CS559: Computer Graphics

Lecture 6: Painterly Rendering and Edges
Li Zhang
Spring 2008
So far

• Image formation: eyes and cameras

• Image sampling and reconstruction

• Image resampling and filtering
Today

• Painterly rendering

• Reading
 – Hertzmann, *Painterly Rendering with Curved Brush Strokes of Multiple Sizes*, SIGGRAPH 1998, section 2.1 (required), others (optional)
 – [Edge Detection Tutorial](#) (recommended but optional)
Painterly Filters

• Many methods have been proposed to make a photo look like a painting
 – A.k.a. Non-photorealistic Rendering

• Today we look at one: Painterly-Rendering with Brushes of Multiple Sizes

• Basic ideas:
 – Build painting one layer at a time, from biggest to smallest brushes
 – At each layer, add detail missing from previous layer
Input photo

Blurred input

Brush shape

Canvas
Input photo

Blurred input

Canvas (1st iteration)

Canvas (2nd iteration)
Input photo

Blurred input

Brush shape

Canvas (2nd iteration)
Input photo

Blurred input

Brush shape

Canvas (3rd iteration)
Brush shape

Iteration 1

Iteration 2

Iteration 3
How to blur an image?

- **Continuous Gaussian Filter**
 \[
 Gauss(x; \sigma) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{x^2}{2\sigma^2}}
 \]

- **Discrete Gaussian Filter**

- **Binomial Filter**
 - \(B_1 = [1, 1]/2 \)
 - \(B_2 = B_1 * B_1 = [1, 2, 1]/4 \)
 - \(B_3 = B_2 * B_1 = [1, 3, 3, 1]/8 \)
 - \(B_4 = B_3 * B_1 = [1, 4, 6, 4, 1]/16 \)
 - ...
 - \(B_n = B_{n-1} * B_1 \)
Image Filter Near Boundaries

\[
\begin{array}{cccccccccc}
? & 1 & 3 & 9 & 4 & 5 & 8 & 8 & 1 & 3 & 7 \\
\end{array}
\]

\[
\begin{array}{ccc}
0.25 & 0.5 & 0.25 \\
\end{array}
\]

- Zero padding
- Replication
- Reflection
Image Filter Near Boundaries

\[\begin{array}{cccccccccc}
? & 1 & 3 & 9 & 4 & 5 & 8 & 8 & 1 & 3 & 7 \\
\end{array} \]

\[* \]

\[\begin{array}{ccc}
0 & 0.5 & 0.25 \\
\end{array} \] / 0.75

\[\]

- Zero padding
- Replication
- Reflection
- Kernel Renormalization
Image Patch Difference

\[D_{i,j} = \sqrt{(r_1 - r_2)^2 + (g_1 - g_2)^2 + (b_1 - b_2)^2} \]
Algorithm (outer loop)

```
function paint(sourceImage, R_1 ... R_n) // take source and several brush sizes
{
    canvas := a new constant color image
    // paint the canvas with decreasing sized brushes
    for each brush radius R_i, from largest to smallest do
    {
        // Apply Gaussian smoothing with a filter of size f_σ R_i
        // Brush is intended to catch features at this scale
        referenceImage = sourceImage * G(f_σ R_i)
        // Paint a layer
        paintLayer(canvas, referenceImage, R_i)
    }
    return canvas
}
```
Algorithm (inner loop)

procedure paintLayer(canvas, referenceImage, R) // Add a layer of strokes
{
 S := a new set of strokes, initially empty
 D := difference(canvas, referenceImage) // euclidean distance at every pixel
 for x=0 to imageWidth stepsize grid do // step in size $f_g R$ that depends on brush radius
 for y=0 to imageHeight stepsize grid do {
 // sum the error near (x,y)
 M := the region $(x-grid/2..x+grid/2, y-grid/2..y+grid/2)$
 areaError := sum(D_{i,j} for i,j in M) / grid2
 if (areaError > T) then {
 // find the largest error point
 (x1,y1) := max D_{i,j} in M
 s := makeStroke(R,x1,y1,referenceImage)
 add s to S
 }
 }
 paint all strokes in S on the canvas, in random order
}
Results in the paper

Original

Biggest brush

Medium brush added

Finest brush added
\(f_\sigma \) and \(f_g \)

- Gauss sigma = \(f_\sigma \cdot \) brush radius
 - Or use binomial filter of length \(2 \cdot \) brush radius + 1

- Grid size = \(f_g \cdot \) brush radius
 - Default \(f_g = 1 \)

- Trying different parameters are optional
Changing Parameters
Changing Parameters

Impressionist, normal painting style

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter

Densely-placed circles with random hue and saturation
Changing Parameters
Changing Parameters

Impressionist, normal painting style

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter

Densely-placed circles with random hue and saturation
Changing Parameters
Changing Parameters

Impressionist, normal painting style

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter

Densely-placed circles with random hue and saturation
Changing Parameters
Changing Parameters

Impressionist, normal painting style

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter

Densely-placed circles with random hue and saturation
Changing Parameters
Changing Parameters

Impressionist, normal painting style
Colorist wash, semitransparent stroke with color jitter

Expressionist, elongated stroke
Densely-placed circles with random hue and saturation
Style Interpolation

Average style

Colorist wash, semitransparent stroke with color jitter

Densely-placed circles with random hue and saturation

http://mrl.nyu.edu/projects/npr/painterly/
Another type of painterly rendering

- Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html
Another type of painterly rendering

- Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html
Another type of painterly rendering

- Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html
Another type of painterly rendering

- Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html
Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
Edge detection

• One of the most important uses of image processing is **edge detection**:
 – Really easy for humans
 – Really difficult for computers
 – Fundamental in computer vision
 – Important in many graphics applications
What is an edge?

- **Q**: How might you detect an edge in 1D?
Gradients

• The gradient is the 2D equivalent of the derivative:
 \[\nabla f (x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \]

 \[g_x[i,j] = f[i+1,j] - f[i,j] \]

 \[g_y[i,j] = f[i,j+1] - f[i,j] \]

 Can write as mask \([-1 1]\) and \([1 -1]\)’

• Properties of the gradient
 – It’s a vector
 – Points in the direction of maximum increase of \(f\)
 – Magnitude is rate of increase

• How can we approximate the gradient in a discrete image?
Less than ideal edges
Results of Sobel edge detection

Original

Smoothed
Edge enhancement

• A popular gradient magnitude computation is the **Sobel operator**:

\[s_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \]

\[s_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

• We can then compute the magnitude of the vector \((s_x, s_y)\).
Results of Sobel edge detection

- Original
- Smoothed
- Sx + 128
- Sy + 128
- Magnitude
Non-maximum Suppression

- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

The Canny Edge Detector
Results of Sobel edge detection

Original

Smoothed

Sx + 128

Sy + 128

Magnitude

Threshold = 64

Threshold = 128
Steps in edge detection

• Edge detection algorithms typically proceed in three or four steps:
 – **Filtering**: cut down on noise
 – **Enhancement**: amplify the difference between edges and non-edges
 – **Detection**: use a threshold operation
 – **Localization** (optional): estimate geometry of edges, which generally pass between pixels
The Canny Edge Detector

original image (Lena)
The Canny Edge Detector

magnitude of the gradient
The Canny Edge Detector

After non-maximum suppression
Canny Edge Detector

\[\sigma \] : Gaussian filter parameter

- The choice of \(\sigma \) depends on desired behavior
 - large \(\sigma \) detects large scale edges
 - small \(\sigma \) detects fine features