is of the form *p = v where p is an output parameter, the transfer
function for edge (s, e) is

λinState.inState[p 7→ {v}]

2. If s is of the form return v, the transfer function for edge (s, e) is

λinState.inState[RET 7→ inState[RET] ∪ {v}]

3. For all other statements, the transfer function is the identity.

74

1 struct archive_entry *archive_entry_new(void)
2 {
3 struct archive_entry *entry;
4

5 entry = (struct archive_entry *)malloc(sizeof(*entry));
6 if (entry == NULL)
7 return (NULL);
8 memset(entry, 0, sizeof(*entry));
9

10 return (entry);
11 }

Figure 5.3: A conventional derived allocator

Return statements have a single outgoing edge to the unique EXIT node of
the function. A returned value or output parameter is an allocation if all of the
values in its return value set at the EXIT node are new allocations that escape
only through their respective return slot. The return value set of an allocating
slot may contain NULL to signal an error as long as it also contains non-escaping
allocations, following the convention of malloc established in the C standard
library.

Figure 5.3 shows a simple derived allocator. At the unique exit node of
archive_entry_new, the return value set of the real return slot contains entry.
This value is the result of a call to malloc, which is a known allocator. Further-
more, since memset does not allow its arguments to escape, entry escapes only
through its return slot. Thus, archive_entry_new is a derived allocator.

As discussed earlier in this section, the FT_GlyphLoader_New function in
figure 5.2 is an allocator through its output parameter aloader. The assignment
on line 12 assigns a newly allocated value to the aloader output parameter. At
the function exit node, the return value set of aloader contains both NULL and
the new allocation produced by FT_NEW. Thus, FT_GlyphLoader_New is an
allocator through the aloader parameter.

75

5.2 Finalizers

We identify formal parameters that are finalized or NULL on every path through
each function. While we are interested in formal parameters that are finalized,
we allow finalized parameters to be NULL to mirror the semantics of the C free
function. We approximate this set with a forward dataflow analysis. The dataflow
fact at each program point is the set of pointer parameters that are finalized or
NULL. The initial state of the analysis is the empty set, the top element is the
universal set, and the meet operator is set intersection.

The transfer function for a statement s has two cases:

• If s is a call f(..., p, ...) where p is a formal parameter and is final-
ized by f, the transfer function for edge (s, e) is

λinState.inState ∪ {p}

• If s is a conditional branch statement comparing formal parameter p against
NULL, the transfer function for edge (s, N) where N is the outgoing edge
of s along which p is NULL

λinState.inState ∪ {p}

Where N is the outgoing edge of s along which p is NULL.

• For all other statements, the transfer function is the identity.

If a formal parameter is an element of the dataflow fact at the unique exit node
of a function, that parameter is finalized. Figure 5.4 shows two functions that
finalize their formal parameters, taken from the GNU Linear Programming Toolkit
(GLPK) (Makhorin, 2008). The first function, glp_free, is a finalizer that this
analysis is unable to identify. glp_free calls a known finalizer on line 11, but
the actual argument to this known finalizer is the result of pointer arithmetic

76

1 void glp_free(void *ptr) {
2 LIBENV *env = lib_link_env();
3 int sz = align(sizeof(LIBMEM));
4 LIBMEM *desc = (void *)((char *)ptr - sz);
5 if (desc->prev == NULL)
6 env->mem_ptr = desc->next;
7 else
8 desc->prev->next = desc->next;
9

10 env->mem_total -= desc->size;
11 free(desc);
12 }
13

14 void glp_delete_prob(glp_prob *lp) {
15 if (!lp)
16 return;
17 glp_free(lp->row);
18 glp_free(lp->col);
19 glp_free(lp);
20 }

Figure 5.4: Two finalizers from GLPK

1 {"glp_malloc" : [[{"FAAllocator" : "glp_free"}], []] }

Figure 5.5: Manual annotations for GLPK

(line 4) that is accounting for an object header introduced by the function that
originally allocated the memory. Thus, the analysis cannot determine that the
ptr formal parameter is finalized.

While heuristics could be added to the analysis to handle object headers of
this form, we do not do so because the construct is not common in practice.
Recognizing glp_free as a finalizer requires a manual annotation as shown in
figure 5.5. This manual annotation declares that glp_free is the function of one
argument that finalizes values returned by glp_malloc.

77

With glp_free registered as a finalizer, the analysis can proceed to a caller
of glp_free: glp_delete_prob. There are two paths through this function.
On the first path (line 15), formal parameter lp is NULL. On the other path, lp is
finalized by a call to known finalizer glp_free on line 19.

5.3 Symbolic Access Paths Revisited

In this section, we extend the formulation of symbolic access paths described in
section 4.1 with two additional maps keyed by function and formal parameter
number.

• Let f be a function and i be the zero-based index of a parameter to that
function. Then finalizePaths[f , i] is a set of access paths that function f

finalizes in its ith parameter.

• Let f be a function and i be the zero-based index of a formal parameter to f .
Then writePaths[f , i] is a set of triples of the form (p, j, q) where function
f reads the value at access path q of its j th parameter and ultimately stores
this value into access path p of its ith parameter.

Let argno(v) return the index of formal parameter v in the formal parameter
list of the enclosing function. Let base(p) return the base of access path p

and components(p) return the path components of p. The access path extend
operation p1 ⊕ p2 extends p1 by p2 in the natural way; the resulting path has the
same base value as p1 and the path components of p2 appended to those of p1.
The set-valued operation nr(p) returns the singleton set containing p if each path
component in components(p) is unique within p; otherwise, it returns the empty
set. Likewise, nr((p, j, q)) returns a singleton set containing a triple if neither p

nor q has repeated path components. This condition excludes cyclic paths that
could grow indefinitely; such paths are common in the presence of inductive data
structures.

78

Only function calls add elements to finalizePaths. This analysis is flow-
insensitive and paths are created or extended for any relevant function call that may

be executed. Suppose function f contains a function call of the form g(value).
Let p = ap(value) be the access path of value. If g is a finalizer and base(p) is
among the formal parameters of f, then:

finalizePaths[f , argno(base(p))] ∪= nr(p)

Calls to non-finalizer functions generate new paths by extending access paths
in finalizePaths. At a high level, paths are extended by mapping access paths in
callees to the arguments of their callers. For each call callee(..., a, ...)
in function f where a is the ith argument to callee and p ∈ finalizePaths[callee, i],
let pext = ap(a) ⊕ p. If base(pext) is a formal parameter of f , then:

finalizePaths[f , argno(base(pext))] ∪= nr(pext)

Lastly, assume a function f calls v = g(..., a, ...); and then later
calls h(..., v, ...); where h finalizes v and a is the j th argument to g.
Further assume that (p, j, q) ∈ writePaths[g, 0] and that base(ap(a)) is a formal
parameter of f with index i. p is a degenerate access path with no components
because it is the return value of g. Let qext = ap(a) ⊕ q, the path of base(ap(a))
that is finalized by h. Then:

finalizePaths[f , i] ∪= nr(qext)

Now consider a store of the form *location = value in function f. Let
lp = ap(location) and p = ap(value). If both base(lp) and base(p) are among
the formal parameters of f , then:

writePaths[f , argno(base(lp))] ∪= nr((lp, argno(base(p)), p))

79

For each call callee(..., a, ..., b, ...) c in function f where a and
b are the ith and j th arguments to c, respectively, and (p, j, q) ∈ writePaths[c, i],
let qext = ap(b) ⊕ q and pext = ap(a) ⊕ p. Let qextB = base(qext) and pextB =

base(pext). If both qextB and pextB are formal parameters of f , then:

writePaths[f , argno(pextB)] ∪= nr((pext, argno(qextB), qext))

In each of these cases, we use local points-to information (the PT-relation
from Matosevic and Abdelrahman (2012)) to produce maximal access paths.
For the pvl_push function in figure 4.3, the analysis can only conclude that d
is written to the path (e, 〈data〉) without local points-to information. Since e
is not a formal parameter of pvl_push, this fact is not recorded in writePaths.
With local points-to information, the analysis can construct the maximal path
(lst, 〈head,data〉). The base of this maximal path is lst, which is a formal
parameter of pvl_push. Thus, writePaths can be updated to reflect the write of
d to this path.

5.4 Ownership Transfer

We adopt the ownership model of Heine and Lam (2003) whereby each object is
pointed to by exactly one owning reference. The object must eventually either
be finalized through the owning reference, or ownership must be transferred to
another owning reference. When a pointer is finalized, the resources held by the
object it points to are safely released. Non-owning references to any object can
be created at any time and are valid until the object is finalized. In the Heine and
Lam model, pointer-typed members of C++ objects are either always owning
references or are never owning references (at public interface boundaries). We
extend this model to pointer-typed fields of some C structures for all functions.

80

5.4.1 Memory Ownership in C

A memory allocator is an abstraction over the most prevalent resource in most
programs: dynamically allocated memory. The standard C library’s allocator
and finalizer functions are malloc and free, respectively. When the memory
allocator owns a piece of memory (i.e., the memory is unallocated), it is an error
for any other part of the program to use it. When the allocator function is called,
it completely transfers ownership of the memory to the caller via the returned
owning reference.

Complex resources may own other resources through owned pointer fields.
Finalizers for these complex resources must finalize their owned resources to
obey the ownership model and to avoid leaks, as in figures 4.3 and 4.4. The
icalcomponent type is a resource allocated with icalcomponent_new. It
owns a component list, along with each of the components in the list of children.
The finalizer for this type, icalcomponent_free, finalizes the list of children
as well as the child components before finalizing the component itself with a call
to free on line 23 in figure 4.4.

Ownership extends beyond just allocators and finalizers. For example, the
function icalcomponent_remove_component removes a child component from
a component without finalizing it. After a call to this function, the component
no longer owns the child and ownership is implicitly transferred to the caller.
Note that simply reading a child component from a component does not transfer
ownership because the component will still finalize all of its children when it is
itself finalized. Similarly, components do not own the component referenced by
their parent field because that field is not finalized in the component finalizer.
Our analysis does not automatically recognize this type of ownership transfer. It
is relatively rare in real code, and would require expensive shape analysis (Sagiv
et al., 2002).

81

1 def doFinalize(self):
2 try:
3 if self.__finalizer:
4 self.__finalizer(self)
5 except AttributeError: pass
6

7 def RPOINTER(cls, finalizer, p):
8 klass = POINTER(cls)
9 c = klass(p)

10 setattr(c, "__finalizer", finalizer)
11 setattr(c, "__del__", doFinalize)
12

13 class Foo(ctypes.Structure):
14 _fields_ = []
15

16 def new_foo():
17 c = clib.new_foo()
18 return RPOINTER(Foo, clib.free_foo, c)
19

20 # Use
21 f = new_foo()
22 clib.use_foo(f)

Figure 5.6: A Python object wrapper

5.4.2 Using Ownership in Generated Library Bindings

In this section, we outline how ownership properties of C libraries can be used
to create library bindings that automatically manage the lifetimes of objects
allocated by C functions. When a C allocator is called from a high-level language,
the high-level language run-time system assumes exclusive ownership of the
allocated resource by wrapping it in a special object. Figure 5.6 shows one
possible approach to arranging for the Python garbage collector to manage C
resources. Instead of calling a C allocation function (clib.new_foo) directly,
callers instead call the wrapper function new_foo. The wrapper function attaches

82

1 @contextmanager
2 def foo():
3 c = clib.new_foo()
4 try:
5 yield c
6 finally:
7 clib.free_foo(c)
8

9 # Use
10 with foo() as f:
11 clib.use_foo(f)

Figure 5.7: A Python deterministic finalizer

the corresponding finalizer function to the newly-allocated object. The finalizer
function will be run automatically by the Python garbage collector. All references
to the C resource in the high-level language are mediated through this wrapper
object, which is managed by the high-level language memory manager (i.e.,
garbage collector). Since the wrapper object is a normal high-level language
object, the memory manager knows when it is unreferenced and safe to finalize.
The wrapper object uses memory manager hooks, in this case the __del__
method, to automatically invoke the appropriate finalizer for the C resource when
doing so is safe. In contrast, there is no such system in C unless it is implemented
manually, such as through reference counting. As an alternative to garbage
collection, Python interfaces could implement deterministic finalization through
Python context managers, as shown in figure 5.7.

Of course, to be of any use these resources must be passed back to low-level
code, in which operations on them are written. For a Assume that low-level
language resource r is owned exclusively by a high-level language run-time and
is passed to a low-level language function f : f (. . . , r, . . .). For each such call,
one of the following must hold:

1. f assumes ownership of r . The high-level language must relinquish owner-

83

1 with pinned(r):
2 # allow r to escape into a global
3 stash_in_global(r)
4

5 # drop explicit reference to r, but is still pinned
6 del r
7

8 # r is pinned, so safe to access via stashed global
9 use_stashed_global()

Figure 5.8: Pinning Python objects with a context manager

ship of r by disabling any garbage collector hooks that would have run a
finalizer on r .

2. f creates only transient references to r , all of which are destroyed when
f returns. The high-level language still owns r and need take no further
actions.

3. f creates a non-transient non-owning reference n to r . The high-level
language run-time system still owns r and does not need to take any further
actions. However, the programmer passing r to f must ensure that the
lifetime of r exceeds that of n.

4. r does not obey our ownership model, but is instead reference-counted. In
this case, as long as the reference manipulation functions are known, the
object can safely be passed between languages.

5. r does not obey our ownership model and its resources cannot be automati-
cally managed by the high-level language.

Cases one, two, and four can be fully automated and are ideal for robust
language interoperability. The third case requires the high-level language caller
of f to understand the semantics of the called function and its effect on the
lifetime of r . Note that this semantic knowledge is required of any caller of f ,

84

even in C. While the lifetime management of r in the third case cannot be fully
automated, a high-level language library binding could provide programmers
with tools to make such lifetime management simpler. For example, a Python
library binding could provide a resource manager to pin objects to keep them
alive within a lexical scope, as in figure 5.8. In this example, assume that
stash_in_global(r) lets r escape into a global location managed by the
library. If use_stashed_global accesses r through that global location, then r
must still be live when use_stashed_global is called. The pinned resource
manager retains a reference to its argument for the lexical scope of the with
statement.

5.4.3 Identifying Owned Fields

After all of the symbolic access paths in a library are constructed, we next identify
the owned fields in the library. According to our resource ownership model from
section 5.4, owned fields of a type are those fields that will be finalized when
an object of that type is finalized. Our analysis determines this by analyzing the
finalized access paths of each function: if a field of the argument of a finalizer
function is finalized, that field is owned. That is, if some function f is a finalizer
for its ith formal parameter, all of the fields in finalizePaths[f , i] are owned fields.

In figure 4.4, the function icalcomponent_free is a finalizer because the c
parameter (of type icalcomponent*) is finalized (or NULL) on every path. The
pvl_free and icalcomponent_free functions are finalizers as well (imple-
mentations not shown). We see that icalcomponent_free passes the return
value of pvl_pop to a finalizer. pvl_pop returns the data from the head of its list
argument through the access path (lst, 〈head,data〉). Thus, the value passed to
the finalizer is (icalcomponent, 〈components,head,data〉); we conclude that
this field of icalcomponent is owned.

85

5.4.4 Transferred Ownership of Parameters

The key insight of the ownership transfer analysis is that ownership of any function
argument stored into an owned field is transferred from the caller. Assume a
function f has formal parameters a and b at positions i and j in the formal
parameter list respectively. If (p, j, q) ∈ writePaths[f , i] where ap(b) is q (q is
the degenerate access path of just the formal parameter b) and the last component
of p is an owned field, as per section 5.4.3, then f transfers ownership of b to a.

Returning to figures 4.3 and 4.4, the function pvl_push stores its d argument
into a field of lst, which is summarized by the access path (lst, 〈head,data〉).
The icalcomponent_add_component function calls pvl_push with a field
of c, components, as an argument, thereby extending the write access path
to (c, 〈components,head,data〉). The first phase of the analysis identified
the last component of this path as an owned field, and thus the c argument
of icalcomponent_add_component assumes ownership of child. Note that
icalcomponent_set_parent does not assume ownership of its parent param-
eter: the corresponding field is never finalized, and is thus not owned.

Our access path construction proceeds backwards from an address across
pointer dereferences, field accesses, union accesses, and array accesses. We stop
the construction at SSA φ-nodes to avoid a potential exponential explosion of
generated access paths. While this is unsound, we have not observed any missed
ownership transfers in practice.

5.5 Escape Analysis and Lifetime

While the results of the transfer analysis are essential to minimize the effort of
generating language bindings that automate resource management, an escape
analysis still provides important information. If a pointer to an object escapes,
but ownership of that object is not transferred, we still learn information about
the lifetime of that object. While we cannot always automatically manage this
lifetime, the user can at least be informed that some scope management is required.

86

Helper functions could be used to pin objects with scoped lifetimes to keep them
from being collected while references exist in a C library that are not visible to
the garbage collector. While prior work has described an escape analysis for this
purpose, we present a more precise analysis that eliminates many of the false
positives of prior work.

We describe a bottom-up summary-based flow-insensitive escape analysis
with limited field and context sensitivity for C. This analysis is a form of stack
escape analysis (Choi et al., 2003; Whaley and Rinard, 1999), rather than a thread
escape analysis (Salcianu and Rinard, 2001). Our analysis is based on a value flow

escape graph, which is a value flow graph (Li et al., 2011) with extra annotations.
Our analysis is most similar to that of Whaley and Rinard (1999), though ours
is flow-insensitive and requires only a single graph per function. Like Whaley
and Rinard (1999), we analyze functions independently of their callers. We
require this because callers may be written in another language and unavailable
at analysis time. Furthermore, we trade precision for speed and simpler handling
of callees. Instead of unifying the points-to escape graph of each callee into the
graph of the caller at call sites, we use summary information to mark only the
escaping parameters as escaping. This allows for more compact representations of
callees at the cost of some of the precision of graph unification. We conservatively
assume that values passed to callees with no summaries do escape. The value
flow graph does not allow us to answer points-to queries, which we do not require,
but it can be constructed in a single pass, unlike the points-to escape graph.

Our value flow graph has two types of nodes: location nodes and sink nodes.
An edge a → b denotes that values flow from a to b. A value escapes if there is
a path from it to a sink. The analysis is conservative and identifies values that
may escape. This approximation is appropriate in that false positives (values
incorrectly identified as escaping) lead to leaks, not crashes.

Sink nodes are created for (1) return statements in functions that return
aggregate or pointer values and (2) stores to global variables, arguments, the
return values of callees, and access paths thereof. A sink is also created for each

87

1 void CaseWalkerInit(const char *src, CaseWalker *w) {
2 w->src = src;
3 w->read = 0;
4 }
5

6 int CmpIgnoreCase(const char *s1, const char *s2) {
7 CaseWalker w1, w2;
8 Char8 c1, c2;
9

10 if (s1 == s2) return 0;
11

12 CaseWalkerInit(s1, &w1);
13 CaseWalkerInit(s2, &w2);
14

15 for (;;) {
16 c1 = CaseWalkerNext(&w1);
17 c2 = CaseWalkerNext(&w2);
18 if (!c1 || (c1 != c2)) break;
19 }
20 return (int)c1 - (int)c2;
21 }

Figure 5.9: Examples of escaping pointers from fontconfig library

escaping actual argument of a callee. The following statements induce edges in
the value flow graph:

• *a = b adds b→ a or bp → a

Assignments cause the source operand to flow to the destination operand.
The edge bp → a is added if the right-hand side of the assignment is a field
reference with concrete access path (b, 〈p〉); if there is no field access, the
simpler form b→ a is added.

• return a adds a → sinkret

The returned value flows to the special return sink node.

88

w->srcsrc

Figure 5.10: Value flow escape graph for CaseWalkerInit in figure 5.9

w1

w2

s1

s2

Figure 5.11: Value flow escape graph for CmpIgnoreCase in figure 5.9

For example, the function CaseWalkerInit in figure 5.9 has the value-flow
escape graph shown in figure 5.10. We represent location nodes as circles and
sinks as rectangles. The argument src is represented by its location node, which
flows into a field of the w argument. src escapes because there is a path from it
to a sink.

Function calls of the form f(a1, a2, ..., aN) act as a sequence of as-
signments ∗ f1 = a1, ∗ f2 = a2, . . . , ∗ f N = aN where fi is the node representing
the ith formal argument of f . If fi allows its argument to escape, then fi is a sink
node. Local value v escapes from f if v →∗ s for some s ∈ sinkNodes; that is if
any sink node s is reachable from v. If v does not escape according to this query,
then field p of v escapes from f if, vp →

∗ s for some s ∈ sinkNodes.
To introduce a limited form of context sensitivity, we make special note of

arguments that escape into fields of other arguments. Assume there is a function
call f(a, b) where the first argument of f escapes into the second argument.
We add an edge a → b in all callers of f to model the effects of f on the value
flow escape graph of the caller. For example, the CmpIgnoreCase function in
figure 5.9 calls CaseWalkerInit, which we already established allows its src
argument to escape into w. Thus, the value flow escape graph of CmpIgnoreCase,
shown in figure 5.11, has edges from s1 to w1 and s2 and w2. Since w1 and w2

89

are local variables that do not otherwise escape, we are able to conclude that s1
and s2 do not escape, despite being passed as arguments that could escape if
considered only in isolation.

Field sensitivity prevents a single escaping field from causing all other fields of
the same object to also escape. We take a field-based approach to field sensitivity
that is unsound when pointers to struct types are cast to structurally unrelated
types (Pearce et al., 2007) as in section 5.3. This unsoundness could make us
label an escaping pointer as non-escaping. It could be made sound by having
any casts to structurally unrelated types cause all affected fields to escape. We
have not done this because such casts are rare in practice and have not yet caused
problems.

5.6 Shared Ownership and Reference Counting

Most resources in our model must be exclusively owned in order for them to be
automatically managed by a high-level language run-time system. However, we
support shared ownership for reference-counted resources. Moreover, ownership
can be safely shared between a low-level language and a high-level language
run-time system, provided the high-level language run-time safely manipulates
the reference count. When the high-level language acquires shared ownership of
a resource, it must increment its reference count. When the high-level language
is ready to relinquish ownership of the resource, it must decrement the reference
count instead of calling a finalizer on it. If the high-level language finalizes the
resource directly, later accesses through outstanding shared references in library
code could lead to a crash. Note that shared resources may safely escape into
library code (c.f. section 5.5) because the reference counts mediate their lifetimes.

90

1 typedef struct {
2 int refcount;
3 Connection *connection;
4 } PendingCall;
5

6 PendingCall* pending_call_ref(PendingCall *pending) {
7 ++pending->refcount;
8 return pending;
9 }

10

11 void pending_call_unref(PendingCall *pending) {
12 --pending->refcount;
13 if (pending->refcount) return;
14

15 Connection *c = pending->connection;
16 free(pending);
17 connection_unref(c);
18 }

Figure 5.12: Reference counting in dbus-1 library

5.6.1 Identifying Reference Increment and Decrement
Functions

We describe an analysis to identify, for a library with reference-counted resources:

• the set of types that must be reference-counted (to know when references
must be managed) and

• the functions to increment and decrement references (IncRef and DecRef,
respectively) for each type (to correctly manipulate the reference counts).

We begin by identifying the DecRef function of a resource. Fundamentally,
DecRef :

• takes a pointer to a resource as an argument,

91

• decrements an integer field of the resource, and

• if the reference count becomes zero, calls a finalizer on the argument.

A common variant of DecRef calls the finalizer directly without decrementing
the reference count if there is only a single reference to the resource. Another
interesting variant, such as from gobject-2.0, has multiple reference count decre-
ment attempts; these arise because gobject-2.0 supports finalizers that can add
references to objects that are in the process of being finalized. Instead of pre-
cisely modeling every possible variant of reference counting, we employ an
over-approximation that is unsound and incomplete, but nonetheless effective.

Without loss of generality, assume that DecRef functions take only a single
argument: a pointer to a resource. First, identify all conditional finalizers in the
library. These are functions that finalize their argument on some, but not all,
paths. Building on the results of the finalizer analysis described in section 5.2,
this is a linear scan of the instructions in each function. A conditional finalizer
is a function that calls at least one finalizer on its argument but is not itself a
finalizer. (If it were a finalizer, it would call a finalizer on all paths.)

Consider the example in figure 5.12, which is adapted from code in the
dbus-1 library simplified for exposition. Following the algorithm, we note that
pending_call_unref takes a single pointer-typed argument. It passes this
argument to finalizer free on line 16. However, pending_call_unref may
also return early on line 13. Therefore, pending_call_unref is not itself a
finalizer, but it is a conditional finalizer.

For each conditional finalizer cf with argument a, cf is a DecRef function with
access path (a, 〈p〉) if it decrements an integer field of a via a sequence of field
accesses p. We do not require that cf always decrement the reference count be-
cause some variants skip it under certain circumstances; this is a potential source
of imprecision. For example, the conditional finalizer pending_call_unref
in figure 5.12 always decrements the refcount field of its pending argument

92

on line 12. Therefore, pending_call_unref is a DecRef function with access
path (pending, 〈refcount〉).

For each DecRef function and its associated access path (a, 〈p〉), the corre-
sponding IncRef function is the one that takes a single argument of the same
type as a, the root of the access path, and always increments the location in the
resource described by p. If there is more than one IncRef function for a given De-

cRef function, we do not associate them and an annotation would be required to
match the desired pairs. If more than one DecRef function could manage a given
type, a consumer of the analysis results would need an annotation to prefer one.
Returning to figure 5.12, we find that pending_call_ref always increments
the refcount field of its one argument. Therefore, pending_call_ref is the
IncRef function corresponding to pending_call_unref.

Note that we assume that libraries correctly manage reference counts inter-
nally. We make no attempt to verify this assumption, for which other analyses
already exist (Emmi et al., 2009).

5.6.2 Identifying Reference-Counted Types

So far we have identified the IncRef and DecRef functions that manipulate
reference counts. We must also determine the set of types whose reference counts
are managed by these functions. Clearly, this set includes the common argument
type between IncRef and DecRef. Polymorphic reference counting functions,
however, manage multiple types. One way to identify the set of managed types
is to note that any polymorphic DecRef function needs some way to perform
type-specific finalization when the reference count reaches zero. The types
handled by these type-specific finalization functions are the types managed by
the IncRef and DecRef pair.

More formally, let c be a function that has already been identified as a DecRef

function for some type. Identify all indirect function callees in c to which c passes
its argument. For each such callee f , let τf be the set of types to which f casts its

93

1 void g_object_unref(GObject *object) {
2 gint oref;
3

4 oref = g_atomic_int_get(&object->ref_count);
5 if (oref > 1) {
6 g_atomic_int_add(&object->ref_count, -1);
7 }
8 else {
9 oref = g_atomic_int_add(&object->ref_count, -1);

10

11 if (oref == 1) {
12 object->klass->finalize(object);
13 g_type_free_instance(object);
14 }
15 }
16 }
17

18 void g_emblem_class_init(GEmblemClass *klass) {
19 klass->finalize = g_emblem_finalize;
20 }
21

22 void g_emblem_finalize(GObject *object) {
23 GEmblem *emblem = (GEmblem*)object;
24 g_object_unref(emblem->icon);
25 }

Figure 5.13: Managed types example from glib-2.0 library

argument. The set of types managed by c is the type of the argument of c unioned
with

⋃
f τf .

The example in figure 5.13 is simplified from the open-source library glib-2.0.
Our analysis recognizes g_object_unref as a DecRef function because of the
decrements of the ref_count field on lines 6 and 9 and the call to finalizer
g_type_free_instance on line 13. Next, we identify the targets of indirect
calls in g_object_unref. The only indirect call appears on line 12. As initial-

94

ized in g_emblem_class_init, the only known target is g_emblem_finalize.
Thus, g_object_unref and g_object_ref are the DecRef and IncRef func-
tions for GObject and GEmblem. As in this example, the indirect callees of
DecRef often represent finalizers for resource-specific data members.

This algorithm assumes that DecRef functions operate on structural subtypes
of the input value. An alternative approach is to directly exploit the structural
subtyping relationship and consider all structural subtypes of the input to DecRef

as being managed. We compare these two approaches in section 5.8.

5.6.3 Interprocedural Reference Count Manipulation

Not all functions directly increment and decrement references. Many use auxiliary
functions, particularly those that rely on atomic increments and decrements. We
employ a simple analysis to summarize the effects that functions have on the
integer fields of their pointer-typed arguments. This analysis also tracks these
effects for arguments of type int* to accommodate reference counting functions
that pass the address of their reference count field instead of the object containing
it.

5.7 Related Work

The C/C++ leak detector of Heine and Lam (2003) is very similar in spirit to
our work. They present an inference algorithm based on inequality constraints
to assign an owner to each object in a program. Our algorithms work on partial
programs (libraries) and are formulated in terms of symbolic access paths. Our
major contributions beyond their work are to (1) recognize ownership semantics
for C objects with a generalized notion of allocators and finalizers (instead of
only handling C++ objects) and (2) incorporate shared ownership via reference
counting and inferred contracts on function pointers used in library code. Rayside
and Mendel (2007) take a more dynamic approach with ownership profiling;
they report detailed hierarchical ownership information that is more precise

95

than what we can achieve statically. Negara et al. (2011) describe an inference
algorithm based on liveness analysis for identifying ownership transfer semantics
in message passing applications. In cases where ownership can be proved to
transfer to another process via message passing, the copy of the message can be
skipped and the receiving process can assume ownership of the message directly.
Boyapati et al. (2003) address ownership at the type level with work on ownership
types. Müller and Rudich (2007) extend Universe Types to support ownership
transfer. Their notion of temporary aliases correspond closely to our transient
references. In effect, we infer ownership types for C. Focusing specifically on
memory, Wegiel and Krintz (2010) discuss methods for sharing heap-allocated
objects between different managed run-time environments. They do not need to
establish an owner for each heap object because the run-time environments are
able to cooperate and safely share objects. Since one of our run-time systems is
C, which has no facilities for such object sharing, we must infer ownership.

As discussed in section 5.6, we do not verify the correctness of reference
count handling in the libraries we analyze. Emmi et al. (2009) present an analysis
to perform this complex verification building on the Blast model checker. Our
work is complementary in that Emmi et al. require manual specification of the set
of reference-counted types, which could be automated with our analysis.

5.8 Evaluation

In this section, we evaluate the effectiveness of the analyses described in this
chapter. As in section 4.6, we present results based on the functions in each
library callable by users. This is a slight superset of the public API of each
library, which is only established by convention. We first discuss the allocator
and finalizer analyses, as their results are most valuable to analysis consumers
when considered together. We then evaluate the ownership transfer and reference
counting analyses.

96

5.8.1 Allocator and Finalizer Analyses

The allocators and finalizers inferred by our analyses are reported in table 5.1.
Two general expected trends are clearly visible in this table:

• There are more allocators than finalizers. This makes sense since there are
often multiple allocators for a single type, but only one finalizer.

• Both analyses are incomplete. Libraries with finalizers but no allocators,
such as libatk-1 and libfreenect, indicate the impact of incompleteness in the
allocator analysis. Likewise, libraries with allocators but no finalizers, such
as libz and libXrender, suggest the scale of the impact of the incompleteness
of the finalizer analysis. It is worth noting that the number of allocators and
finalizers in a library is a small percentage of the total number of functions
in the same library.

In the remainder of this subsection, we discuss interesting findings in select
libraries.

libbz2

Both of the user facing allocators are identified properly. The other two allocators
in table 5.1 are not part of the public API. The analysis is unable to automatically
identify the finalizer for this library, BZ2_bzclose. This function delegates its
work to two other finalizers, which are not user facing. Both of these helpers
return early if they detect errors. This particular case could be automatically
resolved with:

• a generalization of the error code identification analysis in chapter 3 to
track error codes returned through output parameters, and

• a modification to make the finalizer analysis aware of, and robust to, error
paths.

97

Table 5.1: Inferred Allocator and Finalizer Annotations

Library # Funcs Allocators Finalizers

libacl 61 3 0
libarchive 267 8 5
libatk-1 254 0 1
libattr 26 0 0
libbz2 33 4 0
libcairo 379 2 2
libcrypto 3552 0 39
libcurl 334 8 7
libdbus-1 804 30 9
libexif 142 15 5
libexpat 80 2 3
libffi 23 0 0
libfontconfig 196 50 8
libfreenect 61 0 1
libfreetype 289 5 6
libfuse 188 13 9
libgdk-3 758 14 7
libgdk_pixbuf-2 121 8 1
libgio-2 1772 55 11
libglib-2 1529 224 39
libglpk 1072 66 2
libgobject-2 394 15 3
libgsl 3910 258 111
libgtk-3 4784 125 21
libical 1045 115 17
libjansson 96 5 2
libpango-1 406 58 12
libpcre 31 2 3
libpixman-1 128 5 0
libpng15 391 1 0
libsoup-2 530 41 6
libsqlite3 185 0 0
libssl 475 0 0
libusb-1 53 2 4
libX11 1179 47 23
libXau 8 3 1
libXdmcp 42 0 0
libxml2 1652 76 61
libXrender 45 2 0
libz 71 3 0

Total 27366 1265 419

98

libglpk

The GNU Linear Programming Toolkit (GLPK) (Makhorin, 2008) defines its own
low-level memory allocator in order to support more precise memory allocation
accounting than is possible with the standard malloc and free. This allocator
allocates extra memory for each allocation request. The extra memory is used as
an object header to record metadata and links the allocated chunks into a list that
can be traversed by query functions. The allocator then returns a pointer into the
middle of each memory allocation, which is all that the caller sees. This foils our
allocator analysis in two ways:

• the linked list construction allows each allocation to escape, which our
definition of allocators does not allow, and

• returning a pointer into the middle of an allocated chunk of memory does
not fit our definitions.

Likewise, the associated custom finalizer function does not follow our def-
inition of a finalizer. The entry for GLPK in table 5.1 reflects the analysis
results after we provided a single manual annotation to the analysis describing
this custom allocator/finalizer pair. Note that these low-level custom memory
management functions are not exposed to library callers at all. The allocator
and finalizer analyses identify approximately 40 allocators and 30 finalizers in
all, but only a few of these are actually exposed to the user. Nevertheless, one
manual annotation is sufficient to discover the few relevant user-facing memory
management functions.

5.8.2 Transfer Analysis

This section evaluates the effectiveness of the ownership transfer analysis from
section 5.4 on a suite of six open source libraries. The reference counting analysis
is evaluated on a separate set of libraries because, for the most part, libraries using
a reference counting discipline do not require the results of the ownership transfer

99

Table 5.2: Number of inferred transfer and escape annotations

Library Analyzed Transferred Parameters

Name Functions Transfer Contract Indirect Direct

archive 267 9 33 18 47
freenect 61 2 0 5 13
fuse 188 4 5 106 28
glpk 1072 0 67 54 149
gsl 3910 39 68 21 88
ical 1045 10 0 7 142

analysis since ownership in those libraries is made explicit in the reference counts.
We focus on the reduction in manual annotation burden compared to relying
solely on the results of an escape analysis. Table 5.2 shows the number of inferred
annotations for six libraries of various sizes. The transfer analysis was designed
based on archive and ical. The remaining libraries can be considered as the
test set. The second column in the table notes the number of functions in each
library. The “Transfer” column reports the number of function parameters that
our analysis has identified as transferring ownership from the caller. The rest of
the columns break down the results of our escape analysis.

We partition escaping parameters into three categories: contract escapes,
indirect escapes, and direct escapes. Contract escapes are parameters that escape
through calls to function pointers where some targets are known, and all of those
targets agree that the parameter does not escape. We refer to these parameters
as contract escapes because they only escape if the contract on the function
pointer they are passed to is violated. Indirect escapes are parameters that are
passed as arguments to calls through function pointers for which no targets can be
identified. However, it is rare in practice for parameters to truly escape through
function pointers because that would make the code difficult to reason about. If a
consumer of these analysis results can make this assumption, the distinction can
make a significant difference. For example, the fuse client library has many more
indirect escapes than direct escapes. Direct escapes in table 5.2 are the remaining

100

escaping parameters: simple escapes, such as to global variables, that are not due
to calls through function pointers.

While contract escapes are clearly not expected to escape by the library, by
virtue of library-provided initializers, they offer more information still. Each
indirect function call that induces contract escapes imposes a contract on the
function pointer that is dereferenced for that call. We can say that any function
that could be pointed to by that function pointer should obey the contract that
its arguments not escape. Contract escapes are most prevalent in libraries with
polymorphic behavior, as can be seen in archive. In this library, polymorphism
is implemented through function pointers stored in each object. These function
pointer fields are initialized with functions defined in the library when objects
are created, allowing us to infer the contracts imposed by these default values. It
is important to note that we do not consider an argument to an indirect function
call to be a contract escape if we merely know some of the targets of the call. We
only label it as a contract escape if all known call targets agree that the parameter
does not escape.

Each transfer annotation has an accompanying direct escape annotation. If
the results of the ownership transfer analysis, rather than the escape analysis, are
used to automate resource management, then the difference between the “Direct”
and “Transfer” columns in table 5.2 is the number of manual annotations saved
by the ownership transfer analysis. Without the ownership transfer analysis, each
extra escape annotation introduces a memory leak that must be plugged with a
manual annotation. This difference is striking in glpk and ical: the ownership
transfer analysis saves over 100 manual annotations in each. Further, glpk does
not seem to ever transfer ownership. However, as discussed in section 5.5, the
escape annotations are still useful as object lifetime documentation to the user.
The pointer parameters that escape without any ownership transfer require the
caller to understand the object lifetime discipline of the library. Constructs like
the pinning operation described in section 5.4.2 could be used to manage lifetimes
safely. The pinning helper would only need to be provided once with a library

101

binding generator and would work for all libraries.
Note that the transfer analysis requires an accurate view of the finalizer

functions in a given library. We manually annotated four missed finalizers in ical
and two in glpk. The finalizers in archive, freenect, and fuse were automatically
identified. We have not exhaustively inspected the results for glpk or gsl and some
finalizers may have been missed in those libraries; if so, our ownership transfer
analysis would identify more transferred parameters if the missed finalizers were
manually annotated. We note that manually annotating finalizers is significantly
easier than manually examining possible ownership transfers because finalizers
tend to follow uniform naming conventions.

In the remainder of this subsection, we provide a more detailed analysis of
the results for three of the libraries in our evaluation. These three libraries were
chosen because they have interesting ownership transfer properties while being
small enough to thoroughly evaluate by hand.

ical

The ical library provides a representation of calendar data. It has many functions,
but only a few actually transfer ownership of objects. The primary data structures
in this library form a tree; when an item is added to a tree representing some
calendar event, that tree assumes ownership of the new item.

The two analyses agree that 10 parameters induce ownership transfers. The
escape analysis flags over 100 extra parameters, however. Some of these non-
transferred escapes can be explained by the presence of a container API that does
not own its elements: adding an item to the container causes an escape but the
container does not own anything except its own internal structures. Many of the
remaining discrepancies arise from parent pointers. When one item is inserted as
the child of another in a tree, the parent field of the newly inserted item is updated
to point to its new parent element. This causes the child to escape into the parent
and the parent to escape into the child. These self-escapes could potentially be
special-cased when generating library bindings.

102

One function with an escape annotation but no transfer annotation was partic-
ularly interesting. This function adds an attachment to another object; however,
attachments are the one resource in ical that are reference-counted. Since attach-
ments are reference-counted, they do not have a finalizer function that our analysis
could automatically identify. Adding a manual annotation to the unref function
for attachments causes the analysis to correctly identify the ownership transfer
in question. This suggests that it may be prudent to consider unref functions
for reference-counted resources as finalizers for the purposes of the ownership
transfer analysis.

freenect

This library provides a driver and userspace control for Kinect hardware. Our
analysis infers ownership transfer of two parameters in two different functions,
freenect_init and fnusb_init. Both of these inferences are incorrect. The
root cause is fnusb_init, which freenect_init calls. The parameter in
question is an optional libusb_context. If the caller provides a context, the
library keeps a reference to it but does not assume ownership. However, if the
caller does not provide a context, fnusb_init allocates its own context over
which it does assume ownership. This ownership is recorded with a flag alongside
the reference to the libusb_context. This violates one of the assumptions of
our ownership transfer analysis: that fields are either always owned or never
owned. This particular field is sometimes owned. While these inferred transfer
annotations are not correct, the analysis still relieves the user of having to provide
eleven annotations to compensate for the overzealous escape analysis. The
transfer analysis also reduced the amount of code that must be inspected manually
to two functions.

We could adapt our analysis to make special note of fields that are only
sometimes finalized. Perhaps we could restrict it to fields that are finalized
only based on some flag. These conditionally-owned fields could be reported in
diagnostics and in generated documentation; with this extra information, users

103

could decide on the correct ownership semantics for their case. Although adding
to the manual inspection burden for users is undesirable, our analysis can show
users exactly where the ambiguity arises, limiting the scope of the inspection to
just unusual finalizers, rather than potentially every function in the library.

fuse

The fuse library is the userspace component of the Filesystem in Userspace project
for some *NIX systems. This library has only a handful of ownership transfers;
three of the four are transfers of a single type. In these cases, fuse_session
objects assume ownership of communication channels through constructors and
an explicit fuse_session_add_chan function.

The fourth ownership transferring function, fuse_session_new, is more
interesting. It creates a new fuse_session with two parameters: a void* for
arbitrary user-provided data and a struct with metadata. Among the metadata
is an optional function to finalize the user-provided data, which the finalizer for
fuse_session objects invokes if it is present.

This function exhibits an unforeseen interaction with our assumption that
fields will either always be owned or never owned: the user has control over the
ownership of a field, and our analysis finds evidence within the library being
analyzed that the field may be owned. This case suggests that our restriction, as
well as our notion of finalizers, could benefit from a more nuanced approach. In
this case, we see that a field is conditionally finalized based on a value provided
by the user, whereas the example in freenect made its decision to finalize or
not based on a field set by the library. While the correctness of the transfer
annotation in the case of this user data parameter to fuse_session_new may
depend on the preferences of the library user, the transfer analysis still saves a
user from having to provide at least 24 annotations to prevent leaks due to the
escape analysis. Furthermore, the user need only examine the four annotations
inferred by the transfer analysis. In reading the documentation on how to call
fuse_session_new, the meaning of the transfer annotation on the user data

104

Table 5.3: Number of inferred reference counting annotations.

Library Analyzed Reference Counting

Name Functions Allocators Finalizers Ref/Unref

cairo 379 2 2 4
dbus-1 804 36 8 11
exif 142 16 5 7
fontconfig 196 51 8 3
freetype 289 9 6 3
gio-2.0 1772 58 11 9
glib-2.0 1529 228 39 16
gobject-2.0 394 15 3 1
soup-2.4 530 46 6 3

parameter would become clear.
One might be tempted to generate library bindings that never transfer owner-

ship of user data pointers to a C library. This example shows that such special
treatment for even this extremely common C idiom is not completely safe. In most
cases user data is not owned, but when it is the type system bears no indication
one way or another.

Most of the escaping parameters whose ownership is not transferred are other
user data pointers. There are also a few instances of self-escaping parameters
as in ical. A third class of escapes are due to an imprecision in the escape
analysis that could be fixed. The fuse library uses non-escaping heap allocations;
parameters stored into these heap allocations are reported as escaping because
our escape analysis does not take advantage of the fact that pointers returned by
allocators like malloc are not aliased by anything. This could be fixed by treating
heap-allocated locals in the same way that we treat non-escaping stack-allocated
locals.

105

1 void exif_mem_free(ExifMem *mem, void *d)
2 {
3 if (!mem) return;
4 if (mem->free_func) {
5 mem->free_func(d);
6 return;
7 }
8 }

Figure 5.14: Finalizer from exif library

5.8.3 Reference Counting Analysis

Table 5.3 summarizes the results of our reference counting analysis on a suite
of nine open source libraries. The “Ref/Unref” column reports the number of
inferred IncRef and DecRef function pairs, rather than single functions. This
analysis was designed based on the dbus-1, exif, gobject-2.0, and gio-2.0 libraries.
For each library, we report (1) the number of functions in the library, (2) the
number of functions that are allocators, (3) the number of functions that are
finalizers, and (4) the number of IncRef and DecRef function pairs. As with our
ownership transfer analysis, the reference counting analysis requires an accurate
view of the allocators and finalizers present in each library. The dbus-1 library
required two manual annotations, exif required four, gobject required one, and
glib required seven in order for all of the allocators and finalizers to be recognized.
Some of these libraries use custom memory allocators, while others have finalizers
that do not quite match the notion of a finalizer that our tools use because they
include extra not-NULL checks. Figure 5.14 shows an example. On line 4, this
finalizer checks that a function pointer that it calls is not-NULL. Extending the
allocator and finalizer identification analyses is beyond the scope of this work.

This analysis is useful in several ways. First, it alerts users that their library
uses reference counting. Our experiments revealed reference-counted types in
libraries where we did not expect them, including ical and libusb. Reference
counting is not the primary resource management discipline in either library, but

106

is still important yet not apparent from a visual scan. More importantly, even
in cases where reference counting is the primary resource management disci-
pline, our reference counting analysis identifies both polymorphic IncRef /DecRef

functions and the types they operate on. For example, in dbus-1 we recog-
nize dbus_auth_unref and dbus_auth_ref as polymorphic managers of ref-
erence counts for three related types: DBusAuthClient, DBusAuthServer, and
DBusAuth.

The gio-2.0 library highlights the importance of the reference counting anal-
ysis in the presence of polymorphic reference counters. While gio-2.0 has 9
IncRef/DecRef pairs that are identified by the analysis, it defines a further 138
types that are managed by the g_object_unref and g_object_ref functions
defined in the gobject-2.0 library. Note that the 9 types with their own reference
counting functions cannot be managed with the generic gobject-2.0 reference
counting functions, though nothing in the names of the types reveals this. Sec-
tion 5.6.2 describes two algorithms for recognizing which types are managed
by polymorphic reference counting functions. The first relies on the presence of
type-specific finalizers and the second relies only on structural subtyping. The
second algorithm has been more reliable in practice, identifying 23 types as
managed by the gobject-2.0 reference counting functions that were missed by
the first algorithm. The first algorithm misses these types because they have no
type-specific resources that need to be finalized, and so do not define a finalizer.
However, they are still structural subtypes of GObject, so the second algorithm
recognizes them.

107

6 conclusions

We have presented techniques to reduce the effort required to generate idiomatic
library bindings for high-level programming languages, thus making polyglot
programming more accessible. First, we described an analysis to infer the set of
error codes used in a library, along with the functions that return them. The infer-
ence bootstraps itself from knowledge of the errors returned by the dependencies
of each library, with the errors reported by the C standard library as the basis.
The analysis is unsound and incomplete and includes a statistical component
that could be extended with more sophisticated machine learning approaches.
As a result, it works best on larger libraries with more system interactions from
which to generalize. These are precisely the libraries where automated annotation
assistance is most valuable, because the manual annotation burden on these larger
libraries is otherwise prohibitive. The annotations inferred by this analysis can be
used to automatically generate library bindings that convert returned error codes
into high-level language exceptions. These inferred annotations can also be useful
as inputs to other analyses and verification tools, as well as simply providing
extra explicit documentation to library users.

Second, we presented a set of analyses to elucidate the semantics of pointer
parameters. Pointers are used to encode many high-level concepts that have
no direct representation in C. None of these extended semantics are apparent
from C type signatures. Determining more precise semantics for them allows
binding generators to create safer and more convenient, or idiomatic, library
bindings. Bindings can be made safer by inserting run time checks that trap
errors in high-level languages before they cause crashes in unsafe code. In some
languages, these checks can even be encoded in type systems and eliminate
run time overhead. The results of these analyses can make library bindings
more convenient to use by automatically managing data conversions between
languages.

Finally, we described a suite of analyses to infer how libraries manage memory.

108

These analyses construct a notion of allocator functions and finalizer functions
based on the standard C malloc and free functions. The allocator functions
are those returning new initialized objects. Finalizer functions safely dispose
of these objects. The other memory oriented analyses infer how ownership of
objects allocated by C functions is transferred between the C library and its
callers. Our analyses support both (1) the common case where objects have
only a single owner and (2) the case where objects have multiple owners, with
lifetimes mediated by reference counts. We show that this information is sufficient
to generate idiomatic library bindings that allow high-level language garbage
collectors to automatically manage resources allocated by C libraries.

While these techniques cannot completely automate the library generation
process due to unsoundness and incompleteness, we have shown that they are
effective and useful. The annotations inferred by the unsound and incomplete
analyses are intended to be checked and corrected by a developer familiar with the
library being analyzed. This represents some manual effort required to generate
library bindings. However, the amount of work required is significantly less
than other approaches to binding generation. The amount of work can also be
amortized significantly across multiple library versions; as libraries evolve, most
annotations can remain constant or apply to newly-added functions.

6.1 Guidelines for Library Writers

Our experience with this work suggests three design guidelines to make C libraries
more amenable to polyglot programming and to our analysis techniques. These
guidelines also apply to other low-level languages that expose a C-compatible
calling convention (C++, Fortran, and others).

6.1.1 Error codes and values should be disjoint

To the greatest extent possible, error codes should be treated as different from
values. Taken to an extreme, this could imply that error codes are their own

109

distinct type. Alternatively, simply choosing error code constants that are out
of range of any constant that would be returned by any function in the library
would also meet this guideline. This simpler approach would require less code
restructuring.

Either transformation would make inferring error codes and the functions
returning them simpler and more reliable. Error code values overlapping valid
domain values contribute to incorrectly inferred error codes. In many libraries,
the success code is defined to be 0, which commonly appears legitimately in
many other contexts. These changes would let us generalize the analysis and
no longer require us to ignore boolean-typed functions. False returns would no
longer overlap with success codes, and true returns would no longer pollute the
set of inferred error codes. That said, boolean functions should generally not
return error codes alongside their normal returns.

One approach to this guideline would be to use function return values only for
error codes and success codes. Any other values could be returned through output
parameters. There is some precedent for this approach: COM-based libraries,
common in Windows, always return a success or error code in their return value
(of type HRESULT). Many POSIX functions similarly only return a single distinct
value, -1, to report errors. Additional information about the error can be found
by inspecting errno. In the vast majority of POSIX functions, -1 is never a valid
value.

6.1.2 Non-trivial types should be abstract

As many types as possible should be treated abstractly. Types whose repre-
sentations are exposed, or concrete types, should not require initialization or
finalization. Keeping types abstract allows libraries to maintain and rely on
stronger internal invariants for those types. This makes reasoning about library
behavior easier. A side effect is that libraries exposing only abstract types require
less defensive programming than those that expose internal representations to
clients.

110

1 void exif_entry_free (ExifEntry *e)
2 {
3 if (!e) return;
4

5 if (e->priv) {
6 ExifMem *mem = e->priv->mem;
7 if (e->data)
8 exif_mem_free (mem, e->data);
9 exif_mem_free (mem, e->priv);

10 exif_mem_free (mem, e);
11 exif_mem_unref (mem);
12 }
13 }

Figure 6.1: Defensive cleanup code

Besides helping developers reason about their own libraries, minimizing
the number of concrete types would help our analysis. For example, defensive
programming frequently interferes with our finalizer analysis. The example
shown in figure 6.1 checks to ensure that a pointer to private data is valid on line 5
before proceeding to finalize the object. Due to this extra check, the function does
not meet our definition of a finalizer. Furthermore, exif_entry_free leaks
memory if the check does fail because the call to finalize the object on line 10
is guarded by the defensive check of the private field. Moreover, the caller has
no way to determine if the call to the finalizer succeeded or failed. If the type
ExifEntry was kept completely abstract, the invariant e->priv != NULL could
be guaranteed and this additional check would be unnecessary.

Fully abstract types carry two disadvantages: they cannot be stack allocated
and cannot be embedded in other objects by value (only by pointer). This is
an efficiency concern. However, concrete types with no finalizers do not pose
any problems for our analysis and do not expose callers to memory leaks of the
form demonstrated in the above example. Finalizers are required for types that
could leak resources. It is not uncommon for concrete types that are intended

111

to be allocated on the stack to require initialization via some function call. This
is distinct from an allocator because the initialization function does not return a
new object. As long as the initialization function does not store objects requiring
finalization in the target, no finalizer would be required. Thus, a large class of
concrete types are compatible with this guidance.

Minimizing the number of concrete types has additional benefits. If all
types are abstract, changes to struct layouts are not visible to library clients,
making the application binary interface (ABI) more stable and resilient to change.
Additionally, abstract types are easier to pass across language boundaries than
concrete types. Concrete types can be passed by both value and pointer, while
abstract types can only be referred to by pointer. Passing struct types by value
through an FFI is more difficult, and not supported in every FFI implementation.
This difficulty again lies in platform ABIs: the proper method for passing struct
type varies by architecture, operating system, and the size of the struct. Some
FFIs elide support for passing structs by value for simplicity.

6.1.3 Resources should be reference counted

Our ownership model inference is effective for many libraries. However, it adds
additional complexity and requires more thorough oversight from knowledgeable
developers. This additional complexity and developer burden could be avoided if
user-facing types are reference counted. Reference counts make object ownership
shared and lifetimes obvious. The implicit ownership tracking enabled by our
ownership transfer analysis is most easily applied to polyglot programs with only
two languages. Implicit ownership in polyglot programs with more than two
languages is much more difficult to coordinate. Reference counts make polyglot
programs with more than three languages tractable.

112

6.2 Closing Thoughts

These guidelines share a common theme: abstraction (Liskov, 2010). The first
guideline argues that error codes should be an abstract type in the best case. They
should never be mixed with values of non-error code types. The weaker model, in
which error code constants are disjoint from other constant values that appear in
the library, is also useful. The second guideline very clearly calls for abstraction
of data types. The third guideline calls for abstracting object ownership models
through reference counts. These abstractions remove many complex details of the
C calling convention from user-facing functions, aiding API design by providing
principled reasons favoring certain design decisions. They also make library
analysis, and thus polyglot programming, easier.

Polyglot programs exist today. They will become more common as new lan-
guages mature and existing codebases continue to grow. Automatically generating
idiomatic library bindings significantly reduces the barrier of entry for polyglot
programming and promotes code re-use. Furthermore, automatically generating
the tedious and error-prone glue code required for polyglot programs can make
polyglot programs safer than their C equivalents. The generated wrappers can
consistently check for errors and prevent them from becoming exploitable unde-
fined behavior. Re-using C code from high-level programming languages then
allows developers to be more productive. Our work makes significant contri-
butions to the understanding of this under-served programming discipline. Our
analyses infer enough information to make safe and idiomatic library bindings,
given review by developers familiar with the libraries under analysis. While we
have not completely automated the process of generating library bindings, we
have significantly improved it over the prior state of the art. Furthermore, we find
that library authors can make their code more reusable, easier to reason about,
and more accessible to high-level programming languages by maintaining strong
abstraction boundaries. Minimizing the number of C language minutiae that are
exposed to library clients can simplify both library analysis and use in polyglot
programs.

113

a distributivity of output parameters

The transfer function for writes through pointers in the output parameter analysis
is GEN/KILL and trivially distributive. Below, we analyze the transfer function
for reads through pointers by cases.

f (Unused)u f (Unused) ?
= f (UnuseduUnused)

INuIN ?
= f (Unused)

IN = IN

f (Unused)u f (IN) ?
= f (UnuseduIN)

INuIN ?
= f (IN)

IN = IN

f (Unused)u f (OUT) ?
= f (UnuseduOUT)

INuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

f (Unused)u f (IN/OUT) ?
= f (UnuseduIN/OUT)

IN/OUTuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

f (IN)u f (IN) ?
= f (INuIN)

INuIN ?
= f (IN)

IN = IN

f (IN)u f (OUT) ?
= f (INuOUT)

INuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

f (IN)u f (IN/OUT) ?
= f (INuIN/OUT)

INuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

f (OUT)u f (OUT) ?
= f (OUTuOUT)

IN/OUTuIN/OUT ?
= f (OUT)

IN/OUT = IN/OUT

114

f (OUT)u f (IN/OUT) ?
= f (OUTuIN/OUT)

IN/OUTuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

f (IN/OUT)u f (IN/OUT) ?
= f (IN/OUTuIN/OUT)

IN/OUTuIN/OUT ?
= f (IN/OUT)

IN/OUT = IN/OUT

115

b future work

This dissertation has investigated and evaluated several facets of the automated
library binding generation problem, focusing on C libraries. The analyses dis-
cussed are sufficient for generating idiomatic library bindings for many different
types of library. Nonetheless, there remain many avenues for future research that
could improve the precision, or expand the scope, of our analyses. This appendix
will outline a few such research directions.

B.1 Inference through Structure Fields

Many analyses in this document, and similar analyses, could benefit from inferring
properties of C struct fields as well as pointer parameters. Inferences over
properties of aggregate fields could provide more information for any analysis.
A significant benefit of this extra information would allow analyses to infer
properties of pointer parameters that are stored into fields of aggregates in one
call, but are used only much later, perhaps with intervening high-level language
code executing. For example, if a pointer parameter p is stored into a struct
field f in a call to function a, but not otherwise used in a, the analysis could still
conclude that p is not nullable if f is used without being checked against NULL in
function b. The analysis may or may not be modified to take into consideration
any checks against NULL in function a.

B.2 Targeted Runtime System Concerns

The characteristics of runtime systems of many high-level languages present
many opportunities to exploit more information about foreign functions that they
call. This section discusses a few analyses that could help automated library
binding generation tools generate safer library bindings for certain high-level
languages.

116

B.2.1 Re-entrant Functions

Some C functions, particularly in older libraries that were developed before
threading became commonplace, are not re-entrant. This means that two calls
to the same function occurring simultaneously can interfere with one another.
Simultaneous calls can be the result of two threads calling the same function.
They can also occur if the execution of a function is suspended due to an interrupt
where the handler calls the same function again. Functions can fail to be re-entrant
if they use global or static data. This is a problem for high-level languages that
have strong support for parallelism and concurrency. Even languages without
such support require some amount of care in the presence of interrupts, if they
are supported.

An analysis that identifies functions that are not re-entrant could allow gen-
erators to create library bindings that prevent re-entrancy errors. For example,
they could serialize access to re-entrant functions by automatically acquiring a
lock before they are called. Alternatively, a simpler and faster mechanism could
simply terminate the program if a function that is not re-entrant is about to be
re-entered. This information could also aid developers in library understanding
tasks and guide refactorings to eliminate functions that are not re-entrant.

B.2.2 Blocking Functions

For languages with single-threaded run-time systems, or run-time systems that
use a single global interpreter lock, calls to blocking foreign functions are of
special interest. Examples include:

Javascript Implementations are single threaded

Python The reference implementation uses a global interpreter lock

In the case of single-threaded run-time systems, calls to blocking functions
must be specially constructed to integrate with the event loop of the run-time
to avoid stalling the entire system. In implementations dependent on a global

117

interpreter lock, the lock must be released right before a blocking native call
and acquired right after. This allows other threads in the run-time to continue
while only one is blocked. With an analysis to automatically identify blocking
functions, based on the calls they transitively call, a library binding generator
could automatically create safe blocking calls.

B.3 API Usage Enforcement

Many libraries present an interface composed of functions designed to be called
in some well-defined pattern. A common and general pattern involves library
specific initialization, use, and then cleanup. Some libraries may have even
more specific usage patterns that can be statically defined. If correct library
usage patterns can be described using regular or context-free languages, it may
be possible to arrange for generated library bindings to enforce correct usage
dynamically.

For each library, generated bindings could maintain an automaton and modify
its state just before issuing each call into the library. If the call would violate
the behavior prescribed by the language of safe library calls, execution could be
halted. A similar automaton could be maintained for each object allocated by a
library, if the usage semantics can be defined on a per-object basis. Per-object
automata would improve the enforcement granularity. This mechanism could be
enabled for development to aid developers. It could then be disabled in release
builds for efficiency. This mechanism would act like an inline reference monitor
(Erlingsson and Schneider, 2000) with correctness as its goal, rather than security.
It would be possible to impose some types of security constraints, as well as
correctness constraints, on generated library bindings.

118

B.4 Interactivity and Inference Assistance

This work has focused on inferring as much as possible about libraries without
human intervention beyond a few manual annotations provided as input. The
results of many analyses could be improved with some limited library developer
interaction. For example, being able to ask a knowledgeable library user if a
particular constant is a success code would be valuable. More generally, having
developer input to disambiguate unusual functions that perturb our analyses could
make them more robust to unusual constructs in code. The case study of libusb
in section 3.3.1 described an unusual function for which user feedback could
have improved the analysis results. Most improvements could be accomplished
by providing manual annotations. However, an interactive approach could more
easily guide users to the most effective code locations on which to focus their
efforts.

The described developer interaction could take many forms, with a workflow
in the style of an interactive proof assistant. One important goal of work in this
area would be to minimize the number of queries issued to developers. Work
on generating minimal queries through abductive inference (Dillig et al., 2012)
could be the starting point of these interactive extensions.

119

references

Alpern, Bowen, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Detecting
equality of variables in programs. In Popl, ed. Jeanne Ferrante and P. Mager,
1–11. ACM Press.

Andersen, Lars Ole. 1994. Program Analysis and Specialization for the C
Programming Language. Ph.D. thesis, University of Cophenhagen.

Ashley, J. Michael, and R. Kent Dybvig. 1994. An efficient implementation of
multiple return values in scheme. In Lisp and functional programming, 140–149.

Beazley, David M. 2002. An extensible compiler for creating scriptable scientific
software. In International conference on computational science (2), ed. Peter
M. A. Sloot, Chih Jeng Kenneth Tan, Jack Dongarra, and Alfons G. Hoekstra,
vol. 2330 of Lecture Notes in Computer Science, 824–833. Springer.

Beazley, David M., and Peter S. Lomdahl. 1997. Building flexible large-scale
scientific computing applications with scripting languages. In Ppsc. SIAM.

Boyapati, Chandrasekhar, Barbara Liskov, and Liuba Shrira. 2003. Ownership
types for object encapsulation. In Popl, ed. Alex Aiken and Greg Morrisett,
213–223. ACM.

Chang, Chih-Chung, and Chih-Jen Lin. 2011. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Technology 2:
27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

Cheng, Ben-Chung, and Wen-Mei W. Hwu. 2000. Modular interprocedural
pointer analysis using access paths: design, implementation, and evaluation. In
Pldi, ed. Monica S. Lam, 57–69. ACM.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

120

Choi, Jong-Deok, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. 2003. Stack allocation and synchronization optimizations
for Java using escape analysis. ACM Trans. Program. Lang. Syst. 25(6):876–910.

Dillig, Isil, Thomas Dillig, and Alex Aiken. 2012. Automated error diagnosis
using abductive inference. In Pldi, ed. Jan Vitek, Haibo Lin, and Frank Tip,
181–192. ACM.

Elwazeer, Khaled, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. 2013. Scalable variable and data type detection in a binary rewriter. In
Pldi, ed. Hans-Juergen Boehm and Cormac Flanagan, 51–60. ACM.

Emmi, Michael, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. 2009. Ver-
ifying reference counting implementations. In Tacas, ed. Stefan Kowalewski
and Anna Philippou, vol. 5505 of Lecture Notes in Computer Science, 352–367.
Springer.

Engler, Dawson R., David Yu Chen, and Andy Chou. 2001. Bugs as inconsistent
behavior: A general approach to inferring errors in systems code. In Sosp,
57–72.

Erlingsson, Úlfar, and Fred B. Schneider. 2000. Irm enforcement of java stack in-
spection. In Ieee symposium on security and privacy, 246–255. IEEE Computer
Society.

Foster, Jeffrey S., Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of
Type Qualifiers. In Pldi, 192–203.

Furr, Michael, and Jeffrey S. Foster. 2005. Checking Type Safety of Foreign
Function Calls. In Sarkar and Hall (2005), 62–72.

Gabriel, Richard P., David F. Bacon, Cristina Videira Lopes, and Guy L. Steele
Jr., eds. 2007. Proceedings of the 22nd annual acm sigplan conference on

object-oriented programming, systems, languages, and applications, oopsla

2007, october 21-25, 2007, montreal, quebec, canada. ACM.

121

GNU Project. 2013. The GNU C Library. http://www.gnu.org/software/
libc/.

gobject. 2011. GObject Introspection. http://live.gnome.org/

GObjectIntrospection.

Godefroid, Patrice, Nils Klarlund, and Koushik Sen. 2005. Dart: directed
automated random testing. In Sarkar and Hall (2005), 213–223.

Hackett, Brian, Manuvir Das, Daniel Wang, and Zhe Yang. 2006. Modular
checking for buffer overflows in the large. In Icse, ed. Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa, 232–241. ACM.

Heine, David L., and Monica S. Lam. 2003. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. In Pldi, 168–181. ACM.

Heller, Thomas. 2008. ctypeslib – useful additions to the ctypes FFI library.
http://pypi.python.org/pypi/ctypeslib/.

Horspool, R. Nigel, and Jan Vitek. 1992. Static analysis of postscript code. In
Iccl, ed. James R. Cordy and Mario Barbacci, 14–23. IEEE.

ISO. 2006. C# programming language. ISO ISO/IEC 23270:2006(E), Interna-
tional Organization for Standardization, Geneva, Switzerland.

Jaroszewicz, Szymon. 2008. ctypesGSL. http://www.cs.umb.edu/~sj/
ctypesGsl/.

Khedker, Uday P., Amitabha Sanyal, and Amey Karkare. 2007. Heap reference
analysis using access graphs. ACM Trans. Program. Lang. Syst. 30(1).

Kildall, Gary A. 1973. A unified approach to global program optimization. In
Popl, ed. Patrick C. Fischer and Jeffrey D. Ullman, 194–206. ACM Press.

Lattner, Chris, and Vikram S. Adve. 2004. LLVM: A compilation framework
for lifelong program analysis & transformation. In Cgo, 75–88. IEEE Computer
Society.

http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/
http://live.gnome.org/GObjectIntrospection
http://live.gnome.org/GObjectIntrospection
http://pypi.python.org/pypi/ctypeslib/
http://www.cs.umb.edu/~sj/ctypesGsl/
http://www.cs.umb.edu/~sj/ctypesGsl/

122

Lee, Byeongcheol, Ben Wiedermann, Martin Hirzel, Robert Grimm, and
Kathryn S. McKinley. 2010. Jinn: Synthesizing Dynamic Bug Detectors for
Foreign Language Interfaces. In Pldi, ed. Benjamin G. Zorn and Alexander
Aiken, 36–49. ACM.

Leshchinskiy, Roman. 2013. The Haskell vector Package. http://hackage.
haskell.org/package/vector.

Li, Lian, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the perfor-
mance of flow-sensitive points-to analysis using value flow. In Sigsoft fse, ed.
Tibor Gyimóthy and Andreas Zeller, 343–353. ACM.

Liskov, Barbara. 2010. The power of abstraction - (invited lecture abstract). In
Disc, ed. Nancy A. Lynch and Alexander A. Shvartsman, vol. 6343 of Lecture

Notes in Computer Science, 3. Springer.

Makhorin, Andrew. 2008. GLPK (GNU linear programming kit). http://www.
gnu.org/software/glpk/.

Matosevic, Ivan, and Tarek S. Abdelrahman. 2012. Efficient bottom-up heap
analysis for symbolic path-based data access summaries. In Cgo, ed. Carol Eidt,
Anne M. Holler, Uma Srinivasan, and Saman P. Amarasinghe, 252–263. ACM.

Müller, Peter, and Arsenii Rudich. 2007. Ownership transfer in universe types.
In Gabriel et al. (2007), 461–478.

Negara, Stas, Rajesh K. Karmani, and Gul A. Agha. 2011. Inferring owner-
ship transfer for efficient message passing. In Ppopp, ed. Calin Cascaval and
Pen-Chung Yew, 81–90. ACM.

NumPy. 2013. NumPy. http://www.numpy.org/.

Pearce, David J., Paul H. J. Kelly, and Chris Hankin. 2007. Efficient field-
sensitive pointer analysis of c. ACM Trans. Program. Lang. Syst. 30(1).

http://hackage.haskell.org/package/vector
http://hackage.haskell.org/package/vector
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.numpy.org/

123

Ravitch, Tristan. 2012. Fix an error test on the result from fread. https:
//github.com/libarchive/libarchive/pull/29.

Rayside, Derek, and Lucy Mendel. 2007. Object ownership profiling: a tech-
nique for finding and fixing memory leaks. In Ase, ed. R. E. Kurt Stirewalt,
Alexander Egyed, and Bernd Fischer, 194–203. ACM.

Reppy, John H., and Chunyan Song. 2006. Application-specific Foreign-
interface Generation. In Gpce, ed. Stan Jarzabek, Douglas C. Schmidt, and
Todd L. Veldhuizen, 49–58. ACM.

Rubio-González, Cindy, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error Propagation Analysis for
File Systems. In Pldi, ed. Michael Hind and Amer Diwan, 270–280. ACM.

Sagiv, Shmuel, Thomas W. Reps, and Reinhard Wilhelm. 2002. Parametric
shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3):
217–298.

Salcianu, Alexandru, and Martin C. Rinard. 2001. Pointer and escape analysis
for multithreaded programs. In Ppopp, ed. Michael T. Heath and Andrew
Lumsdaine, 12–23. ACM.

Sarkar, Vivek, and Mary W. Hall, eds. 2005. Proceedings of the acm sigplan

2005 conference on programming language design and implementation, chicago,

il, usa, june 12-15, 2005. ACM.

Sidiroglou, Stelios, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh,
and Angelos D. Keromytis. 2009. Assure: automatic software self-healing using
rescue points. In Asplos, ed. Mary Lou Soffa and Mary Jane Irwin, 37–48. ACM.

Smolinski, Brent A., Scott R. Kohn, Noah Elliott, and Nathan Dykman. 1999.
Language Interoperability for High-Performance Parallel Scientific Components.
In Iscope, ed. Satoshi Matsuoka, R. R. Oldehoeft, and Marydell Tholburn, vol.
1732 of Lecture Notes in Computer Science, 61–71. Springer.

https://github.com/libarchive/libarchive/pull/29
https://github.com/libarchive/libarchive/pull/29

124

Steele, Guy L. 1990. Common LISP: the Language. Digital Press.

Tan, Gang, and Greg Morrisett. 2007. Ilea: Inter-language Analysis across Java
and C. In Gabriel et al. (2007), 39–56.

Wegiel, Michal, and Chandra Krintz. 2010. Cross-language, Type-safe, and
Transparent Object Sharing for co-Located Managed Runtimes. In Oopsla, ed.
William R. Cook, Siobhán Clarke, and Martin C. Rinard, 223–240. ACM.

Weimer, Westley, and George C. Necula. 2004. Finding and preventing run-time
error handling mistakes. In Oopsla, ed. John M. Vlissides and Douglas C.
Schmidt, 419–431. ACM.

———. 2005. Mining temporal specifications for error detection. In Tacas, ed.
Nicolas Halbwachs and Lenore D. Zuck, vol. 3440 of Lecture Notes in Computer

Science, 461–476. Springer.

Whaley, John, and Martin C. Rinard. 1999. Compositional pointer and escape
analysis for Java programs. In Oopsla, ed. Brent Hailpern, Linda M. Northrop,
and A. Michael Berman, 187–206. ACM.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Preliminaries
	Witness Information
	Dataflow Model
	Experimental Setup

	Related Work
	Library Binding Generation
	FFI Checking

	Error Codes
	Algorithm
	Modeling Success
	Recognizing Transformed Error Codes
	Refining Error Descriptors
	Classifying Functions to Find Error Reporters
	Generalizing from Calls
	Generalizing from Returns
	Identifying Transitive Errors

	Related Work
	Evaluation
	Case Studies
	Discussion

	Semantics of Pointer Parameters
	Symbolic Access Paths
	Array Parameters
	Output Parameters
	Function Pointers with Known Targets

	Non-Nullable Parameters
	Terminating Functions

	Related Work
	Evaluation
	Output Parameters
	Array Parameters
	Non-Nullable Parameters

	Memory Ownership
	Allocators
	Finalizers
	Symbolic Access Paths Revisited
	Ownership Transfer
	Memory Ownership in C
	Using Ownership in Generated Library Bindings
	Identifying Owned Fields
	Transferred Ownership of Parameters

	Escape Analysis and Lifetime
	Shared Ownership and Reference Counting
	Identifying Reference Increment and Decrement Functions
	Identifying Reference-Counted Types
	Interprocedural Reference Count Manipulation

	Related Work
	Evaluation
	Allocator and Finalizer Analyses
	Transfer Analysis
	Reference Counting Analysis

	Conclusions
	Guidelines for Library Writers
	Error codes and values should be disjoint
	Non-trivial types should be abstract
	Resources should be reference counted

	Closing Thoughts

	Distributivity of Output Parameters
	Future Work
	Inference through Structure Fields
	Targeted Runtime System Concerns
	Re-entrant Functions
	Blocking Functions

	API Usage Enforcement
	Interactivity and Inference Assistance

	References

