
User-Assisted Code Query Customization And Optimization

Ben Liblit1, Yingjun Lyu1, Rajdeep Mukherjee1, Omer Tripp1, Yanjun Wang1

1Amazon, USA.

Abstract

Running static analysis rules in the wild, as part of a commercial service, demands special consideration
of time limits and scalability given the large and diverse real-world workloads that the rules are
evaluated on. Furthermore, these rules do not run in isolation, which exposes opportunities for reuse of
partial evaluation results across rules. In our work on Amazon CodeGuru Reviewer, and its underlying
rule-authoring toolkit known as the Guru Query Language (GQL), we have encountered performance
and scalability challenges, and identified corresponding optimization opportunities such as, caching,
indexing, and customization of data-flow specification, which rule authors can take advantage of as built-
in GQL constructs. Our experimental evaluation on a dataset of open-source GitHub repositories shows
3× speedup and perfect recall using indexing-based configurations, 2× speedup and 51% increase on
the number of findings for caching-based optimization. Customizing the data-flow specification, such
as expanding the tracking scope, can yield a remarkable increase in the number of findings, as much
as 136%. However, this enhancement comes at the expense of a longer analysis time. Our evaluations
emphasize the importance of customizing the data-flow specification, particularly when users operate
under time constraints. This customization helps the analysis complete within the given time frame,
ultimately leading to improved recall.

Keywords: Program analysis, Query Language, Data-flow, Taint-flow, AWS, Security

1 Problem Setting

Amazon CodeGuru Reviewer [9] is a commercial
product that performs source-code repository scans.
CodeGuru Reviewer also integrates into the code
review process as an automated reviewer, leaving
comments on pull requests. It is based primarily
on “micro-analyzers”, which run narrow yet precise
analysis scenarios. These are built atop the Guru
Query Language (GQL), which contains reusable
constructs such as forward/backward slicing, taint
analysis, and filters to match code entities based
on data types or call signatures.

GQL “democratizes” CodeGuru Reviewer by
empowering domain experts to directly specify,
then tune and productionize, micro-analyzers.

GQL provides the building blocks for such micro-
analyzers, which the expert then composes to
express a property of interest, such as correct usage
of some cryptography or machine-learning library.

Our experience in supporting rule authors, and
growing the CodeGuru Reviewer rule base, has
exposed many cases where rules can—and in some
cases, should—be optimized to run faster and
make more frugal usage of compute and memory
resources. This, in turn, has led us to design and
implement several optimization features as part
of GQL, which are made available to rule authors
to tune their rules’ performance and resource
consumption.

Along with these enhanced control facilities
over rule performance and behavior comes great

1

responsibility. As an example, providing a fine-
grained specification for a data-flow problem
requires careful vetting to avoid unintended preci-
sion or recall gaps. The advantage of our proposed
approach is that optimizations made by the rule
author are explicit, inlined into the rule context,
and directly available to review and tune.

In what follows, we set up the technical back-
ground for these optimizations, then describe them
and report on their impact.

2 Background

CodeGuru supports Java, JavaScript, Python, and
TypeScript. It integrates with different code host-
ing platforms including GitHub and Bitbucket.
CodeGuru supports three code scanning modes:

• Incremental: a code review is created auto-
matically when a pull request is raised.

• Full: the entire code base is analyzed upon
request from a developer.

• CI/CD: the entire code base is analyzed as
part of CI/CD workflows.

In any of the above modes, CodeGuru operates
by (1) constructing an analysis-friendly intermedi-
ate graph representation of the target code base,
then (2) applying a set of rules to search for graph
nodes in that representation that correspond to
buggy code patterns.

The main impact of the different modes on the
analysis algorithm is in deciding the target scope
and evaluation budget. The “full” and “CI/CD“
modes do not restrict the analysis scope, while
“incremental” mode applies the rules only to files
that contain code changes. However, rules can still
pull in additional context through inter-procedural
constructs, such as forward or backward slicing.
The “full” mode imposes no rule evaluation bud-
get, but the “incremental” and “CI/CD” modes
require that analyses terminate within a designated
number of steps or time units.

In all modes, CodeGuru leverages a caching
layer, such that the intermediate representation
can be fetched for graphs and files that have not
been invalidated by code changes. As explained
above, the “incremental” mode builds on the diffs
computed at text level to determine the files that
require re-evaluation.

Combined, these different options enable
situation-appropriate analysis across the develop-
ment life cycle: developers obtain feedback on their

code changes during code review; then additional
issues may be surfaced as the code is integrated
through the pipeline; and lastly, exhaustive analy-
sis is executed at regular intervals (e.g., nightly),
which may expose yet additional issues.

2.1 Intermediate Graph
Representation

CodeGuru’s intermediate representation is the MU
graph [22]. A MU graph is a data-dependence graph
overlaid with a control-flow graph, all in static
single assignment (SSA) form. An individual MU
graph node represents a piece of data, an action
that transforms input data into output data, or
a control operation such as a branch. Nodes and
edges carry additional details specific to their type
and role. For example, a single action node that
represents a function call has:

• one data edge from some data node represent-
ing the callee;

• zero or more incoming data edges, each from
some data node representing an argument to
the call;

• an optional outgoing data edge, the target
of which is some data node that receives the
result of the call; and

• one incoming and one outgoing control edge,
connected to the action or control nodes that
execute immediately before or after this call.

The MU graph representation is language-
independent. Actions correspond to primitive lan-
guage operations, with analogous operations across
multiple languages sharing the same representation.
For example, “a / b” yields a binary arithmetic
division action regardless of whether the source
code was Java, JavaScript, Python, or TypeScript.
Unnamed temporary values are made explicit, as
is the order of operations. For example, the rep-
resentation of print(a + b) includes a sum action
node followed by a call action node; and three
data nodes representing a, b, and the unnamed
temporary value of a + b.

2.2 Rules

Finding buggy code patterns in a fine-grained
MU graph can be cumbersome: the data struc-
ture is complex and traversal-intensive, making it
time-consuming for an analyst to code up exactly
the right set of checks to detect a pattern (or

2

anti-pattern) of interest. To make this task easier,
CodeGuru includes GQL, a domain-specific lan-
guage for operating on MU graphs [22]. A GQL
rule consists of a sequence of operations on a set
of MU graph nodes, called the match frontier. The
match frontier is initially the set of all nodes in
the MU graph representation of one function. GQL
operations transform this set, such as by filtering
it or by traversing the graph in a systematic way.

For example, one GQL operation might filter
the match set to only the subset of data nodes
that represent string literals. Another operation
might transform each node in the match set to its
data-flow successor. A higher-order operation could
repeat the previous transformation while collecting
a fixed-point. By chaining together these and a
few more operations, one might create a rule that
identifies all literal strings that can transitively flow
into the second argument of a call to a function
named “login”. Thus, we have built a rudimentary
rule that detects hard-coded passwords.

GQL is implemented as a Java library
that leverages the builder pattern. Starting
with a fresh builder, one adds operations
using calls like withDataByTypeFilter(. . .) or
withOutNodesTransform(. . .). A final call to build()
returns a constructed rule: an instance of GQL’s
CustomRule type that can be applied to functions
or whole programs to detect bugs.

3 Motivating Example

To illustrate the insights feeding into the optimiza-
tions described in this paper, and the benefits that
these optimizations introduce, consider the code
example in figure 1. This example is inspired by
real-world code that our rules were evaluated on.
Untrusted user input read via the getParameter
call at line 6 reaches both the File constructor at
line 14 and the exec call at line 19 through inter-
procedural data flow. These flows give rise to path-
traversal and command-injection vulnerabilities,
respectively.

The corresponding CustomRule rule excerpt is
shown in figure 2. The core of this rule performs an
inter-procedural taint analysis, via the operation
withDataDependentsTransform, wrapped inside
an operation called withInterproceduralMatch.
These two operations together take the sources
as the match frontiers, and return the inter-
procedural nodes tainted by the frontiers. The

1 public void doPost(
2 HttpServletRequest servletRequest,
3 HttpServletResponse servletResponse,
4 FilterChain chain) {
5 String user =
6 servletRequest.getParameter(”user”);
7 String userPath = ”.\\Data\\” + user;
8 . . .
9 findUserDirectory(userPath);

10 . . . }
11

12 private void findUserDirectory(String userPath) {
13 . . .
14 File file = new File(userPath);
15 if (file.exists() && file.isDirectory()) {
16 String[] commands =
17 { ”/bin/sh”, ”−c”, ”ls ” + userPath };
18 Process process =
19 Runtime.getRuntime().exec(commands);
20 . . .
21 }. . . }

Fig. 1 Code snippet demonstrating injection vulnerabilities

remaining operations and their parameters
denote the various kinds of optimization and
customization that users can make via GQL,
such as using withCachedDependency to cache
the forward flows of various taint sources,
using withRuleConfigurationItemMatchFilter
to perform configuration based indexing
that dynamically indexes into a matching
taint configuration, and using the param-
eters of withDataDependentsTransform and
withInterproceduralMatch to adjust the tracking
and analysis scope.

In the discussion that follows we further elab-
orate on the rule in figure 2 and these various
operations using the code example in figure 1.

3.1 Caching

Injection vulnerabilities, such as those illustrated
in figure 1, are typically modeled as taint prob-
lems, where source/sink reachability is checked.
The sources are often shared in common across mul-
tiple vulnerability categories, since these represent
the reading of untrusted data into the program’s
state.

Caching provides a medium to exploit the
following observation. Forward data-flow slices,
starting from sources, can be computed once per
function, then reused across other rules that use

3

1 CustomRule rule = new CustomRule.Builder()
2 . . .
3 .withCachedDependency(b −> b
4 .withRuleConfigurationItemMatchFilter(
5 ”$.Sources[∗].method”,
6 (n,c) −> n.isCall() && n.getName().matches(c))
7 .withInterproceduralMatch(
8 TrackingScope.FILE,
9 b −> b.withDataDependentsTransform(

10 Arrays.asList(/∗ passthrough = ∗/
11 ”java.lang.String.format”,
12 ”java.lang.String.toLowerCase”,
13 ”java.lang.String.toUpperCase”),
14 Arrays.asList(/∗ blocking = ∗/
15 ”boolean.!=”, ”boolean.==”),
16 Arrays.asList(/∗ sideEffecting = ∗/ ”.∗\\.set.∗”),
17 Arrays.asList(/∗ reading = ∗/ ”.∗\\.get.∗”)
18))
19 . . .
20 .build();

Fig. 2 Rule snippet demonstrating caching and configuration
indexing in the context of a custom data-flow specification

the same sources, validators, and sanitizers. In
this case, reuse enables amortization across the
path-traversal and command-injection rules.

Note that this mechanism differs from mem-
oization in data-flow frameworks like IFDS [24],
where data-flow edges are reused when solving a
given data-flow problem. In this case, state is per-
sisted across independent tasks. The decision as to
which state to persist is entrusted to the user, and
the system provides performance metrics on cache
hits versus misses.

The withCachedDependency statement at line 3
in figure 2 illustrates this scenario. The subrule
logic in the cached block reads sources from a
configuration, then performs forward slicing from
these sources.

GQL rule authors need to identify rules sharing
the same source specification, to recognize candi-
dates for caching. However, GQL rule authors do
not need to think about the execution order of the
rules where the rules share the source specification.
For a given set of sources, validators, and sanitiz-
ers, the cached content will be the same no matter
which rule populates the cache by running first.

3.2 Configuration Indexing

Many rules are backed by a configuration, where
the rule serves as a “template” that can be
instantiated to model different code scenarios.

In a production setting, these configurations
can have tens of thousands of entries, which makes
efficient handling essential. Brute-force iteration
over the configuration to identify matching code

entities (for example, source or sink calls) becomes
prohibitive. We later describe an “inversion” of
the configuration lookup, where an index is com-
puted and code entities are then represented as
keys enabling constant-time index lookup.

The withRuleConfigurationItemMatchFilter
statement at line 4 in figure 2 corresponds to this
optimization. We omit the code to index into the
configuration for space constraints, and instead
focus on how the configuration is accessed. The
first argument is a JSONPath query specifying
which configuration items should be matched
against entities in the code, whereas the second
argument relates nodes n in the graph representa-
tion to configuration items c: in the example, call
nodes whose name matches the configuration item.

3.3 Data-flow Customization

In GQL, different forms of data-flow analysis,
including e.g. forward/backward taint tracking and
slicing, can be composed with other constructs. In
addition, the data-flow problem can be specified
with a high degree of user control over the tar-
get scope (local versus same file versus entire code
package, and so on).

We illustrate the main specification dimensions
through the withInterproceduralMatch compound
statement at line 7 in figure 2. In particular, the
scope is set as FILE-wide at line 8, and forward
tracking is instantiated at line 9. Arguments consist
of “pass-through” actions that admit input/output
data-flow, followed by actions that truncate the
flow, then methods that induce a side effect on
their receiver, and finally methods that read from
their receiver’s internal state.

This fine level of user control allows the rule
author to tune their rule to maximize return on
investment. Increasing the tracking scope, and
enabling more propagation by enhancing the pass-
through, side-effecting and reading specifications,
results in more detections but potentially also
slower evaluation, more resource consumption, and
a higher rate of false detections. Restricting the
data-flow algorithm has the opposite effects.

4

4 Optimization Strategies

4.1 Caching

The caching algorithm is based on a simple yet
important observation. Given rules r1 and r2 with
respective subrules sr1 and sr2, if
1. sr1 and sr2 are evaluated on equivalent states;
2. sr1 and sr2 perform the same operations; and
3. sr1 and sr2 both have sufficient analysis

budget to complete their evaluation, or else
both lack sufficient budget to complete their
evaluation,

then the evaluation result due to sr1 in the context
of r1 can be “reused” for sr2 in the context of r2,
and vice versa. In what follows, we detail these
criteria, and the meaning of “reuse”, in turn.

Starting from the first criterion, a rule eval-
uation state consists of (i) the incoming match
frontier, (ii) the match frontiers stored as variables
(or IDs), and (iii) any additional metadata stored
as part of the state. State equivalence reduces to
equivalence along these three dimensions.

Rule as well as subrule isomorphism is checked
inductively. Starting from the base case of atomic
operations, these are compared directly. Compos-
ite operations, which consist of subrules and the
operations therein (for example, withAnyOf or
withAllOf), are compared starting from the subrules
comprising them.

Finally, we check the analysis budgets attached
to sr1 and sr2, where a budget is a bag of aspects,
an aspect being a measurable “cost unit”: wall-
clock time, number of atomic analysis operations
executed, number of functions visited during oper-
ation evaluation, and so on. We ensure that the
budgets are compatible, in that both are simultane-
ously either sufficient to complete evaluation of sr1
and sr2, respectively, or both would be exhausted
during subrule evaluation.

The reason behind rule budget adjustment even
in cases where the rule “benefits” from the results
cached thanks to another rule is to ensure consis-
tent and reproducible results for the rule suite as
a whole. The rules are evaluated concurrently, typ-
ically as a large suite of hundreds of rules with a
high degree of parallelism, which means that in dif-
ferent runs different rules will trigger the caching
mechanism. If budgets are not aligned appropri-
ately, then rule budgets will fluctuate across runs,
potentially leading to different findings.

If sr1 and sr2 are isomorphic and have compati-
ble analysis budgets b1 and b2, then the application
of sr1 to state σ1 can be reused for sr2 and σ2

provided σ1 ≡ σ2, where by reuse, we mean that
1. the output state σ̂1 due to sr1 is provided as

the result of Jsr2Kσ2; and
2. the budget cost recorded during evaluation of

Jsr2Kσ2 is deducted from sr2’s budget.
At the implementation level, caching is built

atop a thread-safe map. Map keys are rule/input
pairs, where the values are the respective evalua-
tion results. The caching algorithm checks whether
the mapping is already established. If not, then
the value is computed and inserted into the map.

While designed to be generic, caching is partic-
ularly useful when a potentially expensive subrule
with the same matching frontier is embedded inside
multiple rules. Taint tracking is a particularly help-
ful application of caching. Consider, as an example,
distinct injection rules that share the same user
input surface, thus same sources, yet differ in
terms of sinks. The subrule that computes the
forward slice from sources can be cached, hence
amortized across all rules with only one of the
rules performing the evaluation. This amortization
need not be explicitly coordinated across the rules.
Rather, each need only wrap its evaluation step
into a withCachedDependency statement, as shown
at line 3 of figure 2, and the reuse will emerge at
run time.

It is worth noting that caching is not free. There
are performance overheads of writing to and read-
ing from the cache. More importantly, there is a
memory cost. Rule authors should use memory fru-
gally to cache the expensive operations to optimize
the performance gains of withCachedDependency.
There are two recommended ways to carry out the
caching optimization. First, when the rule authors
use expensive GQL constructs, we recommend that
they look for opportunities of caching by identi-
fying the common subrules in other existing rules
that already use withCachedDependency. Second,
while the GQL rules are modular, i.e., there is
not a single developer who writes all GQL queries,
changes can be made to a subset of the existing
rules to leverage caching in a holistic and consistent
manner.

5

4.2 Configuration Indexing

Analysis rules often cover multiple scenarios from
one or more libraries. Examples include (i) flag-
ging deprecated methods in the AWS Java API;
(ii) tracking untrusted data from APIs that read
user input; or (iii) checking that Closeable types
are used correctly.

These are examples of rules backed by a config-
uration, listing the different instances that the rule
logic applies to. As noted in section 3.2, these con-
figurations can contain tens of thousands of entries.
A näıve approach for evaluating configuration-
backed rules is to iterate over all the configurations
when evaluating the rule on a function f , for exam-
ple by matching all calls made by f to a deprecated
API, as listed in the configuration. For a configura-
tion C, this means that the rule is evaluated, fully
or in part, |C| times on f . That is, evaluation time
grows linearly with the size of the configuration.

We have designed and implemented an alter-
nate scheme, where evaluation time is fixed
irrespective of |C|. Our approach leverages the
observation that the configuration relates to enti-
ties in the code. Thus, we can start from the
function under analysis, and relate entities therein
to the configuration. As a simple example, for dep-
recated APIs, we can mine all the function calls in
the function, and consult the configuration for any
matches.

More generally, configuration indexing is
backed by two functions provided by the rule
author:

• an indexing function ι, mapping the configu-
ration items c ∈ C to key/value pairs c 7→ k;
and

• a mapping function τ from entities in the
code to the same domain of keys plus ⊥ (for
configuration-irrelevant entities).

Returning to the example of deprecated APIs,
the keys are the names of deprecated functions,
i.e. ι projects deprecated API configurations—
consisting of the AWS service, declaring class, and
API name—on the API name as the key, whereas
τ maps function calls within the target analysis
scope to the callee name (and other code entities,
like variables and control statements, to ⊥). Thus ι,
starting from configuration items, and τ , starting
from the target scope, agree on how the configu-
ration would be searched based on the code being
analyzed: via function names.

With this “inversion”, and assuming a good
indexing function (such that there are few colli-
sions, thus effective distribution across buckets),
consulting the configuration requires nearly con-
stant time regardless of its size. In practice, good
indexing and mapping is easy to achieve, since we
typically make use of types and identifiers. The
indexing and mapping functions are both cheap to
compute and yield low collision rates.

4.3 Fine-grained Data-flow
Specification

Among the most powerful features of semantic code
analysis is the ability to track data flow across the
application. Notable use cases include security (use
of untrusted user input); privacy (release of private
information); and code transformation/optimiza-
tion (e.g. parallelization of a loop structure if its
iterations are data independent).

Data-flow analysis is governed by a multi-
faceted specification, sometimes implicit in the
tracking algorithm, that can significantly impact
accuracy and efficiency. Instead of pre-determining
every single aspect of the internal mechanics
the data-flow analysis, GQL makes the data-flow
analysis configurable as follows.

• Tracking scope: Either the entire package
(or code repository), or a more granular
code context, which enables higher efficiency
and accuracy. These include the file or type
containing the function. The tracking scope
allows GQL rule authors to make trade-offs
based on their needs for accuracy and effi-
ciency. For example, when the time budget
is limited, a file-level tracking scope can be
chosen to favor efficiency over recall, thereby
increasing the likelihood that rules finish
before timing out.

• Pass-through actions: Functions and opera-
tors that admit input/output data flow, such
as string concatenation.

• Blocking actions: The opposite of pass-
through actions, where data flow is truncated
across evaluation of such functions and oper-
ators.

• Side-effecting actions: These mutate the
receiver object and/or other invocation argu-
ments. An example is adding an element to a
collection, where the collection itself should be

6

tracked subsequently with the added element
forming part of the collection’s internal state.

• Reading actions: The complement of side-
effecting actions, where what is read from
internal state should be tracked by the data-
flow analysis algorithm (e.g., accessing an
element in a tracked collection).

Note that all of the above specification dimensions
are orthogonal to the design of the core data-flow
analysis algorithm, and whether or not it is field
sensitive, object sensitive, flow sensitive, or so on.

The specification is consumed by GQL’s core
data-flow analysis engine, which supports both
forward and backward propagation. The analysis
scope is determined according to the user speci-
fication, where if the scope falls below the entire
package, then we eliminate functions from consid-
eration if they reside outside the type or file stated
by the user.

As is standard, the analysis algorithm performs
forward slicing from sources (resp. backward slicing
from sinks), then searches for sinks (resp. sources)
in the resulting slice. In scenarios where source/sink
reachability is established, a witness generation
algorithm is invoked to compute a source/sink
path by retracing backwards from sinks (resp. for-
ward from sources) through data-flow transitions
within the slices. In cases where caching is further
used, as with the rule in figure 2, the slices are of
course reused across different analysis rules with
compatible tracking configurations: a significant
performance optimization.

• A pass-through specification matches against
actions, and enables forward (resp. backward)
propagation across the action. This is partic-
ularly helpful in scenarios where the action
is a function coming from a library, thus not
amenable to direct analysis. As an example, a
pass-through action gives rise to a definition-
to-arguments flow in the backwards direction,
and an argument-to-definition flow in the dual
case of forward propagation.

• A blocking specification applies in the same
manner, though with the opposite effect of
terminating rather than enabling data prop-
agation when the data-flow engine is able to
match the specification against an action in
the code. A more advanced scenario, which
we illustrate at line 14 in figure 2, is data-
flow truncation through a validation action

(specifically, (in)equality testing). Unlike sani-
tization, which has a “local” effect, validation
draws on the notion of control dependence.
To enforce this variant of blocking actions,
we compute the control dependence graph of
every visited function that contains actions
matching the blocking specification. We then
check whether data-flow transitions intersect
with control dependence edges, in which case
we abort propagation.

• A side-effecting specification applies in sce-
narios where an action is matched (e.g.,
List::set), where in the forward (resp. back-
ward) direction, the argument (resp. receiver)
is tracked thus triggering tracking of the
receiver (resp. argument). Note that there is
built-in handling for field assignments. The
value of the specification is in scenarios where
side effects take place due to a function call
(in particular, when using library types like
java.util.Collection).

• Finally, the reading specification complements
the side-effecting specification, reading from
tracked “memory” (e.g., via List::get). In the
forward (resp. backward) direction, an action
applied to a tracked receiver (resp. defini-
tion) triggers tracking of the definition (resp.
receiver). Again here this enables more com-
plete treatment of data flow in scenarios that
involve library types.

When rule authors determine the specification
dimensions, they are making trade-offs between
precision, recall, and efficiency of the rules. We
discuss the impact of the various types of con-
figurations further in section 5. In practice, rule
authors continuously monitor rule performance
against a large number of codebases. They define
common values of the data-flow specification that
are proven to meet the requirements of their rules
or campaigns, and often also share the data-flow
specification across different rules. The specifica-
tion is continuously adjusted as rules are refined
and optimized.

5 Evaluation

In this section, we report on experimental evalua-
tion.

7

5.1 Input Dataset

We have conducted the experiments on GitHub
packages that have Apache or MIT licenses, and
popularity of at least four stars. To evaluate the
impact of different optimization strategies, we have
selected two different datasets. The first dataset
was used to evaluate configuration indexing opti-
mization strategy. It consists of 200 randomly
selected Java and Python GitHub repositories
which have specific SDK usages, such as AWS
Java SDK [1] or AWS Python SDK [3]. The sec-
ond dataset was used to evaluate different caching
strategies and data-flow specifications. It consists
of another 180 randomly selected Java GitHub
repositories which have specific APIs that are iden-
tified as tainted sources. The average number of
lines of code in repositories from the dataset is
25,697.

5.2 Experimental Setup

The experiments were run on an Amazon EC2
machine with 48 cores, 384 GB of memory, and 2
hard drives of size 1 TB each. We have selected
5 AWS best-practice rules to assess the impact
of the configuration indexing, and 7 taint-flow
rules to assess the effects of caching and cus-
tomizing the data-flow specification. Depending
on the usage scenarios, users could have differ-
ent requirements about time limits to run the
analysis. For example, an offline scan could have
a long time limit, while an online scanning dur-
ing a code review typically demands speed. We
evaluated our rules using 30- and 5-minute time
limits that correspond to limits commonly enforced
for other analyzers—running internally in our
organization—in compatible scenarios.

5.3 Experiment 1: Configuration
Indexing

Many AWS operations return paginated results
when the response object is too large to return
in a single response. One best practice for using
operations which may return paginated results
is checking a specific object in the response to
verify that all results are returned. One of the
configurations for the “Missing Pagination” trait
is described in the JSON fragment in figure 3.
This snippet describes list dataset groups as a func-
tion that returns paginated results, and provides

1 {
2 ”expectedPaginationMethods”: [
3 ”IsTruncated”,
4 ”NextToken”
5],
6 ”paginatedMethod”: ”list dataset groups”,
7 ”resultKeys”: [
8 ”DatasetGroups”
9],

10 ”serviceId”: ”forecast”
11 }

Fig. 3 Partial configuration for the “Missing Pagination”
trait

additional details as to which objects should be
checked, the data type of returned results, and
the associated AWS service. These API specifica-
tions are automatically mined from corresponding
API models, for example, Boto3 (AWS Python
SDK) [2].

Table 1 presents the impact of indexing based
configuration using five CodeGuru rules [28], that
reflect guidelines for correct, secure, and perfor-
mant usage of AWS cloud Java and Python SDKs.
These rules operate with hundreds and thousands
of AWS API configurations derived from hundreds
of public AWS services.

All CodeGuru rules are documented online, in
the CodeGuru Detector Library [28]. For brevity,
we present few representative rules in table 1, which
are briefly described below.

• Rule 1: Misuse of paginated APIs: The pag-
ination API is used when the result set due
to a query is too large to fit within a single
response. The best practice is to use pagina-
tion token to perform iterative requests and
receive the response in parts.

• Rule 2: Error handling for batch operations:
Batch operations can succeed without throw-
ing an exception even if processing fails for
some items. Therefore, a best practice is to
explicitly check for failures in the response
due to the batch API call.

• Rule 3: Use waiters in place of polling API:
Waiters are utility methods that make it easy
to wait for a resource to transition into a
desired state by abstracting out the polling
logic into a simple API call. Our rule detects
code that appears to be polling for a resource

8

Table 1 Comparison for rules with and without configuration indexing. Evaluation times are in seconds, given as “x / y”
for for 30-minute and 5-minute limits, respectively.

Without Indexing With Indexing

Rule # Configurations Evaluation Times # Findings Evaluation Times # Findings

30 mins / 5 mins 30 mins / 5 mins

Rule 1 [4] 1,117 Timeout / Timeout N/A 215.3s / 215.3s 78
Rule 2 [5] 8,411 Timeout / Timeout N/A 296.7s / 296.7s 136
Rule 3 [6] 81 427.7s / Timeout 32 144.5s / 144.5s 32
Rule 4 [7] 186 694.5s / Timeout 56 139.4s / 139.4s 56
Rule 5 [8] 126 673.1s / Timeout 47 126.4s / 126.4s 47

before it runs. In such cases, it recommends
using efficient waiters instead.

• Rule 4: Detect uncaught exceptions for AWS
APIs: Detect uncaught exceptions involving
AWS APIs and recommend handling those
uncaught exceptions as well.

• Rule 5: Detect usage of deprecated APIs in
AWS SDKs.

Column 1 in table 1 gives the rule id, and Col-
umn 2 presents the total number of configurations
that each rule evaluates on. Columns 3–4 report
the run times and number of findings or detec-
tion from the rules without indexing optimization.
Columns 5–6 report the same with indexing opti-
mization. Comparing the run times of the rules
without indexing and with indexing in table 1, it
is evident that when the total number of configu-
rations are large (>1,000), the unoptimized rules
without indexing, Rule 1 and Rule 2, timed out.
The evaluation time of the unoptimized rules grow
linearly with the size of the configuration that the
rules operate on.

By contrast, the optimized rules take the same
amount of time for different time limits (30 minutes
versus 5 minutes), regardless of configuration sizes.
This clearly demonstrates the positive impact of
configuration indexing. For rules that evaluate on
few hundred configurations, such as Rules 3–5, the
speedup is 3× or more. The total number of find-
ings depends on the the extent of usage of the AWS
SDKs in the dataset under analysis. Furthermore,
the number of findings (reported as “# Findings”)
show that the unoptimized Rules 1 and 2 did not
produce any findings, while the optimized rules
produced same number of findings for different
time limits. This demonstrates that the dynamic
indexing of configurations help uncover more bugs
overall, and improves the recall of these rules.

5.4 Experiment 2: Caching and
Data-flow Specification

This experiment evaluated the impact of caching
and data-flow specification. We ran seven rules,
targeting different kinds of injection vulnerabilities,
including command injection, SQL injection, cross-
site scripting, log injection, path traversal, LDAP
injection, and XPath injection [28]. All the rules
shared the same set of tainted sources. The vast
majority of these represent untrusted data coming
from the Internet. Depending on the injection issue,
the rules differ in sinks. For example, the rule for
command injection considers APIs responsible for
OS command execution as sinks. We ran these
rules against 180 repositories in the second dataset
with 5- and 30-minute time limits. We used various
combinations of analysis scopes (i.e., file-level and
package-level), caching configurations (i.e., with
and without caching), and data-flow actions on
these rules. We designed the experiment in this
way because in practice, rule developers are given
different time budgets of rule execution. They tune
their data-flow specifications, making trade-offs
between precision, recall, and efficiency, to stay
within their assigned time budgets. GQL itself does
decide which dimension is more important; this is
for rule authors to decide. Based on the scanning
requirement, there exist scenarios where the time
limit is longer, and recall is more important. There
also exist scenarios where efficiency and precision
are favored over recall. This experiment give GQL
users more insights with heuristic data about the
practical gains and losses when tuning a data-flow
specification.

In particular, we compared two typical combi-
nations of data-flow actions used by rule authors
in real world. The first variant is conservative and

9

Table 2 Comparison for rules with and without caching using different data-flow specifications with time limit of 5 minutes.

Cache Analysis Time (in seconds)

Scope Actions Config. Size # Hits/Misses All First Rest Median # Findings # TOs

File Cons. Disabled N/A N/A 2,796.4 443.0 2,353.4 2.7 314 1
File Cons. Enabled 10,000 39,800/6,653 2,730.9 442.0 2,288.9 2.6 314 1
File Cons. Enabled 100,000 39,800/6,653 2,725.8 440.3 2,285.5 2.7 314 1
Pkg Cons. Disabled N/A N/A 4,327.6 1,121.3 3,206.3 3.7 343 17
Pkg Cons. Enabled 10,000 20,565/5,597 2,679.9 1,138.5 1,541.4 3.0 406 12
Pkg Cons. Enabled 100,000 21,705/4,651 2,448.8 1,134.5 1,314.3 2.9 495 11

File Perm. Disabled N/A N/A 3,540.8 642.4 2,898.4 2.2 401 4
File Perm. Enabled 10,000 13,868/31,506 3,493.7 643.2 2,850.5 2.1 401 4
File Perm. Enabled 100,000 39,723/6,645 3173.7 644.1 2529.6 2.1 711 3
Pkg Perm. Disabled N/A N/A 4,131.4 784.8 3,346.6 3.0 472 28
Pkg Perm. Enabled 10,000 7,204/12,651 3,698.6 790.7 2,907.9 2.4 470 28
Pkg Perm. Enabled 100,000 17,369/3,422 1,840.3 790.9 1,049.4 2.4 607 23

Table 3 Comparison for rules with and without caching using different data-flow specifications with a time limit of 30
minutes.

Cache Analysis Time (in seconds)

Scope Actions Config. Size # Hits/Misses All First Rest Median # Findings # TOs

File Cons. Disabled N/A N/A 2,959.9 455.5 2,504.4 2.8 339 0
File Cons. Enabled 10,000 41,804/6,965 2,890.2 454.8 2,435.4 2.7 339 0
File Cons. Enabled 100,000 41,804/6,965 2,899.3 457.4 2,441.9 2.7 339 0
Pkg Cons. Disabled N/A N/A 16,172.9 6,033.7 10,139.2 3.8 529 10
Pkg Cons. Enabled 10,000 28,798/9,935 10,672.2 5,992.3 4,679.9 3.0 558 8
Pkg Cons. Enabled 100,000 38,210/6,471 8,059.8 5,945.6 2,114.2 2.9 799 3

File Perm. Disabled N/A N/A 4,288.3 652.8 3,635.5 2.2 764 0
File Perm. Enabled 10,000 14,024/34,745 4,286.3 655.9 3,630.4 2.1 764 0
File Perm. Enabled 100,000 41,804/6,965 3,459.3 650.6 2,808.7 2.1 764 0
Pkg Perm. Disabled N/A N/A 9,906.1 3,412.3 6,493.8 2.9 617 22
Pkg Perm. Enabled 10,000 7,425/16,911 8,647.4 3,540 5,107.4 2.4 652 21
Pkg Perm. Enabled 100,000 25,501/4,633 4,709.4 3,399 1,310.4 2.4 786 18

targets high precision. It uses a small set of pass-
through actions, such as string concatenation, and
reading actions, such as getters of tainted sources.
Rule authors did not need to specify the blocking
actions because only a limited set of actions was
allowed to admit data flow. Rule authors also did
not specify any side-effecting actions to prevent
imprecision introduced by data flowing in and out
of collections. Using this combination of data-flow
actions, a finding from the rule indicates with high
confidence that untrusted user input can direct
control the sink. For example, if a rule targets com-
mand injection, then the untrusted input will be
able to append additional malicious commands to
the OS command execution API.

The second variant is more permissive than
the first. The consumers of findings generated by
these permissive actions are more tolerant to impre-
cise results in exchange of a higher recall. The
pass-through actions in this combination included
any function that is not defined internally in the
analyzed program. The side-effecting actions and

reading actions included common read/write oper-
ators against collections. For example, adding an
element to and reading an element from a list. As
for the blocking actions, the specification defined a
set of approved sanitizers. Using this set of permis-
sive actions, a finding from the rules indicates that
untrusted user input is able to reach the sink with-
out approved sanitization and validation against
the input.

Tables 2 and 3 show the impacts of scope cus-
tomization, caching, and data-flow actions. The
results in these two tables were based on rules
running on the benchmarks using 5- and 30-
minute time limits, respectively. In these two tables,
column 1 indicates whether the static analyzer per-
formed a whole-program inter-procedural analysis,
i.e, package-level, versus, a more contained file-
level inter-procedural analysis. Column 2 indicates
whether the data-flow actions used in the exper-
iments are conservative (“Cons.”) or permissive
(“Perm.”). Columns 3–4 list the caching configu-
ration we set for each rule. We experimented with

10

different cache sizes, which specify the maximum
number of mappings from tainted sources to cached
tainted program points. Column 5 presents the
number of cache hits and misses for each experi-
ment. In columns 6–9, we first list the evaluation
time for all the rules, and then for the first rule,
and then for the rest of the rules. The reason of
splitting the rules in this way is to show the effect
of caching. We also present the median evaluation
time required for analyzing a repository. Note that
the analysis times we report in these columns do
not include time spent on repositories where the
analysis timed out. Column 10 summarizes the
number of findings we obtained for all the rules.
Column 11 reports the number of repositories that
our analysis timed out on for the given time limit.

5.4.1 Impact of Caching

Our evaluation indicates that caching can have a
substantial impact on the analysis speed, result-
ing in fewer timeouts and better recall. As cache
size increases, the improvements become more
pronounced due to more frequent cache hits. In
addition to memory considerations, the time limit
allocated by users for the analysis also positively
influences the benefits of caching.

Overall, caching is more effective on package-
level analysis than file-level analysis. For example,
rows 4 and 6 (respectively rows 1 and 3) of table 2
display the results where the rules conducted
package-level (respectively file-level) analysis with
and without caching at a time limit of 5 minutes.
Speedup of rule execution for file-level analysis was
negligible with no extra findings with caching. The
speedup of overall rule execution for package-level
analysis was more than 1.7× relative to no caching.
When examining the breakdown of the analysis
time for package-level analysis, we observed only a
slight increase in the analysis time for the first rule,
as indicated in the “First” column. This increase is
likely due to the overhead from cache writes. Such
overhead was well offset by later-on savings when
the rest of the rules were executed. The analysis
time of the remaining six rules (displayed at the
column “Rest”) only took 15% more analysis time
than the first rule alone. This is because those
six rules can leverage the tainted program points
cached by the first rule execution. This perfor-
mance improvement from caching directly resulted
in an increased number of findings by 44% from

343 to 495. When the time limit is 30 minutes,
the speedup was even increase to 2×, as shown in
rows 4 and 6 of table 3. The number of findings
increased by 51% from 529 to 799. A longer time
limit helped because the first rule had its chance
to finish on more complex repositories and wrote
to the cache.

If users larger memory budgets, our evaluation
shows that larger caches are beneficial. In both
tables 2 and 3, except for the conservative file-
level analysis, we see the positive impact of larger
caches on analysis time, the number of timeouts,
and the number of findings. For example, rows 5
and 6 of table 2 show that a larger cache slightly
increases the number of cache hits and reduces the
number of cache misses for conservative package-
level analysis, resulting in a speedup of 1.1×, 1
fewer timeout, and 89 (22%) more findings. The
benefits of larger caches were more significant when
the time limit was 30 minutes. Rows 5 and 6 of
table 3 show that the larger cache increased the
number of cache hits of the conservative package-
level analysis by 1.3×, resulting in a speed up
of 1.3×, 5 fewer timeout, and 241 (43%) more
findings. We see the same trend for analyses with
permissive data-flow actions. As shown in rows
8 and 9 of table 2, and rows 11 and 12 table 3,
the number of findings from a permissive file-level
or package level analysis both increase, and the
number of timeouts both decrease. Even in cases
where the analysis completed without timeouts,
a larger cache improved analysis time by 19%,
primarily attributable to a significant increase in
cache hits, as shown in rows 8 and 9 of table 3. Due
to the complex taint flows in these repositories, a
larger cache was needed otherwise the cache could
only hold a subset of the tainted program points.
Once the required resources on both time and
memory are met, users can maximize the benefits
of caching.

The only case where we did not observe benefits
from caching was conservative file-level analysis.
Caching had no observable positive or negative
impact. We obtained the same number of findings
and the same number of timeouts. The analy-
sis time was also comparable with and without
caching. This is due to fact that conservative
file-level analysis is contained and fast. Caching
inherently adds some overhead and therefore did
not benefit file level analysis overall.

11

5.4.2 Impact of Scope Customization

Our evaluation clarifies the advantages of customiz-
ing the tracking scope. Analyses using a file-level
tracking scope ran faster compared to those with
a package-level scope. The file-level scope helped
the analyses complete within the given time limit.
Conversely, analyses using a package-level track-
ing scope experienced more frequent timeouts, but
they demonstrated notable improvements in recall
across most scenarios.

File-level analysis outperformed package-level
analysis in meeting the time limit. This observation
holds for both the conservative and permissive
data-flow actions, with or without caching. The
”# TOs” columns in tables 2 and 3 show that
rule execution rarely times out when a file-level
tracking scope is in use. For example, the file-level
analysis timed out on only 1 repository at the time
limit of 5 minutes, while the package-level analysis
timed out on 11 to 17 repositories, depending on
the caching configuration. At the time limit of 30
minutes, the file-level analysis did not time out.
The reduction in timeouts was due to the fact
that file-level analysis needed to reason about a
smaller call graph and therefore a smaller set of
tainted program points, which ultimately led to
faster analysis and fewer timeouts. For example,
compared to conservative package-level analysis,
total rule evaluation time of conservative file-level
analysis sped up by more than 1.5×, as shown
in rows 1 and row 4 of table 2. (Note that the
comparison of rule evaluation time only took into
account the analyses that did not time out.)

In most scenarios, especially when conservative
data-flow actions are in use, using a package-
level tracking scope would improve the recall. The
improvement is more significant when caching is
in place and when the time limit is longer. At
a time limit of 5 minutes, the file-level analysis
produced 314 findings regardless of the caching
configuration, while the package-level analysis pro-
duced 343 findings (9% more) without caching,
406 findings (29% more) with a 10,000-item cache,
and 495 findings (58%) with a 100,000-item cache.
At a time limit of 30 minutes, the file-level analy-
sis produced 339 findings, while the package-level
analysis produced 529 findings (56%), 558 findings
(65% more), and 799 findings (136% more), respec-
tively. Since the package-level analysis was more
expensive and needed to compute more tainted

program points, caching can help to cut the cost
and a longer time limit allowed the analysis to
run longer, both of which enhanced the benefits of
using a package-level tracking scope.

However, if the analysis used a combination
of rule configuration that made it hard to scale
properly, leading to many timeouts, then the
improvement on recall using a package-level track-
ing scope would be minimal. In some extreme
scenarios, the number of findings even dropped.
If the time limit is short and caching is unavail-
able, analysis with a package-level tracking scope
timed out on 17 repositories while the analysis
with a file-level tracking scope only timed out on 1
repository. The former only produced 29 more find-
ings (9% more) than the latter. When the analysis
used permissive data-flow actions together with a
package-level tracking scope, the number of find-
ings dropped in some cases. We discuss this result
further in section 5.4.3.

5.4.3 Impact of Data-flow Actions

Our experiments show that given the same caching
configuration, analysis scope, and time limit, rules
with permissive data-flow actions lead to more
findings most of the time, compared to rules with
conservative actions, but at the cost of more
timeouts.

Results show that permissive data-flow actions
can significantly improve the recall of the analy-
sis with a file-level tracking scope. Rows 1 and 7
of table 2 show that the permissive analysis gen-
erated 401 findings: 87 (28%) more than the 314
findings generated by the conservative analysis.
When the time limit is 30 minutes, the permis-
sive analysis generated 764 findings: 125% more
than the 339 findings generated by the conserva-
tive analysis. We randomly sampled 79 additional
findings found by the permissive analysis and man-
ually examined the source code. Although the
analysis did generate more false-positives, it pro-
duced more valid findings as well (41% of the
additional findings produced by the permissive
actions were true-positives), effectively improv-
ing the recall. The conservative analysis was not
able to find them because its data-flow actions
did not capture the pass-through actions that rep-
resent APIs from libraries in most of the time,
such as JSON-parsing libraries and URI-building
libraries, or even sometimes internal methods that

12

are defined in the same package but in a differ-
ent file. These APIs and method calls can admit
data flow, and need to be explicitly specified as a
part of the pass-through actions. Among the rest
of the 79 additional findings, 45 (57%) were false-
positives. In 2 cases our manual analysis could
not draw a conclusion because the tainted data
flowed into a method whose implementation was
neither in the same repository nor from common
libraries. When rules are applied on real world
code bases where there are numerous APIs from
third-party libraries that can admit data-flow, a
permissive pass-through action that assumes that
any unknown function can admit data-flow could
indeed be one of the viable options to improve
recall. However, we also observed that overly per-
missive pass-through actions made the analysis
to make incorrect assumptions about data-flow,
contributing to the vast majority of false alarms.

While analyses with permissive actions typ-
ically produced more findings, those using con-
servative actions consistently outperformed the
permissive ones when it came to meeting time lim-
its. Surprisingly, using conservative actions not
only reduced timeouts but, in certain combina-
tions of specifications within our experiment, also
resulted in more findings than the permissive
actions. At the package level when the time limit
was 30 minutes and a large cache was in use, the
conservative analysis generated 799 findings, 1.6%
more than the 786 findings generated by the per-
missive analysis, as shown in rows 6 and 12 of
table 3. This was due to the fact that the permis-
sive analysis had 18 timeouts: 6× more than the
conservative analysis, eventually resulting in fewer
findings.

In general, we observed that the negative
impact of more frequent timeouts, caused by the
permissive actions, becomes evident in the package-
level analyses, potentially offsetting the benefits
of expanding the analysis scope from file-level to
package-level. When the analysis used conservative
actions, changing the analysis scope from file-level
to package-level can always lead to more findings,
as discussed in section 5.4.2. However, we noticed
that the permissive package-level analysis could
produce fewer findings than the permissive file-level
analysis. For example, given a short time limit of
5 minutes, rows 9 and 12 of table 2 show that the
permissive package-level analysis had 7.7× more
timeouts than the permissive file-level analysis and

15% fewer findings. Similarly, given a longer time
limit, the number of findings from package-level
analysis at row 10 and 11 of table 3 is smaller
than the number of findings coming from the cor-
responding file-level analysis at row 7 and row 8 in
the same table. This negative impact was caused
by the fact that the permissive pass-through/side-
effecting/reading actions would produce a large
program slice. The more tainted program points
in this slice, the longer it took for the data-flow
analysis to finish. In package-level analysis, overly
permissive actions could cause the program slice to
rapidly expand, leading to poor scalability and fre-
quent timeouts in the overall analysis. Caching was
helpful in alleviating the situation as it reduced the
number of timeouts. However, the overall number
of timeouts after the improvement from caching
remained large.

Based on all the above observations, we deter-
mine that there are two takeaways for rule authors
to optimize their rule configuration and execution.
1. Avoid using overly permissive actions

for a package-level analysis. When
package-level analysis is needed, instead of
allowing any unknown functions to pass-
through tainted data, rule authors should
specify a more contained set of functions that
can pass the tainted data through. This will
slow the expansion of the program slice dur-
ing the data-flow analysis, resulting in faster
rule evaluation. To identify the required pass-
through actions, rule authors can run the
rules with permissive actions and conservative
actions against test repositories in an exper-
imental mode with a long time limit. After
manually reviewing the additional findings
from the permissive version of the rules, they
should identify the APIs, e.g., from a JSON-
parsing library, that can admit data-flow can
add those to the pass-through actions. In this
way, the recall of the rules increases and the
precision remains high.

2. If rule authors do not want to spend time man-
ually identifying accurate data-flow actions,
but they still want to maximize recall, then
they can use both conservative and per-
missive actions in a greedy manner.
Given a certain time limit, the rules with
conservative actions should be executed first.
If these rules complete their analysis of the
repository before the time limit is reached,

13

any remaining time can be spent executing
the permissive version.

6 Related Work

Toman and Grossman [30] note caching as a widely
used technique to make static analysis tractable
[10, 12, 19, 20, 21, 23, 29], but limited to reanal-
ysis of the same program or analysis of shared
library code [18]. Prior work on analysis caching
has generally keyed the cache on coarse-grained
program components, such as functions or files. By
contrast, we cache results of whole rules, subrules,
or even individual GQL operations. Our approach
is well-matched to a feature-rich analysis service
that checks many aspects of a single code base [28],
as our cache can accelerate common intermediate
steps across multiple rules. Our focus on efficiently
applying many checks to varied programs contrasts
with, and is complementary to, that of Gu et al.
[14], who focus on scaling any single analysis to
large programs.

Unlike other rule-based static analysis lan-
guages such as, CodeQL [13], GQL does not require
building the codebase (then compilation of the
facts database), which limits adoption, blocks use
cases like ad-hoc queries, etc. In terms of analysis
capabilities, GQL offers codebase-wide data-flow
and type-state capabilities, that is, deeper and
more semantic analysis, unlike tools such as
Semgrep [27].

Arzt et al. [11] present FlowDroid, which is
a novel and highly precise static taint analysis
for Android applications using context, flow, field
and object-sensitivity to reduce the number of
false alarms. Schubert et al. [26] present Varalyzer
that performs effective static data-flow analysis of
software product lines on real-world C code which
allow developers to find bugs and vulnerabilities
much earlier in the development process.

Toman and Grossman [30] propose a commu-
nity database of analysis-relevant API information.
If this effort succeeds, then the sheer number
of annotated APIs may become a scaling chal-
lenge. We have shown that configuration indexing
works well for rules that operate with thousands
of configurations, that are mined from different
SDKs.

Schubert et al. [25] discuss the importance of
understanding analysis performance so that it can
be tuned to perform well. Toman and Grossman

[30] also note the use of tunable “knobs” to balance
precision and performance [15, 16, 17]. Our analysis
scopes are one such group of knobs, but we have
not detailed a procedure for selecting the best
scopes for any given task. The instrumentation-
directed strategies of Schubert et al. [25] are likely
applicable here.

7 Conclusion

In this paper, we have presented an interactive
approach for rule authors—encoding their domain
expertise as GQL rules evaluated through Amazon
CodeGuru Reviewer—to optimize their rules’ per-
formance. Specifically, rule authors can (i) cache
rule steps for reuse by co-evaluated rules; (ii)
control the scope and data-flow actions of inter-
procedural queries at a granular level; as well
as (iii) scale a rule “template” to a large num-
ber of configurations using efficient indexing. Our
evaluation of these optimizations on a GitHub
dataset indicates significant performance gains, e.g.
3× speedup thanks to configuration indexing, 2×
speedup thanks to caching, and 1.5× thanks to
fine-grained data-flow specification.

References

[1] Amazon Web Services. Boto3 - the AWS SDK
for Java, 2022. URL https://github.com/aws/
aws-sdk-java.

[2] Amazon Web Services. Boto3 - the AWS SDK
for Python, 2022. URL https://github.com/
boto/boto3.

[3] Amazon Web Services. AWS SDK for Python
(Boto3), 2022. URL https://aws.amazon.com/
sdk-for-python/.

[4] Amazon Web Services. Missing pagi-
nation rule. https://docs.aws.amazon.
com/codeguru/detector-library/java/
missing-pagination/, 2022.

[5] Amazon Web Services. Batch request with
unchecked failures rule. https://docs.aws.
amazon.com/codeguru/detector-library/
java/aws-unchecked-batch-failures/, 2022.

[6] Amazon Web Services. Inefficient polling
of aws resource high rule. https://docs.
aws.amazon.com/codeguru/detector-library/
java/aws-polling-instead-of-waiter/, 2022.

[7] Amazon Web Services. Check uncaught
exceptions high rule. https://docs.aws.

14

https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java
https://github.com/boto/boto3
https://github.com/boto/boto3
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/codeguru/detector-library/java/missing-pagination/
https://docs.aws.amazon.com/codeguru/detector-library/java/missing-pagination/
https://docs.aws.amazon.com/codeguru/detector-library/java/missing-pagination/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-unchecked-batch-failures/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-unchecked-batch-failures/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-unchecked-batch-failures/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-polling-instead-of-waiter/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-polling-instead-of-waiter/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-polling-instead-of-waiter/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/

amazon.com/codeguru/detector-library/
java/check-uncaught-exceptions/, 2022.

[8] Amazon Web Services. Use of a dep-
recated method rule. https://docs.aws.
amazon.com/codeguru/detector-library/
java/deprecated-method/, 2022.

[9] Amazon Web Services. What is Ama-
zon CodeGuru Reviewer?, 2023. URL
https://docs.aws.amazon.com/codeguru/
latest/reviewer-ug/welcome.html.

[10] Steven Arzt and Eric Bodden. Reviser:
efficiently updating ide-/ifds-based data-flow
analyses in response to incremental program
changes. In Pankaj Jalote, Lionel C. Briand,
and André van der Hoek, editors, 36th Inter-
national Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June
07, 2014, pages 288–298. ACM, 2014. doi:
10.1145/2568225.2568243. URL https://doi.
org/10.1145/2568225.2568243.

[11] Steven Arzt, Siegfried Rasthofer, Christian
Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and
Patrick D. McDaniel. Flowdroid: precise con-
text, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In
Michael F. P. O’Boyle and Keshav Pingali,
editors, ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014, pages 259–269. ACM,
2014. doi: 10.1145/2594291.2594299. URL
https://doi.org/10.1145/2594291.2594299.

[12] Cristiano Calcagno and Dino Distefano. Infer:
An automatic program verifier for memory
safety of C programs. In Mihaela Gheo-
rghiu Bobaru, Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods - Third International Sym-
posium, NFM 2011, Pasadena, CA, USA,
April 18-20, 2011. Proceedings, volume 6617
of Lecture Notes in Computer Science, pages
459–465. Springer, 2011. doi: 10.1007/
978-3-642-20398-5\ 33. URL https://doi.org/
10.1007/978-3-642-20398-5 33.

[13] GitHub, Inc. Codeql, 2019. URL https://
codeql.github.com.

[14] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin,
Zhaokang Wang, Linzhang Wang, Xuandong
Li, and Yihua Huang. Towards efficient
large-scale interprocedural program static

analysis on distributed data-parallel computa-
tion. IEEE Trans. Parallel Distributed Syst.,
32(4):867–883, 2021. doi: 10.1109/TPDS.
2020.3036190. URL https://doi.org/10.1109/
TPDS.2020.3036190.

[15] Ben Hardekopf, Ben Wiedermann, Berke-
ley R. Churchill, and Vineeth Kashyap.
Widening for control-flow. In Kenneth L.
McMillan and Xavier Rival, editors, Verifi-
cation, Model Checking, and Abstract Inter-
pretation - 15th International Conference,
VMCAI 2014, San Diego, CA, USA, Jan-
uary 19-21, 2014, Proceedings, volume 8318
of Lecture Notes in Computer Science, pages
472–491. Springer, 2014. doi: 10.1007/
978-3-642-54013-4\ 26. URL https://doi.org/
10.1007/978-3-642-54013-4 26.

[16] Vineeth Kashyap, Kyle Dewey, Ethan A.
Kuefner, John Wagner, Kevin Gibbons, John
Sarracino, Ben Wiedermann, and Ben Hard-
ekopf. JSAI: a static analysis platform for
javascript. In Shing-Chi Cheung, Alessan-
dro Orso, and Margaret-Anne D. Storey,
editors, Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foun-
dations of Software Engineering, (FSE-22),
Hong Kong, China, November 16 - 22, 2014,
pages 121–132. ACM, 2014. doi: 10.1145/
2635868.2635904. URL https://doi.org/10.
1145/2635868.2635904.

[17] Yoonseok Ko, Hongki Lee, Julian Dolby, and
Sukyoung Ryu. Practically tunable static
analysis framework for large-scale javascript
applications (T). In Myra B. Cohen, Lars
Grunske, and Michael Whalen, editors, 30th
IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015,
pages 541–551. IEEE Computer Society, 2015.
doi: 10.1109/ASE.2015.28. URL https://doi.
org/10.1109/ASE.2015.28.

[18] Sulekha Kulkarni, Ravi Mangal, Xin Zhang,
and Mayur Naik. Accelerating program analy-
ses by cross-program training. In Eelco Visser
and Yannis Smaragdakis, editors, Proceedings
of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOP-
SLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November
4, 2016, pages 359–377. ACM, 2016. doi:

15

https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/deprecated-method/
https://docs.aws.amazon.com/codeguru/detector-library/java/deprecated-method/
https://docs.aws.amazon.com/codeguru/detector-library/java/deprecated-method/
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://codeql.github.com
https://codeql.github.com
https://doi.org/10.1109/TPDS.2020.3036190
https://doi.org/10.1109/TPDS.2020.3036190
https://doi.org/10.1007/978-3-642-54013-4_26
https://doi.org/10.1007/978-3-642-54013-4_26
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1109/ASE.2015.28
https://doi.org/10.1109/ASE.2015.28

10.1145/2983990.2984023. URL https://doi.
org/10.1145/2983990.2984023.

[19] Yingjun Lyu, Sasha Volokh, William G. J.
Halfond, and Omer Tripp. SAND: a static
analysis approach for detecting SQL antipat-
terns. In Cristian Cadar and Xiangyu Zhang,
editors, ISSTA ’21: 30th ACM SIGSOFT
International Symposium on Software Test-
ing and Analysis, Virtual Event, Denmark,
July 11-17, 2021, pages 270–282. ACM, 2021.
doi: 10.1145/3460319.3464818. URL https:
//doi.org/10.1145/3460319.3464818.

[20] Scott McPeak, Charles-Henri Gros, and
Murali Krishna Ramanathan. Scalable and
incremental software bug detection. In
Bertrand Meyer, Luciano Baresi, and Mira
Mezini, editors, Joint Meeting of the Euro-
pean Software Engineering Conference and the
ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August
18-26, 2013, pages 554–564. ACM, 2013. doi:
10.1145/2491411.2501854. URL https://doi.
org/10.1145/2491411.2501854.

[21] Rashmi Mudduluru and Murali Krishna
Ramanathan. Efficient incremental static
analysis using path abstraction. In Stefania
Gnesi and Arend Rensink, editors, Funda-
mental Approaches to Software Engineering
- 17th International Conference, FASE 2014,
Held as Part of the European Joint Con-
ferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings, volume 8411 of
Lecture Notes in Computer Science, pages
125–139. Springer, 2014. doi: 10.1007/
978-3-642-54804-8\ 9. URL https://doi.org/
10.1007/978-3-642-54804-8 9.

[22] Rajdeep Mukherjee, Omer Tripp, Ben Lib-
lit, and Michael Wilson. Static analysis for
AWS best practices in python code. In Karim
Ali and Jan Vitek, editors, 36th European
Conference on Object-Oriented Programming,
ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many, volume 222 of LIPIcs, pages 14:1–14:28.
Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022. doi: 10.4230/LIPIcs.ECOOP.
2022.14. URL https://doi.org/10.4230/LIPIcs.
ECOOP.2022.14.

[23] Lori L. Pollock and Mary Lou Soffa. An
incremental version of iterative data flow anal-
ysis. IEEE Trans. Software Eng., 15(12):
1537–1549, 1989. doi: 10.1109/32.58766. URL
https://doi.org/10.1109/32.58766.

[24] Thomas W. Reps, Susan Horwitz, and Shmuel
Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In Ron K. Cytron
and Peter Lee, editors, Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages, San Francisco, California, USA,
January 23-25, 1995, pages 49–61. ACM Press,
1995. doi: 10.1145/199448.199462. URL
https://doi.org/10.1145/199448.199462.

[25] Philipp Dominik Schubert, Richard Leer, Ben
Hermann, and Eric Bodden. Know your
analysis: how instrumentation aids under-
standing static analysis. In Neville Grech
and Thierry Lavoie, editors, Proceedings of
the 8th ACM SIGPLAN International Work-
shop on State Of the Art in Program Analysis,
SOAP@PLDI 2019, Phoenix, AZ, USA, June
22, 2019, pages 8–13. ACM, 2019. doi: 10.
1145/3315568.3329965. URL https://doi.org/
10.1145/3315568.3329965.

[26] Philipp Dominik Schubert, Paul Gazz-
illo, Zach Patterson, Julian Braha, Fabian
Schiebel, Ben Hermann, Shiyi Wei, and
Eric Bodden. Static data-flow analysis
for software product lines in C. Autom.
Softw. Eng., 29(1):35, 2022. doi: 10.1007/
s10515-022-00333-1. URL https://doi.org/10.
1007/s10515-022-00333-1.

[27] Semgrep, Inc. Semgrep, 2020. URL https:
//semgrep.dev.

[28] Amazon Web Services. Codeguru rules.
https://docs.aws.amazon.com/codeguru/
detector-library/, 2024.

[29] Amie L. Souter and Lori L. Pollock. Incremen-
tal call graph reanalysis for object-oriented
software maintenance. In 2001 International
Conference on Software Maintenance, ICSM
2001, Florence, Italy, November 6-10, 2001,
pages 682–691. IEEE Computer Society, 2001.
doi: 10.1109/ICSM.2001.972787. URL https:
//doi.org/10.1109/ICSM.2001.972787.

[30] John Toman and Dan Grossman. Taming
the static analysis beast. In Benjamin S.
Lerner, Rastislav Bod́ık, and Shriram Krishna-
murthi, editors, 2nd Summit on Advances in

16

https://doi.org/10.1145/2983990.2984023
https://doi.org/10.1145/2983990.2984023
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.1109/32.58766
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/3315568.3329965
https://doi.org/10.1145/3315568.3329965
https://doi.org/10.1007/s10515-022-00333-1
https://doi.org/10.1007/s10515-022-00333-1
https://semgrep.dev
https://semgrep.dev
https://docs.aws.amazon.com/codeguru/detector-library/
https://docs.aws.amazon.com/codeguru/detector-library/
https://doi.org/10.1109/ICSM.2001.972787
https://doi.org/10.1109/ICSM.2001.972787

Programming Languages, SNAPL 2017, May
7-10, 2017, Asilomar, CA, USA, volume 71
of LIPIcs, pages 18:1–18:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:

10.4230/LIPIcs.SNAPL.2017.18. URL https:
//doi.org/10.4230/LIPIcs.SNAPL.2017.18.

17

https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18

	Problem Setting
	Background
	Intermediate Graph Representation
	Rules

	Motivating Example
	Caching
	Configuration Indexing
	Data-flow Customization

	Optimization Strategies
	Caching
	Configuration Indexing
	Fine-grained Data-flow Specification

	Evaluation
	Input Dataset
	Experimental Setup
	Experiment 1: Configuration Indexing
	Experiment 2: Caching and Data-flow Specification
	Impact of Caching
	Impact of Scope Customization
	Impact of Data-flow Actions

	Related Work
	Conclusion

